EI SEVIER

The Breast

journal homepage: www.journals.elsevier.com/the-breast

Early breast cancer in women aged 35 years or younger: A large national multicenter French population-based case control-matched analysis

Ondine Dufour^a, Gilles Houvenaeghel^b, Jean-Marc Classe^c, Monique Cohen^b, Christelle Faure^d, Chafika Mazouni^e, Marie-Pierre Chauvet^f, Eva Jouve^g, Emile Darai^h, Anne-Sophie Azuarⁱ, Pierre Gimbergues^j, Anthony Gonçalves^a, Alexandre de Nonneville^{a,*}

^a Institut Paoli-Calmettes, CRCM, Département d'Oncologie Médicale, CNRS, Aix-Marseille Université, Marseille, France

^b Institut Paoli-Calmettes, CRCM, Département de Chirurgie Oncologique, CNRS, Aix-Marseille Université, Marseille, France

^d Centre Léon Bérard, 28 Rue Laennec, Lyon, France

^f Centre Oscar Lambret, 3 Rue Frédéric Combenal, Lille, France

^g Centre Claudius Regaud, 20-24 Rue du Pont St Pierre, Toulouse, France

^h Hôpital Tenon, 4 Rue de la Chine, Paris, France

ⁱ Hôpital de Grasse, Chemin de Clavary, Grasse, France

^j Centre Jean Perrin. 58 Rue Montalembert. Clermont Ferrand. France

ARTICLE INFO

ABSTRACT

Keywords: Early breast cancer Very young patient Under 35 years old Prognostic of young age Impact of age Young breast cancer	<i>Background:</i> There is a scarcity of data exploring early breast cancer (eBC) in very young patients. We assessed shared and intrinsic prognostic factors in a large cohort of patients aged ≤35, compared to a control group aged 36 to 50. <i>Methods:</i> Patients ≤50 were retrospectively identified from a multicentric cohort of 23,134 eBC patients who underwent primary surgery between 1990 and 2014. Multivariate Cox analyses for DFS and OS were built. To assess the independent impact of age, 1 to 3 case-control analysis was performed by matching ≤35 and 36–50 years patients. <i>Results:</i> Of 6481 patients, 556 were aged ≤35, and 5925 from 36 to 50. Age ≤35 was associated with larger tumors, higher grade, ER-negativity, macroscopic lymph node involvement (pN + macro), lymphovascular invasion (LVI), mastectomy, and chemotherapy (CT) use. In multivariate analysis, age ≤35 was associated with worse DFS [HR 1.56, 95% CI 1.32–1.84; <i>p</i> < 0.001], and OS [HR 1.29, 95% CI 1.03–1.60; <i>p</i> = 0.025], as were high grade, large tumor, LVI, pN + macro, ER-negativity, period of diagnostic, and absence of ET or CT (for DFS). Adverse prognostic impact of age ≤35 was maintained in the case control-matched analysis for DFS [HR 1.56, 95%CI 1.28–1.91, <i>p</i> < 0.001], and OS [HR 1.33, 95%CI 1.02–1.73, <i>p</i> = 0.032]. When only considering patients ≤35, ER, tumor size, nodal status, and LVI were independently associated with survival in this subgroup. <i>Conclusions:</i> Age ≤35 is associated with less favorable presentation and more aggressive treatment strategies. Our results support the poor prognosis value of young age, which independently persisted when adjusting for other prognostic factors and treatments.
---	---

Abbreviations: BC, Breast Cancer; SLNB, Sentinel Lymph Node Biopsy; ALND, Axillary Lymph Node Dissection; SBR grade, Scarff-Bloom-Richardson grade; ER, endocrine receptors; HER2, Human Epidermal growth factor Receptor 2; LVI, lymphovascular invasion; luminal-A, (HER2 negative, ER positive, SBR grade 1 or 2); luminal-B, HER2-negative, (HER2 negative, ER positive, SBR grade 3); luminal-B, HER2-positive, (HER2 positive, ER positive, all grades); HER2-positive, (non-luminal, HER2 positive, ER negative); triple-negative, (basal like, HER2 negative, ER negative); ER+, positive endocrine receptor; HER2-, hER2 negative; pN0, no invasion; pN0i+, isolated tumor cells; pN + mi, microscopic invasion under 2 mm; pN + macro, macroscopic invasion beyond; CT, chemotherapy; RT, radiation therapy; ET, endocrine therapy; DFS, Disease Free Survival; OS, Overall Survival; HR, Hazard Ratio; 95%CI, confidence interval at 95%; ER-, Endocrine Receptor Negative; ER+, Endocrine Receptor Positive; LumB, Luminal-B HER2-negative SBR grade 3 subtype; LumB HER2+, Luminal-B HER2-positive subtype; HER2+, HER2-positive subtype.

* Corresponding author.

E-mail address: denonnevillea@ipc.unicancer.fr (A. de Nonneville).

https://doi.org/10.1016/j.breast.2023.02.004

Received 2 December 2022; Received in revised form 4 February 2023; Accepted 7 February 2023 Available online 8 February 2023

0960-9776/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^c Institut René Gauducheau, Site Hospitalier Nord, St Herblain, France

^e Institut Gustave Roussy, 114 Rue Edouard Vaillant, Villejuif, France

Table 1

Histopathological characteristics and treatments of the two populations: \leq 35 and 36–50 years old.

UNIVARIATE		Total	≤35 y (n =	= 556)		36-50 y (n	= 5925)		p value
Characteristics		n	total	n	%	total	n	%	
Period		6481	556			5925			0.037
	Before 2005			334	60%		3287	56%	
	After 2005			222	40%		2638	45%	
Tumor size	_	6392	542			5850			< 0.001
	$\leq 5 \text{ mm}$			38	7%		397	7%	
	6–10 mm			83	15%		1305	22%	
	$\sim 20 \text{ mm}$			230	42%		2525	43%	
Histological type	>20 mm	6100	527	191	3370	5573	1025	2070	< 0.001
	Ductal			493	94%		4775	86%	
	Lobular			28	5%		665	12%	
	Mixed			6	1%		133	2%	
SBR grade		6262	527			5735			< 0.001
	Grade 1			60	11%		1733	30%	
	Grade 2			240	46%		2675	47%	
FD	Grade 3	(401	554	227	43%	5005	1327	23%	-0.001
EK	Nogotivo	6481	550	211	2004	5925	1141	1004	<0.001
	Docitive			211	38% 62%		1141	19% 81%	
Estrogen recentor	TOSITIVE	5839	478	545	0270	5361	+07	0170	< 0.001
Listrogen receptor	Negative	0009	170	180	38%	5501	1003	19%	<0.001
	Positive			298	62%		4358	81%	
Progesterone recepto	or	5527	467			5060			< 0.001
	Negative			185	40%		1217	24%	
	Positive			282	60%		3843	76%	
HER2 overexpressed		6481	556			5925			< 0.001
	No			252	45%		3334	56%	
	Yes			77	14%		433	7%	
NOT 1 1.	Unknown	4.405		227	41%	1006	2158	36%	0.001
Molecular subtype	Luminol A	4425	329	120	400/	4096	0704	670/	<0.001
				139	42%		2724	07%	
	Triple pegative			61	9% 10%		434	4%	
	Luminal B G3			52	16%		428	10%	
	Luminal B HER2+			46	14%		350	9%	
SLNB and/or ALND		6470	554			5916			< 0.001
	SLNB			155	28%		2376	40%	
	SLNB + ALND			152	27%		1768	30%	
	ALND			247	45%		1772	30%	
Final lymph node sta	atus	6447	549			5898			< 0.001
	pN0			275	50%		3489	59%	
	pN0(1+)			23	4%		166	3%	
	pN + mi			35	5% 30%		474	8% 30%	
IVI	piv + macro	5500	401	210	3970	5108	1709	3070	<0.001
LVI	No	3377	491	244	50%	5100	3495	68%	<0.001
	Yes			247	50%		1613	32%	
Surgery type		6481	548			5835			< 0.001
0 1 11	Lumpectomy			377	69%		4516	77%	
	Mastectomy			171	31%		1319	23%	
Adjuvante CT		6481	556			5925			< 0.001
	No			93	17%		2617	44%	
	Yes			441	79%		3215	54%	
m , 1	Neo-adjuvant	(105	500	22	4%	5401	93	2%	0.001
Trastuzumab	Ν	6137	536	470	000/	5601	5004	050/	<0.001
	NO			479	89% 1106		5334 267	95% 5%	
RT	165	6192	539	57	1170	5653	207	370	0.352
	No	0172	005	40	7%	0000	423	7%	0.002
	Yes			499	93%		5230	93%	
ET		6476	556			5920			< 0.001
	No			242	44%		1714	29%	
	Yes			314	56%		4206	71%	
Relapse		6480	556			5924			< 0.001
	No			369	66%		4996	84%	
D 1	Yes			187	34%	~~~	928	16%	a a=-
Relapse type	A	1116	187	-	00/	929	20	407	0.253
	Axillary			D 100	3%		39 E16	4%	
	Others			120	200%		210	25%	
	Controlateral			16	2070 9%		233 84	2070 9%	
	Joint Graterui				40/		57	<i>210</i>	

1. Introduction

Breast cancer (BC) incidence increases with age. However, one in forty patients will be diagnosed under the age of 35, thereby making it the leading cancer in young women [1,2]. Technological and therapeutic advances have led to a significant decrease in overall mortality over time, but when examined by age groups, it appears that cancer-related death in premenopausal patients tends to remain relatively stable over time. The association between young age and prognosis has been recognized for a long time [3-5] but its independent value is still debated [6]. According to European recommendations, treatment decisions in young women should not be motivated by their age but rather by BC presentation, to avoid overtreatment [7,8]. These recommendations assume that prognostic factors that are recognized in older women are equally valid and robust in younger women. We decided to focus on women under 35 years to try to answer three questions: what is the presentation of BC in patients <35 years compared to older pre-menopausal patients? Is young age by itself an independent prognostic factor? And are the prognostic factors classically identified in BC also evident in this population? To this end, we compared patients <35 years with a group of patients aged 36 to 50 extracted from a large retrospective multi-institutional cohort.

2. Methods

Our data were extracted retrospectively from a multicentric database comprising 23,134 patients who underwent primary surgery for early BC, from 15 French centers between 1990 and 2014. Data concerning relapse and vital status of patients were updated annually (last update May 7, 2021). Patients were included based on histologically proven invasive BC, with sentinel lymph node biopsy (SLNB) evaluation \pm axillary lymph node dissection (ALND). Patients aged ≤50 were selected and divided into two groups: patients aged \leq 35 years as the population of interest and patients aged 36 to 50 as a control group of premenopausal patients. We analyzed diagnostic period, tumor size, histological type, SBR grade, endocrine receptors (ER; positivity threshold 10%), Human Epidermal growth factor Receptor 2 (HER2) status, molecular subtypes determined by immunohistochemistry, SLNB or ALND, final lymph node status, and lymphovascular invasion (LVI) [9]. Five molecular subtypes were defined: luminal-A {HER2 negative (HER2-), ER-positive (ER+), grade 1 or 2}; luminal-B HER2-negative {HER2-, ER+, grade 3}; luminal-B HER2-positive {HER2 positive (HER2+), ER+, all grade}: HER2-positive {HER2+, ER-negative (ER-)}: triple-negative {basal like, HER2-, ER-}. Final lymph node status was categorized into four groups: no invasion (pN0), isolated tumor cells (pN0i+), microscopic invasion <2 mm (pN + micro), and macroscopic invasion beyond (pN + macro) [10]. Treatments, including surgery type, chemotherapy (CT), radiation therapy (RT), and endocrine therapy (ET) were analyzed. The database did not include any mutational data, thus BRCA mutation status was not known. Disease Free Survival (DFS), defined as the time

Fig. 1. Flow chart of the population.

from surgery to the first event (invasive relapse, metastatic relapse, or death from any cause), and Overall Survival (OS), defined as the time from surgery to death, were analyzed. Patients with missing data on evaluated variables were removed from multivariate analysis. All procedures involving human participants were done according to the French ethical standards and the Helsinki declaration. Authorization to use the database was obtained from the strategic orientation committee of Paoli-Calmettes Institute (ClinicalTrials.gov NCT02869607).

Standard descriptive statistics were used to describe patient and tumor characteristics. Deaths with no evidence of recurrence were treated as competing events in cumulative incidence analyses. Factors associated with DFS, and OS were determined in univariate and multivariate analysis. Survivals were estimated using the Kaplan-Meier method and compared with log-rank test. Multivariate Cox analyses were built for the total cohort and specifically for the <35 years old cohort. The hazard ratio (HR) was determined with a 95% confidence interval [95%CI]. Significance level was set at 0.05. To further assess the independent impact of age on survivals, a 1 to 3 case-control analysis was performed by matching <35 to 36-50 years old patients. Coefficients of a logistic regression adjusted on histology, grade, tumor size, LVI, nodal status, ER, ET, and CT were used to compute a propensity score for each patient. Each pair (1–3) were comparable on these criteria, but distinct by age. Patients not meeting all the matching criteria were excluded. Nearest-neighbor 1:3 matching without replacement was performed with a caliper of 0.2 [11-13]. All statistical tests were two-sided. Statistical analyses were performed with SPSS-16.0 (SPSS Inc., Chicago, Illinois, USA) and R version-3.6.3 (R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1. BC presentation in patients \leq 35 years compared to 36–50 patients

From the 23,134 patients, a cohort of 6481 patients aged \leq 50 years was extracted. Among them, 556 were aged \leq 35 years and 5925 from 36 to 50 (Table 1 and Fig. 1).

Compared to the 36–50 years old group, patients \leq 35 had significantly larger tumor (35% above 20 mm in \leq 35 *versus* 28% in 36–50), grade 3 (43% *versus* 23%), pN + macro (39% *versus* 30%), and LVI (50% *versus* 32%). Patients \leq 35 had more ER-tumors (23% *versus* 11%), and HER2+ (14% *versus* 7%). Molecular subtypes distribution was different according to age group (p < 0.001): luminal-A tumors were principally represented in the 36–50 patients (67% *versus* 42% of \leq 35), while \leq 35 patients presented more triple-negative (19% *versus* 11%), luminal-B HER2-negative (16% *versus* 10%), luminal-B HER2-positive (14% *versus* 9%), and HER2-positive (9% *versus* 4%) tumors (Fig. 1). Lobular subtype was more frequent in 36–50 years old patients (12% *versus* 5%). Age \leq 35 years was significantly associated with increased rates of mastectomy (31% *versus* 23%), adjuvant CT (79% *versus* 30%). No difference was observed for RT or ET use among ER + patients (Table 1).

3.2. Prognostic value of age \leq 35 - Univariate survival analysis

With a median follow-up of 71.9 months [95%CI 70.7–73.1], DFS events occurred in 34% of \leq 35 patients *versus* 16% of 36–50 (p < 0.001). However, no difference was observed by type of relapse (Table 1).

In univariate analysis, patients \leq 35 presented lower 5- and 10-year DFS than the 36–50 cohort: 74% [95%CI 70.88–78.12] *versus* 89% [95%IC 87.89–89.51]; *p* < 0.001, and 60% [95%IC 55.52–63.68] *versus* 74% [95%IC 73.29–75.51]; *p* < 0.001, respectively (Fig. 2). HR for continuous DFS was unfavorable for \leq 35 women [1.90, 95%CI 1.63–2.33, *p* < 0.001] (Table 2, Fig. 3). OS events were more frequent in the \leq 35 group (19%) than in the 36–50 (9%) (*p* < 0.001). In univariate analysis, patients \leq 35 presented lower 5- and 10-year OS than 36–50: 89% [95%IC 86.84–91.96] *versus* 95% [95%IC 94.76–95.84]; *p* < 0.001,

Fig. 2. Kaplan Meier of univariate analysis of DFS (A) and OS (B) in both cohorts.

Table 2

Multivariate analysis of DFS and OS in the total cohort.

TOTAL	DFS				OS			
COHORT	HR	95% CI		p value	HR	95% CI		p value
		min	max			min	max	
Age	1.56	1.32	1.84	<0.001	1.29	1.03	1.60	0.025
No	Reference cate	gory			Reference c	ategory		
Adjuvant	0.83	0.70	0.99	0.035	0.86	0.67	1.10	0.218
Neo-adjuvant	1.26	0.79	2.02	0.326	1.51	0.78	2.92	0.221
ER	0.89	0.73	1.08	0.239	0.72	0.56	0.92	0.010
ET	0.73	0.60	0.88	0.001	0.82	0.64	1.07	0.141
SBR grade								
1	Reference cate	gory			Reference ca	ategory		
2	1.37	1.15	1.63	< 0.001	1.53	1.16	2.01	0.003
3	1.64	1.35	2.00	< 0.001	2.33	1.74	3.13	< 0.001
Size (mm)								
≤5	Reference cate	gory			Reference ca	ategory		
5 to 10	0.77	0.56	1.06	0.107	0.56	0.33	0.94	0.027
10 to 20	0.90	0.66	1.22	0.484	0.84	0.52	1.36	0.477
20 to 50	1.12	0.82	1.52	0.482	1.26	0.79	2.03	0.333
>50	2.21	1.54	3.17	< 0.001	2.40	1.41	4.06	0.001
Lymph node involvement								
pN0	Reference cate	gory			Reference ca	ategory		
pN0(i+)	1.03	0.67	1.57	0.902	0.87	0.41	1.87	0.722
pN1mi	0.86	0.63	1.18	0.347	1.02	0.62	1.68	0.941
pN1macro	1.37	1.17	1.60	< 0.001	1.67	1.34	2.08	< 0.001
LVI								
No	Reference cate	gory			Reference ca	ategory		
Yes	1.36	1.18	1.57	< 0.001	1.67	1.37	2.03	< 0.001
Unknown	1.06	0.88	1.28	0.543	1.21	0.92	1.58	0.170
Histological type								
Ductal	Reference cate	gory			Reference ca	ategory		
Lobular	0.90	0.72	1.12	0.336	0.94	0.68	1.29	0.688
Mixed	0.73	0.47	1.13	0.160	0.94	0.54	1.64	0.817
Others	0.72	0.51	1.03	0.073	0.94	0.58	1.51	0.786
Period								
<1995	Reference cate	gory			Reference ca	ategory		
1995–1998	1.08	0.86	1.36	0.510	1.00	0.74	1.34	0.988
1999–2004	0.74	0.62	0.88	0.001	0.59	0.47	0.75	< 0.001
\geq 2005	0.59	0.49	0.73	< 0.001	0.41	0.30	0.55	< 0.001

Fig. 3. Kaplan Meier of univariate analysis of DFS (A) and OS (B) in the matched population.

Table 3 Impact of young age on DFS and OS in the different analysis: univariate, multivariate and matched multivariate.

Analysis	DFS				OS			
		95%CI				95%CI		
	HR	min	max	p value	HR	min	max	p value
Univariate	1.90	1.63	2.22	< 0.001	1.76	1.43	2.17	< 0.001
Multivariate	1.56	1.32	1.84	< 0.001	1.29	1.03	1.60	0.025
Matched	1.56	1.28	1.91	< 0.001	1.33	1.02	1.73	0.032

Fig. 4. Impact of young age on DFS and OS: summary of Hazard Ratio by Forest plot.

and 76% [95%IC 72.76–79.83] *versus* 86% [95%IC 84.81–86.59]; p < 0.001, respectively (Fig. 2). HR for continuous OS was unfavorable for \leq 35 [1.76, 95%CI 1.43–2.17, p < 0.001] (Table 2, Fig. 3).

3.3. Prognostic value of age ${\leq}35$ - multivariate survival analysis

In a multivariate analysis including age, CT, ER, ET, grade, tumoral

size, lymph node involvement, LVI, histological type, and period of diagnostic, age \leq 35 was significantly associated with worse DFS [HR 1.56, 95%CI 1.32–1.84, *p* < 0.001] and OS [HR 1.29, 95%CI 1.03–1.60, *p* = 0.025] (Table 2, Fig. 3). Other independent prognostic factors were grade, tumor size, pN + macro, LVI, period after 1999, and ER-negativity (for OS only) (Table 3). In a multivariate analysis adjusted on all the previous variable and on molecular subtypes, independent negative value of age was maintained for DFS only but not OS (Supplementary Table 1).

3.4. Prognostic value of age \leq 35 - matched population

In the 1 to 3 matched cohort (457 patients \leq 35 for 1368 aged 36–50), Log-rank tests stratified on the pairs revealed a significant unfavorable impact of age \leq 35 on survivals. 5- and 10-year DFS in \leq 35 *versus* 36–50 were of 75% [95%IC 71.13–79.06] *versus* 85% [95%IC 83.36–86.64], and 60% [95%IC 55.20–64.20] *versus* 68% [95%IC 65.86–70.14], p < 0.001; 5- and 10-years OS were of 89% [95%IC 85.91–91.69] *versus* 92% [95%IC 91.18–93.62] and 76% [95%IC 71.77–79.63] *versus* 80% [95%IC 77.96–81.64], p = 0.031 (Fig. 4). HR for young age was 1.56 [95%CI 1.28–1.91; p < 0.001] for DFS and 1.33 [95%CI 1.02–1.73; p = 0.032] for OS (Table 2, Fig. 3).

3.5. Analyses focused on the \leq 35 years cohort

The cohort of \leq 35 years patients was analyzed according to ER status and molecular subtypes (Table 4). Among the 556 patients, 211

Table 4	
Characteristics of ${\leq}35$ according to endocrine receptors and m	olecular subtype.

\leq 35 y CHAR	ACTERISTICS	Total	ER- (n	= 211)	ER+(r	n = 345)	p value	Total	LumA	(139)	HER2	2+ [<mark>31</mark>]	TN (6	51)	LumE	3 G3 (52)	LumE	3 HER2+ (46)	p value
			n	%	n	%			n	%	n	%	n	%	n	%	n	%	
Period		556	211		345		< 0.001	329	139		31		61		52		46		0.048
	Before 2005		156	74%	178	52%			45	32%	10	32%	32	52%	21	40%	13	28%	
	After 2005		55	26%	167	48%			94	68%	21	68%	29	48%	31	60%	33	72%	
Tumor size ir	n mm	542	208		334		0.799	321	133		30		61		52		45		0.43
	<5		16	8%	22	7%			9	7%	4	13%	6	10%	4	8%	2	4%	
	6 to 10		29	14%	54	16%			24	18%	5	17%	5	8%	4	8%	9	20%	
	11 to 20		92	44%	138	41%			60	45%	13	43%	26	43%	22	42%	15	33%	
	>20		71	34%	120	36%			40	30%	8	27%	24	39%	22	42%	19	42%	
Histological t	vne	556	211	5170	345	5070	0.075	320	130	0070	31	27 /0	61	0570	52	1270	46	1270	0.084
i listological t	Ductal	550	19/	870%	300	00%	0.075	52)	110	860%	21	100%	53	870%	40	04%	40	0.8%	0.004
	Lobular		0	404	10	50%			10	704	0	004	1	204	1	9470 204	1	90%	
	Lobulat		9	4%	19	10/			10	7%0	0	0%	1	2%0	1	2%0	1	2%	
	Mixed		17	0%	5	1%			4	3%	0	0%	I	2%	0	0%	0	0%	
(DD 1	Other	505	1/	8%	12	3%	0.001	000	0	4%	0	0%	6	10%	2	4%	0	0%	0.001
SBR grade		527	194		333		<0.001	323	137		30		58		52		46		<0.001
	1		18	9%	42	13%			30	22%	1	3%	6	10%	0	0%	1	2%	
	2		55	28%	185	56%			107	78%	12	40%	7	12%	0	0%	20	43%	
	3		121	62%	106	32%			0	0%	17	57%	45	78%	52	100%	25	54%	
Endocrine Re	ceptor	556	211		345			329	139		31		61		52		46		< 0.001
	Negative		211	100%	0	0%			0	0%	31	100%	61	100%	0	0%	0	0%	
	Positive		0	0%	345	100%			139	100%	0	0%	0	0%	52	100%	46	100%	
Estrogen rece	eptor	478	163		315		< 0.001	326	139		30		60		51		46		< 0.001
-	Negative		163	100%	17	5%			3	2%	30	100%	60	100%	1	2%	2	4%	
	Positive		0	0%	298	95%			136	98%	0	0%	0	0%	50	98%	44	96%	
Progesterone	receptor	467	161		306		< 0.001	318	135		30		60		48		45		< 0.001
	Negative		161	100%	24	8%			6	4%	30	100%	60	100%	8	17%	4	9%	
	Positive		0	0%	282	92%			129	96%	0	0%	0	0%	40	83%	41	91%	
HFR2 overev	pressed	320	92	070	237	5270	<0.001	320	130	5070	31	070	61	070	52	0070	46	5170	<0.001
TILINZ OVEREX	No	329	54	660/	101	9104	<0.001	329	139	10004	0	004	61	10004	52	10004	40	004	<0.001
	NO		01	00%	191	81%			139	100%	0	0%	01	100%	52	100%	0	0%	
01.NP 1/	res		31	34%	40	19%	0.001		0	0%	31	100%	0	0%	0	0%	40	100%	0.015
SLNB and/or	ALND	554	209		345	2224	<0.001	329	139		31		61		52		46		0.015
	SLNB		42	20%	113	33%			64	46%	8	26%	27	44%	18	35%	17	37%	
	SLNB + ALND		35	17%	117	34%			60	43%	14	45%	16	26%	20	38%	21	46%	
	ALND		132	63%	115	33%			15	11%	9	29%	18	30%	14	27%	8	17%	
Final lymph 1	node status	549	208		341		0.002	324	135		31		60		52		46		0.018
	pN0		117	56%	158	46%			69	51%	13	42%	35	58%	19	37%	23	50%	
	pN0(i+)		4	2%	19	6%			10	7%	1	3%	2	3%	5	10%	1	2%	
	pN1mi		5	2%	30	9%			20	15%	3	10%	2	3%	1	2%	5	11%	
	pN1macro		82	39%	134	39%			36	27%	14	45%	21	35%	27	52%	17	37%	
LVI	-	491	187		304		0.646	297	125		27		58		47		40		0.268
	No		88	47%	156	51%			79	63%	16	59%	36	62%	20	43%	20	50%	
	Yes		99	53%	148	49%			46	37%	11	41%	22	38%	27	57%	20	50%	
Surgery type		548	209		339		0.002	322	137		29		61		49		46		0.008
suger, type	Lumpectomy	0.0	162	78%	215	63%	0.002	022	71	52%	14	48%	43	70%	29	59%	34	74%	0.000
	Mastectomy		47	220%	124	370%			66	480%	15	520%	19	30%	20	410%	10	26%	
Adjuggent CT	mastectomy	554	77/ 011	2270	245	37 70	0.005	320	120	4070	21	3270	£1	3070	20 E0	4170	14	2070	0.001
Aujuvani CI	No	000	47	000/	343	1.00/	0.005	329	139	1.00/	31	60/	01	E0/	52	00/	40	40/	0.001
	INO		4/	22%	46	13%			26	19%	2	0%	3	5%	0	0%	2	4%	
	Yes		160	76%	281	81%			106	76%	27	87%	56	92%	48	92%	37	80%	
_	Neo-adjuvant		4	2%	18	5%			7	5%	2	6%	2	3%	4	8%	7	15%	
Trastuzumab		536	206		330		0.163	308	125		27		60		51		45		< 0.001
	No		188	91%	291	88%			125	100%	10	37%	60	100%	51	100%	9	20%	
	Yes		18	9%	39	12%					17	63%					36	80%	
DT		530	203		336		0 575	315	135		30		55		52		43		0.091

The Breast 68 (2023) 163–172

(continued on next page)

<35 y CHARACTERISTICS	Total	ER- (n	= 211)	ER+ (n	i = 345)	p value	Total	LumA ((139)	HER2-	+ [31]	TN (61	(LumB	G3 (52)	LumB	HER2+ (46)	p value
		u	%	п	%			ц	%	ц	%	п	%	ц	%	ц	%	
No		13	6%	27	8%			18	13%	5	17%	5	6%	5	10%	1	2%	
Yes		190	94%	309	92%			117	87%	25	83%	50	91%	47	%06	42	98%	
ET	547	202		345		< 0.001	326	139		30		59		52		46		< 0.001
No		202	100%	40	12%			11	8%	30	100%	59	100%	с	6%	4	9%6	
Yes				305	88%			128	92%					49	94%	42	91%	
Relapse type	187	88		66		0.08	81	24		10		16		23		8		0.386
Axillary		1	1%	ъ	5%			1	4%	1	10%	0	%0	1	4%	1	13%	
Metastatic		59	67%	61	62%			15	63%	9	60%	8	50%	17	74%	ß	63%	
Other		17	19%	21	21%			4	17%	2	20%	4	25%	с	13%	2	25%	
Contro latera	lr	ß	6%	11	11%			4	17%	0	%0	1	6%	2	%6	0	0%0	
Unknown		9	7%	1	1%			0	%0	1	10%	e	19%	0	0%	0	0%0	

The Breast 68 (2023) 163-172

presented ER- and 345 ER + tumors. Molecular subtype was available in 329 patients: 139 luminal-A; 31 HER2-positive; 61 triple-negative; 52 luminal-B HER2-negative; 46 luminal-B HER2-positive. Period of diagnostic, grade, HER2 status, lymph node treatment and status, surgery type, adjuvant CT, and ET, were significantly different according to ER status and molecular subtype.

ER-patients had more grade 3 (62% *versus* 32% in ER+), HER2+ (34% *versus* 19%), ALND (63% *versus* 33%), and pN0 (56% *versus* 46%). In the ER+, we observed more mastectomy (37% *versus* 22% in ER-) and adjuvant CT (81% *versus* 76%).

Triple-negative subgroup presented more grade 3 (78%), and CT use (92%). The luminal-B HER2-negative subgroup presents more pN + macro (52%), and LVI (57%).

In univariate analyses according to ER (Fig. 5), ER + group presented a better 5-year DFS [79%; 95%CI 75.40–82.20] and OS [94%; 95%CI 91.79–95.80] than 5-year DFS [67%; 95%CI 63.40–71.20] and OS [82%; 95%CI 78.91–85.29] in ER-group; p = 0.002 for DFS; p < 0.001 for OS.

In univariate analyses according to molecular subtype (Fig. 6), 5year DFS were: 91% [95%CI 87.45–93.75] for luminal-A; 81% [95%CI 77.09–85.51] for luminal-B HER2-positive; 76% [95%CI 71.49–80.71] for triple-negative; 76% [95%CI 71.06–80.33] for HER2-positive; 63% [95%CI 58.09–68.51] for luminal-B HER2-negative; p = 0.003. The 5year OS were: 98% [95%CI 96.62–99.57] for luminal-A; 98% [95%CI 96.08–99.32] for luminal-B HER2-positive; 89% [95%CI 85.39–92.21] for HER2-positive; 87% [95%CI 82.92–90.28] for triple-negative; 84% [95%CI 79.82–87.78] for luminal-B HER2-negative; p < 0.001.

In a new multivariate analysis based on the same parameters focused on \leq 35 group, we observed a significative association with worse DFS and OS for pN + macro, ER-, LVI, and lobular type (for DFS only). SBR grade, ET, and adjuvant CT were not independently associated with survivals (Table 5).

4. Discussion

Our results support the poor prognosis value of young age, which persisted when adjusting for other prognostic factors and treatments, whether in multivariate or in matched populations.

Patients \leq 35 had more severe tumor presentations and poorer survival than 36–50 patients. Young age was associated with larger tumors, higher grade, more LVI, ER-negativity, HER2-positivity, and macroscopic lymph node involvement. These unfavorable factors were associated with more aggressive treatment strategies, with higher rate of ALND, mastectomy, and systemic treatments. Tumor subtype was also affected by age category with more triple-negative (19%), luminal-B (30%) and HER2-positive (9%) tumors in the \leq 35 cohort compared to the 36–50.

The literature review is challenged by the lack of homogeneity in the definition of "young woman" in previous studies dealing with the clinicopathological and molecular characteristics of BC. Some of the articles define young age as <35 years, while others focus on women <40 years. As for the control group, the challenge was to select an older group which was comparable regarding menopausal status. The upper boundary of 50 years was retained as estimated median age at menopause are 50.31 and 51.5 years in large historical retrospective and prospective cohorts [14,15]. Data on CT-induced amenorrhea or perimenopausal status were not known. Our observations are consistent with previous studies supporting the association of young age with unfavorable prognostic factors at presentation such as larger tumor size [16-19], increased macroscopic lymph node involvement [17-19], increased LVI-positivity [18,20], grade 3 [16-19], ER-negativity [17, 18], as well as more aggressive treatments [17,21-23]. In our study, HER2 overexpression was more prevalent in young patients (23% versus 11%), consistently with previous reports. Cancello et al. reported HER2-positivity in 21% oy young patients versus 14% in older (p <0.003) [18], Anders et al. reported 29% of HER2-positivity in women

Fig. 5. Kaplan Meier of univariate analysis of DFS (A) and OS (B) in the <35 cohort according to endocrine receptors.

Fig. 6. Kaplan Meier of univariate analysis of DFS (A) and OS (B) in the <35 cohort according to molecular subtype.

<40 years *versus* 22% in patients \leq 45 years and only 14% in those \geq 65 years (Duke dataset) [24]. Similar findings were reported by Kim et al. with a 10% positivity rate in women \leq 40 years *versus* 7% in older women (p < 0.004) [25]. The distribution of BC subtypes in our study is also consistent with previous reports with respectively 23% and 18% [26], and 21% and 25% [27] of triple-negative and luminal-B in young women.

DFS and OS were negatively impacted by young age. The 5-years DFS and OS in the \leq 35 cohort (74% and 89%, respectively) were close to the 10-years DFS and OS in the 36–50 patients (74% and 85%, respectively). In multivariate analyses, age \leq 35 was associated to worse DFS (HR1.56; p < 0.001) and OS (HR1.29; p = 0.025), as well as in the case-control matched analysis (DFS (HR1.56; p < 0.001) and OS (HR1.33; p =0.032)). Consistently, recent periods were associated with better survival, reflecting advances in BC management. In our multivariate analysis including molecular subtypes, independent value of age was only maintained for DFS but not for OS, probably because of the loss of power. The negative impact of young age is consistent with other studies where patients <35 present worse survival, even after adjustment on tumor characteristics and treatments. The largest series to date is derived from a Japanese registry of women treated from 2004 to 2006, confirming the prognostic impact of age (<35 (n = 736) versus 35–50 versus >50 years) to the disadvantage of younger patients for both DFS (HR1.73; *p* < 0.001) and OS (HR 1.58; *p* = 0.004) [28]. Kroman et al. included 867 patients <35 years [19]. In the absence of adjuvant therapy, younger age was correlated with a higher risk of death with a relative risk of 2.18 compared to patients aged 45-49 years. To be noted that in this series the negative impact disappeared in case of adjuvant CT. Consistently, Peng et al. describes worse DFS than in older patients, even after adjustment on tumor characteristics and treatments (HR1.64, p < 0.001 [29]. Early stages and small tumors, where treatment can be discussed, were associated with decreased survival [16]. Age \leq 35 could even be considered by some authors as the second most powerful independent risk factor after lymph node status [30,31]. As in a similar study using a propensity score on 365 women <40 years [32], we can consider age \leq 35 as an independent factor of poor prognosis in early BC. Altogether, the negative prognostic role of young age is confirmed in multivariate analysis in most studies. These conclusions are discordant with latest ESMO's recommendations [7], and should be considered in the decision making for therapeutical strategies in young patients.

Our analyses focusing on the \leq 35 years cohort identified ERnegativity, lymph node involvement, LVI and lobular type as independent prognostic factors, consistently with previous reports [33–36]. Lobular type was associated with worse DFS but had no impact on OS in the \leq 35 cohort, possibly explained by the high rate of local recurrence [37]. As previously reported, lobular subtype was less frequent in young

Table 5

Multivariate analysis of DFS and OS in the ${\leq}35$ cohort.

	DFS				OS			
\leq 35 ONLY	HR	95% CI		p value	HR	95% CI		p value
		min	max			min	max	
CT								
No	Reference ca	ategory			Reference c	ategory		
Adjuvant	0,71	0,46	1,11	0,136	0,59	0,32	1,08	0,085
Neo-adjuvant	0,35	0,12	1,05	0,062	0,41	0,11	1,56	0,192
ER	0,50	0,28	0,89	0,019	0,45	0,22	0,92	0,029
ET	0,21	0,69	2,21	0,476	0,91	0,44	1,87	0,796
SBR grade	-							
1	Reference ca	ategory			Reference c	ategory		
2	1,30	0,72	2,35	0,383	1,41	0,59	3,39	0,445
3	1,27	0,69	2,34	0,448	1,77	0,73	4,28	0,205
Size (mm)								
≤ 5	Reference ca	ategory			Reference c	ategory		
5 to 10	0,34	0,15	0,75	0,008	0,18	0,06	0,58	0,004
10 to 20	0,59	0,29	1,20	0,146	0,37	0,14	0,96	0,041
20 to 50	0,69	0,34	1,37	0,287	0,63	0,25	1,55	0,310
>50	1,07	0,45	2,56	0,881	0,70	0,22	2,19	0,538
Lymph node involvem	ent							
pN0	Reference ca	ategory			Reference c	ategory		
pN0(i+)	1,01	0,40	2,56	0,976	0,92	0,21	3,93	0,909
pN + mi	0,52	0,20	1,31	0,165	0,60	0,14	2,60	0,497
pN + macro	1,54	1,07	2,20	0,019	1,91	1,16	3,14	0,011
LVI								
No	Reference ca	ategory			Reference c	ategory		
Yes	1,66	1,16	2,38	0,005	2,21	1,32	3,69	0,003
Unknown	1,77	1,07	2,94	0,027	1,75	0,85	3,59	0,130
Histological type								
Ductal	Reference ca	ategory			Reference c	ategory		
Lobular	3,48	1,89	6,39	< 0.001	2,20	0,84	5,75	0,107
Mixed	0,00	0,00	0,00	0,952	0,00	0,00	0,00	0,967
Others	0,82	0,35	1,90	0,643	0,61	0,14	2,54	0,495

patients [6,18]. Multivariate analysis showed peculiarly that grade, ET, and adjuvant CT were not significantly associated with survival. This might be linked to a lack of power, limited follow up, as well as poorer compliance with ET in younger women [38]. The most unfavorable subtypes in our analysis were luminal-B HER2-negative and triple-negative BC. In this situation, grade may predominate over ER and HER2.

Our study has limitations. Among them, absence of BRCA status is a key. Approximately 12% of BC arising in women aged \leq 40 years are related to germline pathogenic variants in BRCA1 or BRCA2 gene [39, 40]. BRCA-related BC may have different biological characteristics, with increased triple-negative subtype in BRCA1 carriers and more luminal subtypes in BRCA2 carriers [41]. The detail about precise chemotherapy regimen for each patient was not available in our database. Patients were treated at 15 centers and adjuvant treatments may have differed. However, this multicenter cohort reflects clinical reality out of clinical trials. Despite careful methodology to minimize bias, the second major limitation of our study is its retrospective design. However, we have the advantages of limiting biases inherent in single-center studies while also reflecting real-world practice.

5. Conclusion

Our results support the independent poor prognosis value of young age, which persisted when adjusting for other prognostic factors and treatments. Early BC in young patients \leq 35 years old is associated with less favorable presentation and more aggressive treatment strategies. Luminal-B, triple-negative and HER2-positive subtypes are overrepresented compared to luminal-A.

Ethics approval

This cohort study was approved by our institutional review board.

All procedures performed in this study involving human participants were done in accordance with the French ethical standards and with the 2008 Helsinki declaration.

Funding

This academic work did not receive financial support from any funding source.

Declaration of competing interest

Alexandre de Nonneville declares Gilead (lecture fees, congress invitations), Daiichi Sankyo (lecture fees, congress invitations), Seagen (consulting fees), Lilly (lecture fees, congress invitations, consulting fees, research grants paid to institution), Novartis (consulting fees), MSD (congress invitations, lecture fees), Pfizer (research grants paid to institution). No conflict of interest declared by others authors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.breast.2023.02.004.

References

- Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. Ca Cancer J Clin 2021;71(1):7–33.
- [2] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca - Cancer J Clin 2021;71(3):209–49.
- [3] Nixon AJ, Neuberg D, Hayes DF, Gelman R, Connolly JL, Schnitt S, et al. Relationship of patient age to pathologic features of the tumor and prognosis for patients with stage I or II breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. mai 1994;12(5):888–94.

O. Dufour et al.

- [4] de la Rochefordiere A, Asselain B, Campana F, Scholl SM, Fenton J, Vilcoq JR, et al. Age as prognostic factor in premenopausal breast carcinoma. Lancet Lond Engl. 24 avr 1993;341(8852):1039–43.
- [5] Albain KS, Allred DC, Clark GM. Breast cancer outcome and predictors of outcome: are there age differentials? J Natl Cancer Inst Monogr 1994;(16):35–42.
- [6] Han W, Kim SW, Park IA, Kang D, Kim SW, Youn YK, et al. Young age: an independent risk factor for disease-free survival in women with operable breast cancer. BMC Cancer 2004;4:82. 17 nov.
- [7] Paluch-Shimon S, Cardoso F, Partridge AH, Abulkhair O, Azim HA, Bianchi-Micheli G, et al. ESO–ESMO 4th international consensus guidelines for breast cancer in young women (BCY4). Ann Oncol. 1 juin 2020;31(6):674–96.
- [8] Paluch-Shimon S, Pagani O, Partridge AH, Abulkhair O, Cardoso MJ, Dent RA, et al. ESO-ESMO 3rd international consensus guidelines for breast cancer in young women (BCY3). Breast Edinb Scotl oct 2017;35:203–17.
- [9] Houvenaeghel G, Cohen M, Classe JM, Reyal F, Mazouni C, Chopin N, et al. Lymphovascular invasion has a significant prognostic impact in patients with early breast cancer, results from a large, national, multicenter, retrospective cohort study. ESMO Open. déc 2021;6(6):100316.
- [10] Houvenaeghel G, de Nonneville A, Cohen M, Chopin N, Coutant C, Reyal F, et al. Lack of prognostic impact of sentinel node micro-metastases in endocrine receptorpositive early breast cancer: results from a large multicenter cohort. ESMO Open. 10 mai 2021;6(3):100151.
- [11] de Nonneville A, Jauffret C, Gonçalves A, Classe JM, Cohen M, Reyal F, et al. Adjuvant chemotherapy in lobular carcinoma of the breast: a clinicopathological score identifies high-risk patient with survival benefit. Breast Cancer Res Treat. juin 2019;175(2):379–87.
- [12] Little RJ, Rubin DB. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annu Rev Publ Health 2000;21:121–45.
- [13] Rosenbaum PR. Modern algorithms for matching in observational studies. Annu Rev Stat Its Appl 2020;7(1):143–76.
- [14] Bromberger JT, Matthews KA, Kuller LH, Wing RR, Meilahn EN, Plantinga P. Prospective study of the determinants of age at menopause. Am J Epidemiol. 15 janv 1997;145(2):124–33.
- [15] Gottschalk MS, Eskild A, Hofvind S, Gran JM, Bjelland EK. Temporal trends in age at menarche and age at menopause: a population study of 312 656 women in Norway. Hum Reprod. 29 févr 2020;35(2):464–71.
- [16] Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PLoS One 2009; 4(11):e7695. 11 nov.
- [17] Gnerlich JL, Deshpande AD, Jeffe DB, Sweet A, White N, Margenthaler JA. Elevated breast cancer mortality in young women (<40 Years) compared with older women is attributed to poorer survival in early stage disease. J Am Coll Surg. mars 2009;208(3):341–7.
- [18] Cancello G, Maisonneuve P, Rotmensz N, Viale G, Mastropasqua MG, Pruneri G, et al. Prognosis and adjuvant treatment effects in selected breast cancer subtypes of very young women (<35 years) with operable breast cancer. Ann Oncol Off J Eur Soc Med Oncol. oct 2010;21(10):1974–81.</p>
- [19] Kroman N, Jensen MB, Wohlfahrt J, Mouridsen HT, Andersen PK, Melbye M. Factors influencing the effect of age on prognosis in breast cancer: population based study. BMJ. 19 févr 2000;320(7233):474–8.
- [20] Colleoni M, Rotmensz N, Robertson C, Orlando L, Viale G, Renne G, et al. Very young women (<35 years) with operable breast cancer: features of disease at presentation. Ann Oncol Off J Eur Soc Med Oncol. févr 2002;13(2):273–9.
- [21] Kothari AS, Beechey-Newman N, D'Arrigo C, Hanby AM, Ryder K, Hamed H, et al. Breast carcinoma in women age 25 years or less. Cancer. 1 févr 2002;94(3): 606–14.
- [22] Bharat A, Aft RL, Gao F, Margenthaler JA. Patient and tumor characteristics associated with increased mortality in young women (≤40 years) with breast cancer. J Surg Oncol 2009;100(3):248–51.
- [23] Chung WP, Lee KT, Chen YP, Hsu YT, Loh ZJ, Huang CC, et al. The prognosis of early-stage breast cancer in extremely young female patients. Medicine (Baltimore). 8 janv 2021;100(1):e24076.

- [24] Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y, et al. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol. 10 juill 2008;26(20): 3324–30.
- [25] Kim HJ, Han W, Yi OV, Shin HC, Ahn SK, Koh BS, et al. Young age is associated with ipsilateral breast tumor recurrence after breast conserving surgery and radiation therapy in patients with HER2-positive/ER-negative subtype. Breast Cancer Res Treat 2011;130(2):499–505. 1 nov.
- [26] Collins LC, Marotti JD, Gelber S, Cole K, Ruddy K, Kereakoglow S, et al. Pathologic features and molecular phenotype by patient age in a large cohort of young women with breast cancer. Breast Cancer Res Treat. 1 févr 2012;131(3):1061–6.
- [27] Keegan THM, DeRouen MC, Press DJ, Kurian AW, Clarke CA. Occurrence of breast cancer subtypes in adolescent and young adult women. Breast Cancer Res 27 mars 2012;14(2):R55.
- [28] Kataoka A, Iwamoto T, Tokunaga E, Tomotaki A, Kumamaru H, Miyata H, et al. Young adult breast cancer patients have a poor prognosis independent of prognostic clinicopathological factors: a study from the Japanese Breast Cancer Registry. Breast Cancer Res Treat 2016;160(1):163–72.
- [29] Peng R, Wang S, Shi Y, Liu D, Teng X, Qin T, et al. Patients 35 years old or younger with operable breast cancer are more at risk for relapse and survival: a retrospective matched case-control study. Breast Edinb Scotl. déc 2011;20(6): 568–73.
- [30] Martínez MT, Oltra SS, Peña-Chilet M, Alonso E, Hernando C, Burgues O, et al. Breast cancer in very young patients in a Spanish cohort: age as an independent bad prognostic indicator. Breast Cancer Basic Clin Res. 20 févr 2019;13: 1178223419828766.
- [31] Dubsky PC, Gnant MFX, Taucher S, Roka S, Kandioler D, Pichler-Gebhard B, et al. Young age as an independent adverse prognostic factor in premenopausal patients with breast cancer. Clin Breast Cancer. avr 2002;3(1):65–72.
- [32] Zhong W, Tan L, Jiang WG, Chen K, You N, Sanders AJ, et al. Effect of younger age on survival outcomes in T1N0M0 breast cancer: a propensity score matching analysis. J Surg Oncol 2019;119(8):1039–46.
- [33] Fu J, Zhong C, Wu L, Li D, Xu T, Jiang T, et al. Young patients with hormone receptor-positive breast cancer have a higher long-term risk of breast cancer specific death. J Breast Cancer. mars 2019;22(1):96–108.
- [34] Partridge AH, Gelber S, Piccart-Gebhart MJ, Focant F, Scullion M, Holmes E, et al. Effect of age on breast cancer outcomes in women with human epidermal growth factor receptor 2–positive breast cancer: results from a herceptin adjuvant trial. J Clin Oncol. 10 juin 2013;31(21):2692–8.
- [35] Bacchi LM, Corpa M, Santos PP, Bacchi CE, Carvalho FM. Estrogen receptorpositive breast carcinomas in younger women are different from those of older women: a pathological and immunohistochemical study. Breast Edinb Scotl. avr 2010;19(2):137–41.
- [36] Copson E, Eccles B, Maishman T, Gerty S, Stanton L, Cutress RI, et al. Prospective observational study of breast cancer treatment outcomes for UK women aged 18–40 Years at diagnosis: the POSH study. JNCI J Natl Cancer Inst. 3 juill 2013;105 (13):978–88.
- [37] Neri A, Marrelli D, Megha T, Bettarini F, Tacchini D, De Franco L, et al. Clinical significance of multifocal and multicentric breast cancers and choice of surgical treatment: a retrospective study on a series of 1158 cases. BMC Surg. 14 janv 2015; 15(1):1.
- [38] Rosenberg SM, Partridge AH. Management of breast cancer in very young women. Breast Edinb Scotl. nov 2015;24(Suppl 2):S154–8.
- [39] Copson ER, Maishman TC, Tapper WJ, Cutress RI, Greville-Heygate S, Altman DG, et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study. Lancet Oncol. févr 2018;19(2):169–80.
- [40] Rosenberg SM, Ruddy KJ, Tamimi RM, Gelber S, Schapira L, Come S, et al. BRCA1 and BRCA2 mutation testing in young women with breast cancer. JAMA Oncol. 1 juin 2016;2(6):730–6.
- [41] Lambertini M, Ceppi M, Hamy AS, Caron O, Poorvu PD, Carrasco E, et al. Clinical behavior and outcomes of breast cancer in young women with germline BRCA pathogenic variants. NPJ Breast Cancer. 12 févr 2021;7(1):16.