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Abstract

Background: To infer gene regulatory networks from time series gene profiles, two important tasks that are
related to biological systems must be undertaken. One task is to determine a valid network structure that has
topological properties that can influence the network dynamics profoundly. The other task is to optimize the
network parameters to minimize the accumulated discrepancy between the gene expression data and the values
produced by the inferred network model. Though the above two tasks must be conducted simultaneously, most
existing work addresses only one of the tasks.

Results: We propose an iterative approach that couples parameter identification and parameter optimization
techniques, to address the two tasks simultaneously during network inference. This approach first identifies the
most influential parameters against internal perturbations; this identification is based on sensitivity measurements.
Then, a hybrid GA-PSO optimization method infers parameters in accordance with their criticalities. The proposed
approach has been applied to several datasets, including subsets of the SOS DNA repair system in E. coli, the Rat
central nervous system (CNS), and the protein glycosylation system of yeast S. cerevisiae. The result and analysis
show that our approach can infer solutions to satisfy both the requirements of network structure and network
behavior.

Conclusions: Network structure is an important though challenging issue to address in inferring sophisticated
networks with biological details. In need of prior structural knowledge, we turn to measure parameter sensitivity
instead to account for the network structure in an indirect way. By developing an integrated approach for
considering both the network structure and behavior in the inference process, we can successfully infer critical
gene interactions as well as valid time expression profiles.

Background
Modeling gene regulatory networks (GRNs) is one of the
most important issues in systems biology research. It
uses time series gene profiles to characterize the pheno-
typic behavior of a target system, and reverse engineer-
ing has been advocated to construct networks in an
automated way [1,2]. In the process of inferring gene

networks, many computational models and methods
have been proposed. The choices mainly depend on the
biological levels to be studied and the computational
complexities needed to solve the corresponding pro-
blems. To capture the sophisticated characteristics of a
gene network, in this work we adopt one of the most
popular and well-researched models, the S-system
model, to represent a gene network. The S-system is a
set of tightly coupled ordinary differential equations
(ODEs), and the component processes in these equa-
tions are characterized by power law functions [3,4].
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In the S-system model, the systematic structure can be
described as:
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where Xi is the expression level of gene i and N is the
total number of genes in the genetic network. The para-
meters ai and bi ∈ [0, 10] are rate constants (e.g., some
constant input can be represented herein); gi,j and hi,j ∈
[-3, 3] are kinetic orders that reflect the interactions from
gene j to i in the synthesis and degradation processes,
respectively. The inference of a tightly coupled S-system,
however, is a large-scale parameter optimization problem
that is very time-consuming. By examining the structural
characteristics of gene networks, Maki et al. [5] proposed
an efficient strategy to decouple this inference problem
with N separated sub-problems, each of which refers to
one gene. In other words, in a decoupled S-system, a
tightly coupled system of non-linear differential equations
is decomposed into N differential equations [6]. The main
benefit of adopting this strategy is that it allows us to
model corresponding genes and observe genetic interac-
tions toward the target gene independently.
To exhibit how the components of an S-system repre-

sent a network topology and pathway diagrams, Figure
1a shows a visualized topology that was generated by an
arbitrary arrangement. In the graph, we take gene X1 as
an example, which has a link with X2; therefore, the
pathway diagram can be expressed as in Figure 1b. The
input magnitude (flux in) of X1 could be affected by X2

(i.e., g1,2), which is also called the synthesis process of
X1 (the equation of SX1). At the same time, the output
magnitude (flux out) of X1 depends on the concentra-
tion level of X1 (i.e., h1,1) and could be affected by X2

(i.e., h1,2) as well, which is depicted by the degradation
process in the equation for DX1. The concentration of
X1 at the next time step is determined by a calculation
of the magnitude of synthesis minus that of degradation
(i.e., SX1- DX1). The synthesis and degradation processes
of gene X1 have the following relationships.

synthesis process : SX1 = α1 X2
g1,2 (2)

degradation process : DX1 = β1 X1
h1,1X2

h1,2 (3)

•
X1 = SX1 − DX1 (4)

Similarly, an example of the 3-node connections on
the perspective of gene X2 (Figure 1c) but with the same
computational process can be completed through the
equations below.

synthesis process : SX2 = α2 X1
g2,1X3

g2,3 (5)

degradation process : DX2 = β2 X1
h2,1 X2

h2,2 X3
h2,3 (6)

•
X2 = SX2 − DX2 (7)

To infer target networks from time series gene pro-
files, many issues that are related to biological systems
cannot simply be addressed by topology reconstruction
or parameter estimation alone. As mentioned in [7], on
the one hand, if the topology of a GRN can be recon-
structed, it is usually not sufficient for a satisfactory
scientific understanding (i.e., lacking the modeling of
biological details). On the other hand, the optimized
parameters for a given network topology (or mathemati-
cal structure) do not enable discrimination of alternative
candidates. From the above analyses, we can recognize
that there are two major goals to satisfy in inferring
gene networks. The first goal is to minimize the accu-
mulated discrepancy between the gene expression data
recorded in the data set (desired values) and the values
produced by the inferred model (actual values). The per-
formance of a certain model can thus be defined directly
as the mean squared error (MSE) over the time period:

MSE(i) =
T∑

t=1

{
Xa

i (t) − Xo
i (t)

Xo
i (t)

}2

, for i = 1, 2, ..., N (8)

In the above equation, Xi
o(t) is the desired expression

level of gene i at time t, Xi
a(t) is the value generated

Figure 1 Network topology and pathway diagrams. (a) An example of a 5-node gene topology (unidirectional links); (b) and (c) are the
pathway diagrams from the point of view of gene X1 and X2, respectively.
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from the inferred model, and T is the number of time
points for measuring the gene expression data. N is the
number of genes in the network. As mentioned pre-
viously, in this work, we adopt the decoupled strategy in
which each sub-problem corresponds to the i-th MSE
function.
The non-linear ODEs of an S-system are difficult to

solve by traditional local optimization techniques [8,9],
such as the conjugate gradient method and Newton’s
method. Global optimization techniques are better choices
than the local techniques in estimating parameters for bio-
logical systems. Among the global methods, those utilizing
deterministic strategies are more effective in finding the
global optimum. However, they are computationally
expensive. In contrast, the methods that employ stochastic
strategies can obtain solutions close to the global optimum
within a reasonable amount of time. Population-based
approaches (such as genetic algorithms (GAs) or particle
swarm optimization (PSO)) are stochastic methods, which
have been used in many studies to infer S-system models
(e.g., [4][10][11]). In this study, we adopt this type of global
optimization technique and develop a new algorithm to
enhance the search performance.
The second goal, in the meantime, is to select the

solution that has a correct network structure. In real-
world situations, the number of data points that are
available is often smaller than that of the parameters to
be determined; in other word, the network inference
task is in fact an under-determined problem. It is thus
possible to obtain many feasible solutions with various
combinations of network parameters (i.e., different net-
work structures). To solve the structure problem, prior
knowledge or assumptions are required. Some research-
ers suggested that directly taking the form of a para-
meter constraint for the prior domain knowledge
(extracted from the literature) would restrict the para-
meter search (for example, [11]). Other researchers
proposed to incorporate the structural/topological prop-
erties of the biological networks (such as the degree dis-
tribution of the nodes in a scale-free network or the
presence of network motifs that have been interpreted
to be the result of evolutionary dynamics) with the gene
expression data described above in the evaluation pro-
cess. For example, some inference methods intend to
limit the amount of GRN connectivity to be as small as
possible because gene regulatory networks are typically
known to be sparsely connected (i.e., every gene inter-
acts directly only with a few other genes). In such a
case, a small penalty term that measures the connection
between the genes can be added to the fitness function
to discourage the connections [10][12]. To take both
gene expression data and structure information into
consideration, the evaluation function for network infer-
ence thus becomes:

fobj(i) = α · MSE(i) + (1 − α) · StructureErr, for i = 1 ∼ N (9)

where MSE is the mean squared error, StructureErr is
a penalty that describes the structure discrepancy
between the current solution and the previously known
knowledge, and a is a weighting factor between 0 and 1.
Prior knowledge, however, is not always available. Addi-

tionally, the topological properties of the network that are
unveiled within the genome-scale networks cannot be
easily addressed in studies of relatively small size networks
(that were often used in sophisticated network modeling,
to better understand their biological details). Though
some tools can be used to derive skeletal network struc-
tures from time-series data, for example BoolNet [13],
their results are not sufficiently accurate to be used as
structural knowledge to guide the search for solutions. In
this study, we use a different perspective when accounting
for the network structure in the inference procedure.
Because several theoretical analyses have demonstrated
that a gene regulatory network with correct structure
innately has the intrinsic characteristic of robustness (e.g.,
[14,15]), we instead turn to infer robust networks that are
likely to have the correct structures when there is a lack of
explicit structural knowledge.
Network robustness can be defined as the insensitivity

of a specific system property to variations in the compo-
nents and environment of the system [16][17]. In general,
there are three types of robustness against different types
of perturbations that are often considered in the litera-
ture: knockout robustness, parametric robustness, and
initial condition robustness [18]. The first two types of
robustness are related to the evolutionary (genetic) per-
turbation (i.e., mutations that cause a gene or protein to
be non-functional and that effect the binding strength of
the transcription factors to their targets, respectively),
and the third type of robustness involves the environ-
mental perturbations (i.e., environmental shifts that affect
the concentrations of various proteins, nutrients, and
gene transcripts). Some prior studies have shown that
there is a growing consensus that the network structure
has a significant influence on the robustness [18][19].
Though robustness is a critical feature for living systems,
details about the mechanisms through which robustness
is achieved are still not well understood.
As mentioned above, we focus here on how to infer a

network that is robust against internal fluctuations
caused by the parameters that correspond to active gene
interactions. In a biological system, genes interact within
a complex network to provide robust functions, and
each network parameter has its role in determining the
system behavior. Nevertheless, several authors have
observed that most of the variation in the measured
gene expression changes can be explained by a relatively
small number of variables [20-22]. Parameters that
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correspond to these variables are very sensitive to varia-
tions and can introduce fragility into the system. To
ensure the robustness of the inferred network and to
further investigate gene interactions, it is thus important
to first identify the critical subset of the network para-
meters based on the observed system changes and, then,
to derive an acceptable value range for each parameter
to restrict its value lying in the specified range during
the network reconstruction process [17]. Therefore, we
take parameter sensitivity into consideration in the net-
work reconstruction procedure in such a way that
robust results (i.e., insensitivity to internal variations)
can be obtained.
In this work, we present an integrated approach,

which is revised from our previous study, which focused
on parameter sensitivity analysis (SA, [23]) to iteratively
evolve partial solutions to guide the search gradually
toward the complete solution. This approach couples
parameter identification and parameter optimization
techniques to address the aforementioned two problems
in gene network inference: it first identifies which para-
meters are more critical than others in a system, based
on their sensitivity measurements. As mentioned before,
this arrangement is to enhance the structure correctness
of the inferred network in an indirect way, under the
situation that lacks prior knowledge about the network
structure. Then, it involves a hybrid GA-PSO optimiza-
tion method to infer networks in accordance with the
parameter criticality. To validate the proposed approach,
a series of experiments have been conducted on artificial
and real datasets. The results and analysis show that our
approach can infer robust networks with desired system
behavior successfully from the gene profiles.

Methods
Figure 2 depicts the main flow of the proposed
approach, which includes two procedures for parameter
identification and parameter optimization, respectively.
The left-hand portion shows an evolutionary mechanism
that was developed for parameter optimization. Because
recent surveys of population-based algorithms have
revealed that the hybrid methods of GA and PSO can
lead to better results in solving optimization problems
than the individual methods alone, we therefore extend
the hybrid method that we developed previously ([11])
to address the parameter optimization. The right-hand
portion of Figure 2 depicts the parameter identification
procedure that was developed to work with the optimi-
zation procedure. This procedure is performed when the
evolution proceeds to a predefined number of iterations:
it mainly includes a sensitivity analysis method for cal-
culating the parameter sensitivity, selecting the most
sensitive network parameters and determining the value
ranges for them (i.e., to work as implicit structural

knowledge), and then, it sends the parameters with the
constraints back to the optimization procedure to con-
tinue the search. The above two phases operate in an
iterative manner to keep the MSE and sensitivity of the
network low. Once the parameters for all of the genes
are determined, they are combined to constitute a net-
work. The details are described below.

Parameter identification
As mentioned above, in an inference method, it is impor-
tant to identify the critical network parameters (with a cer-
tain level of significance) based on the observed system
changes before performing parameter estimation because
the parameter values are only valid for the set of para-
meters that were selected (which imply a specific/correct
model structure). The parameter identification procedure
employed here is based on a sensitivity analysis technique,
in which the parameter values are adjusted within a given
range and then the statistical calculations are employed to
measure the system stability. With the parameter sensitivity
measurement defined in [24], we can identify the critical
parameters (which correspond to the active interactions
that govern the dynamics of the system) or discover para-
meters that could influence the synthesis and the degrada-
tion processes of a network.
Two types of approaches are often utilized to implement

the SA techniques for a dynamic system, namely local SA
and global SA. Local methods focus on a specific point in
parameter space and measure responses of the model to
local parameter changes. The advantage of this type of
approaches is that when the network structure remains
unknown, local SA methods still can give the sensitivity
estimation by calculating a parameter’s given value range.
Local SA methods, however, consider only one parameter
per calculation and do not account for other parameters
(interactions) [25]. This approach often results in an
underestimation of the true model sensitivities in non-
linear models. In contrast, global methods attempt to cap-
ture the entire parameter space. They explore multiple
parameter values and examine parameter interactions with
different parameter values simultaneously [26]. However,
this type of methods can only be used if the network
structure is known beforehand.
In the case of inferring a gene network from the expres-

sion data, the network structure is usually unclear during
the modeling process. It is therefore impossible to locate
and choose the most important genetic interactions as in
the analysis pool for global SA. To consider multiple net-
work parameters simultaneously, we devise a new
approach modified from a widely used SA technique,
which is multi-parameter sensitivity analysis (MPSA, [24]).
MPSA utilizes Pearson correlation coefficients (PCC) for
quantitative comparisons to identify the sensitive para-
meters during inferring a GRN, which is achieved by
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calculating and ranking the values of PCC among para-
meters. This approach can be used to explore influential
genetic interactions and to examine the robustness of an
inferred GRN, similar to other global SA methods. Our
newly developed method (called m-MPSA) includes an
iterative process for calculating the sensitivity of each
parameter, and then ranks the sensitivities of all of the
parameters. By considering the most sensitive parameters
first, the inference algorithm can then obtain robust
solutions.
In the parameter identification procedure, a parameter

range Ri is set for each parameter i, and a set of random
points (500 in this study, determined by a uniform dis-
tribution as suggested in [24]), are created within a spe-
cified interval. Each random point (value), together with
the other parameter values, constitutes a candidate solu-
tion, and its fitness value is calculated via the objective
function. A pre-defined threshold Cr (defined as the tri-
ple of the best fitness value among all individuals, based
on a preliminary test) is used to determine whether the
fitness value of each random point is acceptable or
unacceptable. Then, the sensitivity for each parameter i
(defined as sensitivityi) is calculated using its cumulative
frequency (CFi), which measures the correlation coeffi-
cient (i.e., PCC) of the acceptable CFi and the unaccep-
table CFi values. Finally, the parameters are ranked
based on their sensitivity values. The parameters with
relatively low sensitivity values are considered to be

sensitive (influential). The additional details of how the
cumulative frequency, and sensitivity of a parameter are
calculated are given in our previous work [23].

Parameter optimization
In addition to the above parameter identification proce-
dure, the hybrid GA-PSO procedure for parameter opti-
mization also plays an important role in the proposed
approach. In this approach, a direct encoding way for
designing an individual of the population is adopted.
The parameters in the S-system for genei (i.e., ai, bi, gi,j,
and hi,j) are floating-point numbers and arranged line-
arly. To evaluate the performance of each potential solu-
tion (i.e. the combination of network parameters), a
fitness function is defined to be the error function
described in the first section (i.e., equation (8)) of the
performance measurement.
The optimization procedure operates in the following

way. The GA-PSO procedure first generates a random
population (containing n individuals) and evaluates these
individuals (to determine their fitness values). Then, the
individuals are ranked based on their fitness values and
separated into two parts: (1-r)% and r%, where (1-r)% is
the best part of the population. After that, the GA and
PSO processes are performed as follows. First, the (1-r)%
individuals are preserved and enhanced by the PSO pro-
cedure. In the meantime, the r% individuals (i.e., the ones
not selected) are pending, awaiting updates by the GA

Figure 2 Main flow of the proposed approach. The proposed approach includes two major procedures: the left-hand portion is an
evolutionary mechanism that was developed for parameter optimization, and the right-hand portion is the parameter identification procedure
that was developed to work with the optimization procedure.
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procedure. Second, to replace those pending individuals,
new individuals are selected through a tournament selec-
tion scheme, and then sent for the GA operations (e.g.
crossover). The newly generated individuals fill in the
pending part of population (i.e., the r% mentioned
above). Finally, once a new candidate list is formed, the
individuals in this list are again ranked based on their fit-
ness values, and the new population is dispatched to the
next generation. The above procedure is repeated until
the termination criterion is met. For simplicity, in this
work, the randomness rate r is set to 0.5, though it could
be a variable with a value that changes during the run to
control the population diversity (i.e., to coordinate the
progress of the PSO and GA parts).
The main steps of the integrated approach are

described in Algorithm PIO, in which Step 2 indicates
the evolution cycle for deriving the network parameters.
As seen in Step 2, there are two strategies used in the
evolution. The first strategy (i.e., Step 3) is to perform
sensitivity analysis by the m-MPSA method described
above, and then a threshold CCR (i.e., the correlation
coefficient ratio of the CF values, or sensitivityi, obtained
from the sensitivity analysis procedure) is adopted as a
selection baseline for determining the most sensitive
parameters. After the parameters have been classified,
new value ranges (i.e., Ri in m-MPSA) are set for the
parameters: the sensitive parameters are given tight
intervals, whereas the insensitive parameters are
assigned loose intervals. The second strategy is an
exploration phase (i.e., Step 4) to maintain population
diversity and to avoid having individuals move close to
locally optimal solutions. Currently, the above two stra-
tegies are performed periodically (the parameter identifi-
cation occurs every 500 generations, and the exploration
interval occurs every 1000 generations).
In this algorithm, the most critical strategy for achiev-

ing the network inference lies in Step 3. In detail, this
strategy is intended to perform sensitivity analysis for
the network parameters and to specify the constraints
(value ranges) on them. A network parameter (i.e., a
search dimension) is added to the sensitive list and is
given a pair of tight constraints (specified by the upper
and lower bounds, in which a is 2 and b is 5, based on
a preliminary test) if its sensitivity value is less than (or
equal to) the threshold CCR; otherwise, a parameter is
added to the insensitive group and assigned a pair of
loose constraints. The dimensions corresponding to the
parameters recorded in the sensitive list are given a
higher priority with respect to being searched, and their
parameter values must be determined at an earlier evo-
lutionary stage. As described in Step 3, an operation of
classification is performed to group sensitive and insen-
sitive parameters. The search space for each parameter

is set to either a small-range interval or a relative large
interval, according to the classification result. With a
specified interval, the optimization procedure is per-
formed to derive suitable parameter values. In algorithm
PIO, the interval is equal to a search constraint asso-
ciated to a parameter. Nevertheless, the constraint can
be regarded as search guidance in finding the sensitive
(influential) parameters. It can help a non-deterministic
search method (e.g. an evolutionary algorithm) concen-
trate on exploring the pre-defined space (i.e. the speci-
fied intervals) and rule out solutions with feasible but
fragile values. It means that if a parameter value goes
behind the designated interval, the system dynamics will
be affected severely and that will change the network
behavior consequently. Hence, setting and observing the
intervals (especially for the sensitive group) during the
search process are helpful in acquiring robust networks
with desired behaviors. In addition, as pointed out in
[16][17], by understanding how the parameters vary
according to different bounds towards different system
dynamics, scientists may have new insights into the
underlying mechanism corresponding to the observed
biological behaviors.
As seen in Step 3, the threshold CCR will be increased

gradually (by a small amount ε, which is equal to 0.01),
and the parameters on the insensitive group will be
turned into the sensitive group incrementally. In this
way, parameters will be recognized as sensitive even-
tually, and their values will thus be constrained to a lim-
ited range. Because the sensitive parameters are more
influential to the network behavior, enforcing restric-
tions (which are derived from the best available solu-
tion) to these parameters remains the robustness of the
whole gene network and, meanwhile, evolves other para-
meters during the optimization process. Finally, the pro-
posed algorithm can lead the inferred solutions to meet
both the desired network robustness and system
behavior.
Other details about the variables used in Steps 3 and 4

are described as follows. p[gbest] is the individual (solu-
tion) with the best fitness value over the entire popula-
tion (i.e., the globally best in the PSO), and p[gbesti]
represents the i-th parameter of p[gbest]. In addition, p-
[particlej][LocalBest] is the individual with the best fit-
ness value obtained from the flying history of the j-th
particle (i.e., the locally best in the PSO), and p[particlej]
[LocalBesti] represents the i-th parameter value of p[par-
ticlej][LocalBest].
Algorithm PIO: Integrated Approach of Parameter

Identification and Optimization
1 Input: a gene expression profile (time-series data)
2 Output: values of the network parameters
3 Step 1: Initial setting.
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4 Setting the experimental parameters P: the genera-
tion number max_gen, the correlation coefficient ratio
5 CCR, and the PSO parameter velocity_bound.
6 Step 2: Running the main evolution-cycle, as

follows:
7 for (gen = 1 to max_gen)
8 if (parameter identification interval) then
9 Go to Step 3;
10 if (exploration interval) then
11 Go to Step 4;
12 Infer S-system parameters by running the GA-

PSO procedure;
13 end_for;
14 Step 3: (parameter identification phase)
15 call m-MPSA for sensitivity analysis;
16 Use a threshold CCR to classify the parameters

as sensitive or insensitive;
17 Sort the particles in ascending order according

to their fitness values;
18 for each particle j /* Set new value ranges for all

of the network parameters
19 Give tight bounds for each sensitive parameter i:
20 upper bound UBi = p[gbesti] + a ×

velocity_bound;
21 lower bound LBi = p[gbesti] - a ×

velocity_bound;
22 Regenerate its value according to new UBi and

LBi;
23 Give loose bounds for each insensitive para-

meter i:
24 upper bound UBi = p[gbesti] +

b×velocity_bound;
25 lower bound LBi = p[gbesti] -

b×velocity_bound;
26 Regenerate its value according to new UBi and

LBi;
27 Let p[particlej][LocalBesti] equal to the regen-

erated value;
28 Update p[gbest], if p[particlej][LocalBesti]

performs better than p[gbest];
29 end_for;
30 CCR = CCR + ε; /* update the threshold to

consider more parameters in the next parameter
31 identification interval
32 return;
33 Step 4: (exploration phase)
34 for each particle j (except for the top 1% of the

particles)
35 for each network parameter i
36 Regenerate its value according to new UBi

and LBi;
37 Regenerate the velocity of the particle swarm;
38 Let p[particlej][LocalBest] equal to the regen-

erated value;

39 end_for;
40 Update p[gbest], if p[particlej][LocalBest] per-

forms better than p[gbest];
41 end_for;
42 return;

Results and discussion
In this section, we describe how we conducted a series
of experiments to verify the developed integrated
approach from two different perspectives: the external
network behavior and the internal network robustness.
In these experiments, we first examined the perfor-
mance of applying computational methods with para-
meter sensitivity analysis to two artificial datasets, and
then, we focused on the evaluation and analysis for
three real-world datasets.

Evaluation of the proposed approach on artificial datasets
In the first set of experiments, several artificial datasets
often used in gene network inference were collected to
evaluate the proposed approach. Because our major goal
is to investigate how the proposed approach can be
adopted to infer networks for real datasets (see the
experimental analysis in a later section), we report here
only two sets of the results as representative examples.
The first dataset is a five-node network taken from [27],
in which the nodes and their interactions are described
by the following non-linear relationships:

Ẋ1 = 15.0X3X−0.1
5 − 10.0X2.0

1

Ẋ2 = 10.0X2.0
1 − 10.0X2.0

2

Ẋ3 = 10.0X−0.1
2 − 10.0X−0.1

2 X2.0
3

Ẋ4 = 8.0X2.0
1 X−0.1

5 − 10.0X2.0
4

Ẋ5 = 10.0X2.0
4 − 10.0X2.0

5

The second dataset is a ten-node network taken from
[10], in which the nodes have the following non-linear
relationships:

Ẋ1 = 5.0X4X−2.0
6 − 10.0X2.0

1

Ẋ2 = 10.0X3X1.0
8 − 10.0X2.0

2

Ẋ3 = 8.0X−1.0
1 X−1.0

4 − 10.0X2.0
3

Ẋ4 = 10.0X2.0
5 X9 − 10.0X2.0

4

Ẋ5 = 10.0X2.0
2 X−1.0

6 − 10.0X2.0
5

Ẋ6 = 5.0X2.0
9 X−2.0

10 − 10.0X2.0
6

Ẋ7 = 10.0X6X−1.0
10 − 10.0X2.0

7

Ẋ8 = 5.0X1X−2.0
2 X7 − 10.0X2.0

8

Ẋ9 = 10.0X3X−2.0
8 − 10.0X2.0

9

Ẋ10 = 8.0X2.0
1 X−1.0

7 − 10.0X2.0
10
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To collect gene expression data, we started and con-
tinued network operations for thirty simulation steps.
Before using the developed approach to infer robust
results, we conducted an investigation on the above two
datasets to examine the effect of considering the net-
work structure in the inference procedure. In this set of
experiments, to prioritize the network topology of the
inferred model toward the ideal structure, a structural
correctness function was added to the MSE function
given in the first section (i.e., equation (8)). This evalua-
tion function includes two major parts, as follows:

fobj(i) = α · MSE(i) + (1 − α) · StrPri(i)
2N

, for i = 1, 2, 3, ..., N (12)

The first function, MSE(i), is used to derive the cor-
rect network behavior, whereas the second function,
StrPri(i), is used to minimize the structure inconsistency
between the structure suggested by the prior knowledge
and that of the inferred model. The weighting factor a
is used for controlling the importance of the two issues
to be considered (i.e., the network behavior and struc-
ture). There are two sub-terms for the structural priority
function as described below.

StrPri(i) = sp1(i) + sp2(i), where sp1(i) =
nzpi

zPKi
; sp2(i) =

zpi

nzPKi
(13)

In this equation, sp1 ∈ [0, 1] is the ratio of the para-
meters against the suggestions from prior knowledge:
there is no plausible connection between gene j and i.
In detail, the numerator nzpi ∈ N0 (i.e., non-negative
integer) records how many inferred kinetic orders of
gene i are non-zero (i.e., meaning the connections) but
should be zero according to prior knowledge. The
denominator zPKi represents the total number of kinetic
orders of gene i that are zero, (i.e., there is no link to
gene i given by prior knowledge). In contrast, sp2 ∈ [0,
1] is also the ratio of parameters, but it indicates that
the kinetic orders of gene i follow the suggestion that a
plausible connection should exist between genes j and i.
Hence, the numerator zpi ∈ N0 counts the number of
zero values from the inferred kinetic orders, and the
denominator nzPKi represents the total number of
kinetic orders of gene i that are non-zero.
Once the evaluation function was defined, we con-

ducted thirty independent runs for each dataset with a
population size 200, in which each run lasted for 500
iterations. Tables 1 and 2 show the results (averaged
over thirty runs) of using a different weighting ratio a

for the two datasets. As observed, when the structure
error was introduced to the evaluation function, the
resulting model tended to have a structure that was clo-
ser to the original network but that had a less-fitted
behavior. These results show the importance of the net-
work structure and indicate the need for an inference
approach to account for both issues (i.e., the network
behavior and the structure).
After presenting the influence of the network struc-

ture, we performed experiments to evaluate our
approach that considers network robustness as a core
factor for representing the unknown network structure.
For the above two datasets, two optimization algorithms
(i.e., the traditional PSO method and our hybrid GA-
PSO method) with different settings (without and with
sensitivity analysis for network parameters) were
arranged, and twenty independent runs were conducted
for each arrangement. Table 3 shows the results, in
which the mean, standard deviation, and best and worst
performance of the runs are listed for each arrangement
(without, indicated as w/o, and with sensitivity analysis).
From Table 3 we can observe that both of the compu-

tational methods using SA consistently outperform the
other methods that do not use SA in network inference,
and the proposed GA-PSO method performed better
than the traditional PSO method in all runs. This table
indicates that the proposed approach obtained better
results on the average, best, and worst fitness values, and
it provided smaller standard deviations. To evaluate the
robustness of the evolved gene networks, we also list the
sensitivity values (averaged over all parameters) of the
best solutions obtained from the final generations for two
settings. They show that the runs with SA could evolve
networks that had lower fitness values (i.e., better system
behavior) and lower sensitivity values (i.e., more robust
networks) simultaneously. It should be noted that the
threshold CCR is a relative value that is determined by
the statistical distribution of all parameters, and it has a
different value for each algorithm. Therefore, it is not sui-
table for comparing the sensitivity values (which rely on
the thresholds) of different algorithms.
Figure 3 illustrates how the fitness and sensitivity

values (averaged over twenty runs) varied during the
inference process by the GA-PSO without (left) and
with (right) SA. This figure indicates that in the runs
with our specially designed procedure for sensitivity
analysis and parameter selection both the fitness and
sensitivity curves went down stably after a certain

Table 1 Effect of considering structure correctness in the evaluation function for dataset 1.

behavior: structure (GA-PSO) 1:9 3:7 5:5 7:3 9:1

fitness (avg) 1.15E-03 5.16E-03 2.12E-03 1.13E-03 1.40E-03 1.33E-03

structure (avg) 33.87% 86.60% 80.13% 75.07% 69.53% 61.40%
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number of iterations. These results confirm the effi-
ciency and effectiveness of the proposed approach.

Importance of parameter sensitivity analysis: studies of
real systems
After evaluating the performance of our integrated
approach for network inference, we conducted a set of
experiments to investigate how our approach could be

applied to the study of real gene networks. As the GA-
PSO algorithm has been shown to outperform the
other method, in this set of experiments, we chose to
use this method with two settings (with and without
SA) to conduct experiments on three popular real-
world datasets.
The first dataset is the SOS DNA repair system in E.

coli. Figure 4 illustrates how the gene regulations

Table 3 Fitness and sensitivity obtained from different settings.

PSO GA-PSO

dataset 1 dataset 2 dataset 1 dataset 2

w/o with w/o with w/o with w/o with

Avg 2.02E-03 1.17E-03 8.69E-02 4.62E-02 4.34E-04 1.45E-04 3.04E-02 1.23E-02

Best 2.97E-04 5.79E-04 1.76E-02 1.39E-02 2.47E-04 4.90E-05 2.42E-03 6.66E-04

Worst 5.50E-03 2.72E-03 2.46E-01 1.42E-01 1.57E-03 4.62E-04 9.51E-02 5.76E-02

S.D. 1.79E-03 5.48E-04 6.42E-02 2.98E-02 2.45E-04 9.56E-05 3.29E-02 1.70E-02

Sensitivity 0.7703 0.7281 0.6929 0.6468 0.7844 0.7388 0.7684 0.7462

Figure 3 Variations of fitness and sensitivity during the runs. The fitness (left y-axis) and sensitivity (right y-axis) of the runs without and
with sensitivity analysis for two the datasets. Each unit of the x-axis represents 500 generations.

Table 2 Effect of considering structure correctness in the evaluation function for dataset 2.

behavior: structure (GA-PSO) 1:9 3:7 5:5 7:3 9:1

fitness (avg) 1.33E-02 4.10E-02 2.44E-02 2.06E-02 2.49E-02 1.41E-02

structure (avg) 24.85% 70.80% 59.57% 53.88% 45.78% 37.23%

Hsiao and Lee BMC Bioinformatics 2014, 15(Suppl 15):S8
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response to DNA damage in the cell [28]. This system,
on the one hand, involves the repressor LexA, which
keeps activating and therefore represses the SOS genes
(lexA, polB, recA, umuD, uvrA, and uvrD). On the
other hand, the RexA protein involves the inactivation
of the LexA in this system. When RecA is activated (it
senses DNA damage), it interacts with LexA, which
causes the expression level of LexA decrease (the repres-
sion becomes weak), and the concentration of the SOS
genes thus rises. The fully expressed SOS genes then
activate the repairing process. Once the damage has
been repaired, the concentration of recA drops and this
stops facilitating the self-cleavage of the LexA repressor.
The expression level of LexA increases and begins to
repress the SOS genes again. Recently, several studies
have uncovered the regulations of the six SOS genes
mentioned above, and the network structure has been
reconstructed (e.g., [29][30]). We therefore chose these
six genes from the original experimental data reported
in [31] for our study here. Using the regulatory relation-
ships described, we can validate our proposed method
by comparing the results to those reported previously.
The SOS repair system dataset includes 50 time points.

In this experiment, the decoupled S-system model was
used and twenty runs were performed with two settings:
without and with SA techniques. The results are presented

in Table 4 in which the average fitness and the average
parameter sensitivity values are revealed. These results
indicate that the approach coupled with a sensitivity analy-
sis procedure outperformed the algorithm without using
SA (better fitting curves and lower sensitivity values can
be derived). Furthermore, Figure 5 compares the inferred
and target network behaviors (the x and y axes represent
time steps and the concentrations of specific gene pro-
ducts, respectively), in which the inferred expression pro-
files are very close to that of the real system.
To investigate the parameters that have significant

effects on the system dynamics of the SOS repair system,
we summarized the most sensitive parameters identified
by the proposed PIO algorithm. Thirteen parameters
were highlighted as crucial regulations, each of which
represented a regulatory relationship between two genes.
Table 5 lists the gene regulations that were also found in
the literature. Based on this table, Figure 6 depicts the
pathway diagram of the most crucial parameters (genetic
interactions) on both the synthesis and degradation pro-
cesses of each gene. The results show that, of the thirteen
gene regulations found in our experiments, ten matched
regulatory relationships known from other studies. For
example, the regulation of lexA, uvrA, and uvrD by lexA
degradation has been successfully identified as the most
significant regulations. However, the regulation of lexA

Figure 4 SOS DNA repair system in E.coli. The gene regulations within the SOS DNA repair system in E.coli.

Table 4 Results of the SOS dataset by methods with and without parameter sensitivity analysis.

lexA uvrA uvrD

w/o with w/o with w/o with

fitness 1.5778 0.5360 1.8404 0.7447 4.0382 1.3453

sensitivity 0.8355 0.7977 0.8417 0.7838 0.7890 0.7890

recA umuD polB

w/o with w/o with w/o with

fitness 3.0527 1.8589 6.0470 4.1333 21.1221 14.6093

sensitivity 0.8669 0.7943 0.8315 0.7841 0.8507 0.7787

Hsiao and Lee BMC Bioinformatics 2014, 15(Suppl 15):S8
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by recA degradation was not marked by the PIO algo-
rithm. This is because our approach operated on the
gene level, whereas the regulation between lexA and
recA was affected by LexA and RecA at the protein level
[29]. In detail, the representation of the S-system model
had inherent limitations on discovering genetic interac-
tions that involved biological details in both protein and
gene levels. These limitations were not related to the
inference algorithm, therefore, the corresponding pro-
blems were not addressed in the inference process.
Nevertheless, the proposed approach has shown its
advantages that can capture the expected network beha-
vior and determine the network robustness in modeling a
real gene system.
In addition to the above SOS dataset, we also applied

the proposed approach to the second real experimental
dataset for further verification. This dataset is from the

Rat central nervous system (CNS) taken from [32],
which included expression data of 112 genes collected
from 9 time points of different phases (embryonic, post-
natal, and adult). The gene expression profiles used here
are in the cluster with 17 genes derived from the Rat
CNS dataset. Table 6 lists the genes. Twenty runs were
conducted, in which 612 parameters in the network
model must be analyzed during the evolution.
In the experiments, the hybrid GA-PSO method was

employed to construct the CNS network. Two sets of
experimental runs (without and with sensitivity analysis)
were conducted, as in the previous sections, and the
results are presented in Table 7. As observed, the opti-
mization method with sensitivity analysis performs bet-
ter than the other case on both the fitness and
sensitivity. In addition, Figure 7 depicts the system beha-
vior (i.e., the time series data) of the original and the
inferred networks, in which the x-axis shows the time
steps and the y-axis shows the expression levels of the
genes. Again, the figure shows that the inferred network
can produce very similar behavior to that of the original
network.
To further investigate the relationship between the

gene roles and the sensitive network parameters identi-
fied by the proposed approach, we examined each sensi-
tive parameter and tracked the genes that were related.
The sensitive parameters described here are defined as
the parameters that were recognized as sensitive in at
least ten runs (from twenty runs). The results are listed
in Table 6 in which the value indicates the number of
sensitive parameters related to a specific gene. Three
gene profiles, basic fibroblast growth factor (bFGF), neu-
rofilament, heavy polypeptide (NEFH), and acidic fibro-
blast growth factor (aFGF), were involved in most of the
gene regulations. According to this table, the two genes,
bFGF and aFGF, dominated ten and eight gene regula-
tions, respectively; in other words, the gene expression
profiles that were being regulated were affected by the
kinetic orders of bFGF and aFGF with the correspond-
ing expression profiles. This finding indicates that the
dynamics of bFGF and aFGF had a crucial influence on
the network behavior of the inferred S-system model. In
fact, bFGF and aFGF belong to the family of Fibroblast

Figure 5 Inferred network behavior. The inferred (left) and original (right) network behaviors for the SOS dataset.

Table 5 Critical gene regulatory relationships in the SOS
repair system (® means the synthesis process and -|
means the degradation process).

gene gene regulation

lexA lexA -| lexA, lexA -|uvrA, lexA -| uvrD

uvrA uvrA -| lexA, uvrA -| uvrD, uvrA ® umuD

uvrD uvrD ® recA, uvrD ® polB

recA recA -| uvrA, recA -| umuD

Figure 6 Pathway diagram of the most crucial parameters. An
overview pathway diagram. The most sensitive parameters of the 6-
gene SOS repair system identified by the proposed approach as
shown in Table 5.

Hsiao and Lee BMC Bioinformatics 2014, 15(Suppl 15):S8
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Table 6 The gene set and the number of sensitive parameters (regulations) activated by each gene in the synthesis or
degradation process.

Gene bFGF NEFH aFGF mAChR4 S100 beta GRG1 GFAP IP32R ChAT

Regulations 10 9 8 6 6 6 5 5 4

Gene mGluR1 NFM c-fos c-jun MOG CNTF NGF NMDA2A

Regulations 3 3 2 2 2 2 1 0

Table 7 Results of the CNS dataset from different strategies.

mAChR4 c-jun GFAP IP32R c-fos ChAT

w/o with w/o with w/o with w/o with w/o with w/o with

Fitness 0.0014 0.0006 0.0006 0.0001 0.0004 0.0001 0.0008 0.0003 0.0016 0.0004 0.0009 0.0003

Sensitivity 0.7828 0.7595 0.7262 0.7019 0.7494 0.7149 0.7358 0.7153 0.7877 0.7395 0.7697 0.7383

NMDA2A MOG bFGF S100 beta mGluR1 CNTF

w/o with w/o with w/o with w/o with w/o with w/o with

Fitness
sensitivity

0.0008 0.0002 0.0007 0.0002 0.0028 0.0001 0.0012 0.0002 0.0013 0.0004 0.0008 0.0001

0.7672 0.7373 0.7619 0.7578 0.7831 0.7557 0.7885 0.7444 0.7232 0.6939 0.8074 0.7313

NEFH GRG1 NFM NGF aFGF

w/o with w/o with w/o with w/o with w/o with

Fitness 0.0021 0.0007 0.0017 0.0002 0.0048 0.0015 0.0144 0.0037 0.0152 0.0068

Sensitivity 0.7367 0.7178 0.8696 0.8039 0.7875 0.7378 0.7725 0.7574 0.7689 0.7433

Figure 7 Analysis of the inferred network behavior. (a) An overview of the inferred (left) and original (right) network behaviors of the rat
CNS dataset. The target and inferred expression profiles of the bFGF, NEFH, and aFGF genes are given in (b), (c), and (d), respectively.
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Growth Factors (FGFs), which has been shown to play
an important role in gene duplications and gene repairs
[33]. Similarly, the NEFH gene was related to nine gene
regulations and also had a crucial influence on network
reconstruction. The NEFH gene belongs to the gene
group that controls key functions in nervous system
development [34]; it provides instructions for making a
protein component of neurofilaments. Figure 8 exhibits
three pathway diagrams that illustrate the most crucial
genetic interactions on the bFGF, NEFH, and aFGF
genes. These observations show that our sensitivity ana-
lysis method can identify the most influential parameters
of the biological pathways to be modeled. Using this
method to select sensitive parameters and restrict them
within certain ranges can efficiently improve the perfor-
mance of the inference algorithms in the application of
gene network reconstruction.
In the third set of experiments, we applied the pro-

posed approach to a real dataset of yeast S. cerevisiae to
infer the protein glycosylation system. Glycosylation
plays an important role in biosynthesis activity; it is the
enzymatic process attached to the target proteins that
ensures that the proteins fold and assemble properly
[35]. The associated expression data were first reported
in [36], in which the authors began to obtain the syn-
chronous yeast culture at the late G1 checkpoint. The
cells were observed for nearly two full cell cycles, and
17 time points were collected (10 minutes per interval).
As mentioned in the report, they reset the cell cycle at
110 minutes (i.e., the 12th time point); hence, we
adopted the first complete cell cycle as the time-series
dataset.
To form a regulatory network of the glycosylation sys-

tem, we refer to the work by Spellman et al. [37], which
has clustered 13 genes related to the glycosylation

process. In addition, we exploited the software YeastNet
version 2 ([38]) as our cluster checking tool to validate
this cluster. YeastNet is a powerful theoretical framework
that integrated several heterogeneous databases including
encoding open reading frames (ORFs) of the yeast gen-
ome: S. cerevisiae Genome Database (SGD) [39]. In short,
the software has calculated the confidences in pair-wise
genetic interactions from the collected databases; thus, it
provides a holistic view of yeast genes. Drawing on the
calculation by YeastNet, there are 8 genes that remain in
the glycosylation process; in other words, 5 genes have
been deduced from the original cluster (with 13 genes),
each of which has no connection to the others.
In the experiments, similar to the previous sets of

experiments, the hybrid GA-PSO method with and with-
out sensitivity analysis has been employed to infer the
glycosylation system of yeast S. cerevisiae. Table 8 com-
pares the results, which show that the GA-PSO method
with sensitivity analysis can deliver better performance
on both the fitness and sensitivity results. Apart from the
summary table, Figure 9 depicts the system behavior of
the inferred and the original network. As observed, all of
the profiles from the inferred model (left) are very similar
to those of the target network (right), except for the
PSA1 gene. This circumstance is mainly due to the mea-
surement noise included in the PSA1 profile (from time
point 6 to 8). According to the experimental discussion
from Spellman et al. [37], the gene peaked only once in
the G1 phase (i.e., between time points 1 and 4), and the
second peak can be ignored. In other words, the inferred
expression profile of PSA1 has captured the actual net-
work behavior.
Table 9 lists the number of sensitive parameters that are

activated by each gene for further study. This table shows
that there were two gene profiles, OCH1 (YGL038C) and

Figure 8 The most sensitive regulations. The most sensitive parameters (regulations) depicted by three pathway diagrams from the
perspective of the (a) bFGF (b) NEFH, and (c) aFGF genes.
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PSA1 (YDL055C) genes, which dominated five and four
gene regulations, respectively. Consequently, the network
behavior was affected by the kinetic orders of OCH1 as
well as PSA1 and their concentration levels. The OCH1
gene that catalyzes the chemical reaction encoding alpha-
1,6-mannosyltransferase, is responsible for the outer chain
initiation of N-linked oligosaccharides. It plays a key role
in mannose elongation in S. cerevisiae [40]. On the other
hand, the PSA1 gene, which is essential for cell wall integ-
rity and morphogenesis, encodes GDP-mannose pyropho-
sphorylase (GDP-MP), in which the GDP-mannose is
synthesized from Mannose-1-phosphate guanylyltransfer-
ase (GDP) and Guanosine-5’-triphosphate (GTP) through
GDP-MP. This reaction is a critical step in synthesizing
GDP-mannose for protein glycoproteins [41]. Figure 10
exhibits the most crucial genetic regulations in the
inferred network by the OCH1 and PSA1 genes. These
results again confirm the abilities and advantages of our
integrated approach in network inference.

Conclusions
In this study, we indicated the importance of consider-
ing both the network behavior and the network struc-
ture when inferring gene networks. We also developed
an integrated approach that considers network robust-
ness as an alternative to structural information in the
inference procedure, when the relevant knowledge is
not available. Based on the observation that the gene
regulatory network was often dominated by only a
small set of critical genes, our approach includes a
parameter identification procedure that selects sensi-
tive parameters and determines their value ranges. Our
approach also includes a parameter optimization pro-
cedure that searches for the best fitting solutions. The
above two procedures work iteratively, and in this way,
the inferred networks can satisfy both requirements
simultaneously.
A series of experiments have been conducted to validate

the proposed approach. In our experiments, we investi-
gated extensively analyzed the results that were obtained
from three real gene datasets: the subsets from the SOS
repair system, rat CNS, and yeast S. cerevisiae. The results
confirm that the proposed approach can successfully iden-
tify and exploit the critical parameters that correspond to
the genes that have active interactions in the biological
systems. These genes dominate the network dynamics and
therefore can enforce the inferred network structures to
be close to the real target networks.

Table 8 Results of yeast S. cerevisiae dataset by different strategies.

MNN1 OCH1 PMT1 PMT3

w/o with w/o with w/o with w/o with

fitness 0.3486 0.1363 0.1999 0.0718 0.1501 0.0572 0.2929 0.1097

sensitivity 0.7750 0.7497 0.7975 0.7641 0.7770 0.7549 0.7833 0.7502

PMT5 PSA1 SVS1 PMI40

w/o with w/o with w/o with w/o with

fitness 0.1130 0.0862 0.3616 0.2692 0.7659 0.4456 0.4393 0.0676

sensitivity 0.7538 0.7464 0.8177 0.7846 0.7626 0.7428 0.8257 0.7495

Figure 9 Inferred network behavior. (a) An overview of the inferred (left) and original (right) network behaviors of the yeast S. cerevisiae
dataset.

Table 9 The gene set and the number of sensitive
parameters (regulations) activated by each gene in the
synthesis or degradation process.

gene OCH1 PSA1 PMI40 PMT5

regulations 5 4 3 1

gene SVS1 MNN1 PMT1 PMT3

regulations 1 0 0 0
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