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Abstract: There is accumulating evidence in the biomedical literature suggesting the role of smoking
in increasing the risk of oral diseases including some oral cancers. Smoking alters microbial attributes
of the oral cavity by decreasing the commensal microbial population and increasing the pathogenic
microbes. This study aims to investigate the shift in the salivary microbiota between smokers and
non-smokers in Jordan. Our methods relied on high-throughput next-generation sequencing (NGS)
experiments for V3-V4 hypervariable regions of the 16S rRNA gene, followed by comprehensive
bioinformatics analysis including advanced multidimensional data visualization methods and
statistical analysis approaches. Six genera—Streptococcus, Prevotella, Vellionella, Rothia, Neisseria,
and Haemophilus—predominated the salivary microbiota of all samples with different percentages
suggesting the possibility for the salivary microbiome to restored after quitting smoking. Three
genera—Streptococcus, Prevotella, and Veillonella—showed significantly elevated levels among smokers
at the expense of Neisseria in non-smokers. In conclusion, smoking has a definite impact on shifting
the salivary microbiota in smokers. We can suggest that there is microbial signature at the genera
level that can be used to classify smokers and non-smokers by Linear Discriminant Analysis Effect
Size (LEfSe) based on the salivary abundance of genera. Proteomics and metabolomics studies are
highly recommended to fully understand the effect of bacterial endotoxin release and xenobiotic
metabolism on the bacterial interrelationships in the salivary microbiome and how they affect the
growth of each other in the saliva of smokers.

Keywords: saliva; microbiome; microbiota; smoking; 16S rRNA; next-generation sequencing;
operational taxonomic unit (OTU); bioinformatics; Jordan

1. Introduction

One of the foremost public health problems affecting the world today is smoking, which represents
a preventable cause of premature death [1]. Smoking has a crucial implication in causing many common
diseases such as cancer, chronic obstructive pulmonary diseases, and periodontitis [2–4]. The impact
of smoking tobacco on periodontal health is not a novel concept; however, several studies have shown
the significant adverse effect of smoking on the microbiome and cytokines expression of the buccal
mucosa [5]. Nevertheless, tobacco in addition to other environmental factors may affect the equilibrium
of the oral microbiome by inducing a possible alteration in functional pathways and allowing oral
pathogens to grow, which ultimately leads to several diseases [6–8]. Furthermore, different oral
pathogens harm the development and function of innate and adaptive immunity of the host [9].
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The ease of saliva collection indicates that saliva microbiome studies have a vital implication in disease
diagnosis or prognosis [10]. Jordan is one of the many countries dealing with the smoking epidemic.
A cross-sectional survey was conducted among 11 to 18-year-old school students, including boys and
girls, from an important governorate in Jordan. The study surprisingly showed a high rate of smoking
and particularly dual tobacco consumption, cigarettes, and waterpipe [11]. The studies emphasized
that there is an increasing smoking rate among the Jordanian population, especially among the youth,
which indicates awareness insufficiency of the destructive effects of smoking and the necessity for
prevention programs to handle such knowledge deficiency. Therefore, this study is to investigate the
impact of smoking on oral cavity microbiome components among adult Jordanian smokers and the
comparison between smoking and non-smoking subjects by using high-throughput 16S rRNA gene
sequencing via next-generation sequencing technology (NGS). The outcome of the current study is
expected to help identify the interactions between smoking and the salivary microbiome.

The oral microbiome is an essential player that induces a dynamic equilibrium with the
immune-inflammatory response of the host [12]. The human oral cavity is one of the entries of
the respiratory tract, and the main entry point for several microorganisms, primarily airborne
pathogens, and those transferred through saliva. The salivary microbiome possesses its characteristic
microorganisms and interacts with other microbiomes in the human body, especially that of the
intestinal tract [13]. There is excellent genera diversity in the human salivary microbiome; therefore,
it is essential to understand the role of these known and unknown genera in the oral cavity and how
they interact with the microbiomes of other systems in the human body [13].

The precision in determining the oral microbiome is not easily attainable because the oral cavity is
an open system exposed continuously to bacteria present in food and water in addition to bacteria
contracted through social contact. It is challenging to determine whether existing colonizations are a
long-term diversity or not. A diversity that makes this community able to provide an appropriate
response to each environmental stress or factors such as smoking, diet, oral hygiene, and drug
consumption, e.g., antibiotics. Tobacco smoking generates carcinogens that contain distinct nitrosamines
and free radicals capable of inhibiting antioxidant enzymes. In turn, an inhibited antioxidant enzyme
makes the oral epithelial cells unprotected against the damaging effects of thiocyanate ions and
hydroxyl free radicals. Thiocyanate ions and free radicals could react with DNA, adversely, and
therefore, open the gateway to the progression of oral cancer [14]. By inhibiting granulocyte function,
smoking impairs host defenses and affects the immune system [15].

Furthermore, subsequent nicotine metabolites trigger vasoconstriction and prejudice the role of
polymorphonuclear cells and macrophages as well as decrease the number of lymphocytes, which may
adversely affect the production of B-cells and antibodies [16]. Furthermore, smoking contributes to
the increase in the number of neutrophils in peripheral blood [17]. The changes that occur as a result
of activating inflammatory cells, which leads to the release of free radicals, were found to influence
a move to malignancy by lipids’ peroxidation or DNA damage. The phyla Firmicutes, Bacteroidetes,
Proteobacteria, Actinobacteria, Spirochaetes, and Fusobacteria dominate the oral cavity, accounting for more
than 95% of the species [18]. Various health-associated bacteria have been known to be antagonistic to
oral pathogens; Streptococcus salivarius strain K12, for example, produces a bacteriocin that prevents
the growth of Gram-negative species linked to periodontitis [19].

2. Materials and Methods

2.1. Study Subjects

One hundred (n = 100) human subjects participated in this study; 57 were males and 43 were
females. According to the smoking status, 51 were non-smokers and 49 were smokers. The inclusion
criteria required that all human subjects were antibiotic-free for the last three months preceding the
study by ensuring that no one has consumed antibiotics in that period. Inclusion criteria for smokers
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required that all smoker subjects smoked at least one cigarette per day. The exclusion criteria, on the
other hand, required the rejection of human subjects who had a history of any chronic oral diseases.

Additionally, saliva collection from all subjects was taken half an hour before, or an hour after
eating. Signed informed consent and answered questions were obtained from all participants in this
study according to the declaration of Helsinki. The Council of Scientific Research at the German
Jordanian University has approved the proposal of the study based on decision #31/3/2016 as stated in
letter #389/6/4/10.

2.2. Sample Collection, Processing, and Storage

All human subjects had to spit their unstimulated saliva into the OMNIgene•ORAL OM-501™
funnel, which is commercially available by DNA Genotek, ON, Canada. Subjects kept on spitting until
the amount of spat liquid, excluding bubbles, reached the filled line mark indicated on the wall of the
collecting tube. All human subjects were required to hold the collecting tubes upright with one hand
and close the funnel lid with the other hand. A liquid DNA stabilizer, placed in the tube cover, was
automatically released at this stage into the tube after replacing the funnel with the tube cap to firmly
close the collecting tube. The DNA stabilizer stabilizes the microbial DNA in saliva for up to one year
at room temperature. The DNA stabilizer was then mixed with the collected liquid sample for 10 s.
The samples were shipped at room temperature to DNA Genotek GenoFIND Services, Norcross, GA,
USA, for complete processing.

2.3. DNA Extraction and Quality Controls

A 250 µL aliquot of each sample was extracted using MO BIO’s PowerMag™ microbial DNA
isolation kit (27200-4) (MO BIO Laboratories Inc., Carlsbad, CA, USA) optimized on the KingFisher
automated extraction platform. A proprietary bead-beating step with glass beads and a plate shaker
was used to maximize recovery of DNA from low-abundance and challenging to lyse organisms.
The concentration of extracted DNA was determined by Qubit measurement, and an estimate of
sample purity was determined with spectrophotometry by measuring the A260/A280 absorbance ratio.
Quality control checks are tabulated in Appendix A data (Table A1).

2.4. DNA Sequencing

Illumina sequencing adapters and dual-index barcodes (Nextera XT indices) were added to the
amplicon target via polymerase chain reaction (PCR) amplification. Samples were run on Bioanalyzer,
spot-checking for amplicon size. The 16S sequencing (2 × 300 bp PE V3-V4) was performed on
Illumina’s MiSeq platform (Illumina Inc., San Diego, CA, USA). Paired-end reads from each sample
were merged, screened for length, and filtered for quality using DNA Genotek’s proprietary 16S
pre-processing workflow. The sequence data were submitted to NCBI BioProject under accession
number PRJNA579773.

2.5. Taxonomic Classification

High-quality sequences were aligned to the curated reference database at 97% similarity using the
NINJA-OPS algorithm, version 1.5.1 [20]. At 97% sequence identity, each operational taxonomic unit
(OTU) represents a genetically unique group of biological organisms. These OTUs were then assigned
a curated taxonomic label based on the SILVA taxonomic database, version 123 [21]. The relative
abundance of all taxa at the phylum and genus levels were plotted to visualize broad taxonomic
differences between individual samples and between sample groups. Genera found at <1% mean
abundance across samples were grouped as “other” for visualization purposes. MicrobiomeAnalyst,
a web-based data analysis tool, was chosen to perform Univariate statistical analysis for features at the
phyla and genera levels; features were considered significant based on their adjusted cut-off ≤ 0.05.
This web-based tool has been reported and is currently hosted by the Xia lab at McGill University, QC,
Canada [22].
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2.6. Rarefaction

All samples were rarefied after taxonomic classification. The cutoff for rarefaction was set at
25,000 classified sequences per sample. However, no sample had less than 25,000 classified sequences,
thus, all samples were included in the downstream analysis (see Figures A1 and A2).

2.7. Library Preparation and Sequence Amplification

Library preparation was performed with a customized dual index version of Illumina’s Nextera
XT protocol. The V3-V4 region of the 16S ribosomal subunit was amplified with custom polymerase
chain reaction (PCR) primers and sequenced on an Illumina MiSeq.

2.8. Data Pre-Processing

Trimmomatic was used to remove sequencing adaptors, and low-quality reads [23]. The FLASH
algorithm was used to read merging and automated rejection of low-quality sequences [24]. Quality
screening for length and ambiguous bases was performed with proprietary scripts [23].

2.9. Data Analysis

We applied a comprehensive bioinformatics analysis approach integrating both robust exploratory
data analysis and visualization methods focusing on taxonomic profiling, combined with standard
statistical differential analysis approaches such as univariate analysis methods to identify statistically
significant features in terms of their abundance between different smokers and non-smokers. We also
applied the linear discriminant analysis (LDA) effect size (LEfSe) method to support high-dimensional
class comparisons. Our data generation, data preprocessing, and data analysis workflow is shown in
Figure 1.

Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 4 of 21 

 

(OTU) represents a genetically unique group of biological organisms. These OTUs were then assigned a 
curated taxonomic label based on the SILVA taxonomic database, version 123 [21]. The relative 
abundance of all taxa at the phylum and genus levels were plotted to visualize broad taxonomic 
differences between individual samples and between sample groups. Genera found at <1% mean 
abundance across samples were grouped as “other” for visualization purposes. MicrobiomeAnalyst, a 
web-based data analysis tool, was chosen to perform Univariate statistical analysis for features at the 
phyla and genera levels; features were considered significant based on their adjusted cut-off ≤ 0.05. This 
web-based tool has been reported and is currently hosted by the Xia lab at McGill University, QC, Canada 
[22]. 

2.6. Rarefaction 

All samples were rarefied after taxonomic classification. The cutoff for rarefaction was set at 25,000 
classified sequences per sample. However, no sample had less than 25,000 classified sequences, thus, all 
samples were included in the downstream analysis (see Figures A1 and A2). 

2.7. Library Preparation and Sequence Amplification 

Library preparation was performed with a customized dual index version of Illumina’s Nextera XT 
protocol. The V3-V4 region of the 16S ribosomal subunit was amplified with custom polymerase chain 
reaction (PCR) primers and sequenced on an Illumina MiSeq. 

2.8. Data Pre-Processing 

Trimmomatic was used to remove sequencing adaptors, and low-quality reads [23]. The FLASH 
algorithm was used to read merging and automated rejection of low-quality sequences [24]. Quality 
screening for length and ambiguous bases was performed with proprietary scripts [23]. 

2.9. Data Analysis 

We applied a comprehensive bioinformatics analysis approach integrating both robust exploratory 
data analysis and visualization methods focusing on taxonomic profiling, combined with standard 
statistical differential analysis approaches such as univariate analysis methods to identify statistically 
significant features in terms of their abundance between different smokers and non-smokers. We also 
applied the linear discriminant analysis (LDA) effect size (LEfSe) method to support high-dimensional 
class comparisons. Our data generation, data preprocessing, and data analysis workflow is shown in 
Figure 1. 

 
Figure 1. Workflow for the salivary microbiome data generation, pre-processing, and analysis. Figure 1. Workflow for the salivary microbiome data generation, pre-processing, and analysis.

2.9.1. Alpha (α) Diversity and Beta (β) Diversity

Taxonomic profiling: exploratory data analysis and visualization consisted of two main methods:
(a) alpha diversity analysis for assessing diversity within a bacterial community or sample and (b)
beta diversity analysis for determining the differences between microbial communities (i.e., between
samples). Three different alpha diversity metrics (Shannon Index, Observed OTUs, Chao1 diversity)
were calculated on rarefied OTU tables using the alpha_rarefaction.py workflow in QIIME 1.9.1 [25] and
the results were determined by using Analysis of Variance for each alpha diversity metric. Tukey’s
honestly significant difference (HSD) was applied to the AOV for analysis of variance (ANOVA), it is an
R function to determine group-to-group comparisons. The R version 3.3.2 (R Core Team, 2015) was used
to perform the statistical analyses of alpha and beta diversity. Additionally, three beta metrics were
used (Bray-Curtis, Weighted UniFrac, and Unweighted UniFrac) on the rarefied OTU table using the
beta_diversity.py workflow in QIIME 1.9.1. Bray-Curtis dissimilarity was calculated on a species-level
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summarization of the rarefied OTU table [26]. Principal Coordinates Analysis (PCoA) was applied to
each beta diversity distance matrix, using the dudi.pco function from the R made4 package (version
1.48.0). The first two principal coordinates explaining the majority of the difference in data were
plotted using R’s ggplot2 package, version 2.2.1), with the indicated percentage of variance by each
axis explained.

2.9.2. Univariate Analysis

Two standard univariate tests, implemented in MicrobiomeAnalyst [22] from the Xia lab at
McGill University in Canada, were applied to test for statistically significant abundant taxa between
smokers and non-smokers. The tests were: (a) non-parametric Mann-Whitney test and (b) parametric
t-test/ANOVA. Our differential analysis helps in identifying biologically or biochemically meaningful
relationships or associations between taxa or features. The analyses were conducted at phylum and
genus levels.

2.9.3. LDA Effect Size (LEfSe)

This method is specifically designed for biomarker discovery and explanation in high-dimensional
metagenomic data [27]. It incorporates statistical significance with biological consistency (effect size)
estimation. It performs a non-parametric factorial Kruskal-Wallis (KW) sum-rank test to identify
features with significant differential abundance with regard to experimental factor or class of interest,
followed by Linear Discriminant Analysis (LDA) to calculate the effect size of each differentially
abundant features. The result consists of all the features, the logarithmic value of the maximum mean
among all the groups or classes, and if the features are differentially significant, the group with the
highest mean and the logarithmic LDA score (Effect Size). Features are considered to be significant
based on their adjusted p-values (i.e., false discovery rate (FDR) values), applying an adjusted p-value
cutoff = 0.05.

3. Results

3.1. Demographic Data of the Study Subjects

One hundred subjects were recruited in this study to attain salivary specimens (57 males and
43 females; 51 non-smokers and 49 smokers) to perform 16S rRNA gene sequencing. A total of
1308 OTUs were identified within the salivary microbiota of the 100 subjects who participated in this
study. A designed questionnaire (Table 1) was developed to collect demographic data in addition to
smoking history. As in Table 1, the smoking status of 100 subjects of the study summarized as the
following; 23% female non-smokers, 28% male non-smokers, 20% female smokers, and 29% male
smokers. Other descriptive characteristics in Table 1 included data with more than 50% between
21–25 years of age, ethnicity (95% white), education (76% bachelor degree), smoking duration (20% from
6–10 years), number of cigarette (20% from 10–20 cigarettes), and teeth brushing (89% brushing teeth).
The difference in age was statistically significant at p-value ≤ 0.05. No statistically significant difference
in the number of smokers versus non-smokers was observed at p-value = 0.05.
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Table 1. Demographic data of the study population.

Gender (n a) Age in Years
(mean ± SD) Ethnicity Education

Tobacco Smokers
versus

Nonsmokers (n)

Smoking
Duration

(n)

Number of
Cigarettes

(n)

Teeth
Brushing

Male (57) 23.9 ± 6.20 White (95) School (20) Smokers (49) <1 Year (2) 1–10 (15) Brush (89)

Female (43) 27.1 ± 7.57 Black (4) Bachelor
(76) Non-smokers (51) 1–5 Years

(15) 10–20 (20) Do not
Brush (9)

Caucasian
(1) Master (4) Male non-smokers

(28)
6–10 Years

(20) 21–30 (6)

Female
non-smokers (23)

>10 Years
(9) >30 (5)

Male smokers (29)

Female smokers
(20)

p-value 0.0245 * (age)
0.6693 (smokers

versus
non-smokers)

n a is the number of samples—the asterisks (*) indicate a statistically significant p-value < 0.05. Note: non-smokers
are defined as subjects who never smoked before.

3.2. Alpha (α) Diversity Metrics

To understand the variations in the salivary microbiota, alpha diversity metrics were calculated
on rarefied OTU tables for comparison groups based on gender and smoking status. The α metrics
included Chao1 (community richness), Observed OTUs (community uniqueness), and Shannon
(community evenness or entropy) within each comparison group (male smokers, female smokers, male
non-smokers, and female non-smoker). Statistically significant differences at adjusted p-value < 0.05
were determined using analysis of variance with alpha diversity as the response variable on the y-axis,
and smoking and gender status as crossed predictor variables on the x-axis (Figure 2). The Chao1
metric analysis showed statistically significant higher richness in smokers versus non-smokers,
and interestingly, a statistically significant higher richness among female non-smokers versus male
non-smokers (Figure 2A). The metrics of observed OTUs represented the amount of unique OTUs
found in each sample to measure the diversity within samples in an ecosystem. Relatively, there was a
significant community uniqueness in non-smokers versus non-smokers, in addition to a considerable
community uniqueness in females versus males regardless of the smoking status (Figure 2B). In the
last calculated α metric, Shannon metric considers the number and abundance of OTUs found in a
sample together; the more evenly abundant the OTUs present in a sample, the higher the Shannon
index. Shannon’s analysis showed that smokers and non-smokers were evenly abundant (Figure 2C).
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Figure 2. Boxplots of the three studied alpha diversity metrics: (A) Chao1 (community richness),
(B) observed OTUs (community uniqueness), and (C) Shannon (community evenness or entropy). Red
boxplots represent females and green boxplots represent males. Statistically significant differences were
determined using analysis of variance with alpha diversity as the response variable, and smoking status
and sex as crossed predictor variables, with Tukey’s HSD for group-specific differences. * Statistically
significant at adjusted (p-value < 0.05), ** Statistically significant at adjusted (p-value < 0.01) and
*** Statistically significant at adjusted (p-value < 0.001).
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3.3. Beta (β) Diversity Metrics

Principal Coordinates Analysis (PCoA) is a tool used to visualize the profiling of sample clustering
based on the similarity to each other, and this helps determine whether changes identified during
beta diversity analysis are directed changes or random noise. Plots for distance matrices were
generated using three beta diversity metrics, Bray-Curtis, Weighted UniFrac, and Unweighted UniFrac,
to highlight the separation of samples per group. Bray-Curtis compositional dissimilarity metric
compared the abundance of each OTU between two samples to give a parameter between 0 and 1.
This absolute metric quantified the difference in abundance between two communities and was useful
for identifying how two microbiome samples are similar. Weighted (quantitative) UniFrac distance
is a dissimilarity metric that uses the phylogenetic distribution and the abundance of the OTUs in a
sample to calculate the distance between two samples. The unweighted (qualitative) UniFrac distance
measures the phylogenetic distribution of the OTUs in a sample but relies on the presence or absence
of OTUs rather than their abundance. The results of beta diversity are in Table 2. The Bray-Curtis
analysis in Figure 3A showed that there are significant compositional dissimilarities among the
different comparison groups, except for the male non-smokers versus female non-smokers. When
considering the weighted UniFrac, results in Figure 3B showed significant compositional dissimilarities
among the different comparison groups except for the male non-smokers versus female non-smokers
and male smokers versus female smokers. When considering the Unweighted UniFrac, results in
Figure 3C showed significant compositional dissimilarities among the different comparison groups
except for male smokers versus female smokers. In general, most of bacterial OTUs were shared
all-over the groups.

Table 2. The Principal Coordinates Analysis (PCoA) plots of the three beta diversity metrics were
used (Bray-Curtis, Weighted UniFrac, and Unweighted UniFrac) measuring significant differences in
beta diversity.

Group
Bray-Curtis Dissimilarity Weighted UniFrac Unweighted UniFrac

p-Value p-Adjusted p-Value p-Adjusted p-Value p-Adjusted

Male non-smokers
versus male smokers 0.001 0.006 * 0.001 0.006 * 0.001 0.006 *

Male non-smokers
versus female
non-smokers

0.074 0.444 0.171 1.000 0.003 0.018 *

Male non-smokers
versus female smokers 0.001 0.006 * 0.001 0.006 * 0.001 0.006 *

Male smokers versus
female non-smokers 0.001 0.006 * 0.001 0.006 * 0.001 0.006 *

Male smokers versus
female smokers 0.005 0.030 * 0.013 0.078 0.020 0.120

Female non-smokers
versus female smokers 0.001 0.006 * 0.001 0.006 * 0.001 0.006 *

* Statistically significant at Bonferroni adjusted p-value significance level set at 0.05.

All performed group comparisons of β-diversity were assessed with a pairwise permutational
multivariate ANOVA (PerMANOVA) using the ‘pairwise.adonis’ function from the vegan R package,
which can be found here: https://github.com/pmartinezarbizu/pairwiseAdonis. The pairwise function
takes each pair and runs the adonis test independently. Then, it applies a Bonferonni correction
with the ‘p.adjust’ function which divides the original α-values by the number of comparisons
performed. In this study, we performed the following six comparisons: Nonsmoker_male versus
smoker_male, nonsmoker_male versus nonsmoker_female, nonsmoker_male versus smoker_female,
smoker_male versus nonsmoker_female, smoker_male versus smoker_female, and nonsmoker_female
versus smoker_female. Therefore, the original p-values (p-value) were multiplied by 6 to get the
Bonferroni-adjusted p-values (p-adj) reported in Table 2.

https://github.com/pmartinezarbizu/pairwiseAdonis
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Figure 3. Principal Coordinates Analysis (PCoA) of the distance matrix generated using three distance
metrics: (A) Bray-Curtis dissimilarity data, (B) Weighted UniFrac, and (C) Unweighted UniFrac. The x
and y axes correspond to the first and second major principal coordinates (PC1 and PC2) identified
from the PCoA analysis. Each principal coordinate explains a certain fraction of the variability
(indicated by the percentage between brackets on each axis) observed in the data set. The principal
coordinates PC1 and PC2 are plotted to create a visual two-dimensional (2D) representation of the
multidimensional microbial community compositional differences between tested samples. Each
sample is represented by a point and colored based on the smoking status and the sex of tested human
subjects: Female non-smokers (red), male non-smokers (green), female smokers (teal green), and male
smokers (magenta). The distance between the points represents the similarity of those samples (closer
together = more similar).
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3.4. Visualization of the Taxonomic Profiling Results

Stacked bar charts (precisely, 100% stacked) were used for the visualization of the taxonomic
profiling results generated from abundance data in OTU tables. These charts enabled the display of the
composition and the distribution of most abundant bacterial taxa at the phyla (Figure 4) and genera
(Figure 5) levels across 100 studied salivary samples from smokers and non-smokers. Two samples
were dropped out of the analysis because of some missing demographic data about them to avoid
any type of uncertainty errors. Both Figures 4 and 5 clearly show that the taxonomic identity and
distribution of the salivary microbiota were conserved among all tested samples from smoker and
non-smoker human subjects at phyla and genera levels. At the phylum level, our results revealed
that that the salivary microbiome was largely predominated by Firmicutes, Bacteriodetes, Proteobacteria,
Actinobacteria, Fusobacteria, and Saccharibacteria.
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3.5. Univariate Analysis

To test if there are any statistically significant differences in the abundance of abundant taxa
between smokers and non-smokers, we performed both parametric and non-parametric univariate
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analyses. Non-parametric univariate analyses relied on Mann–Whitney and/or Kruskal-Wallis (which
is an extension to Mann–Whitney test to test for more than two samples) tests. Our results revealed
that three abundant phyla including Proteobacteria, Firmicutes, and Fusobacteria, showed statistically
significant differences in abundance between smokers and non-smokers. The false discovery rate (FDR)
values reported in Table 3 were used to assess statistical significance of the univariate analysis results
setting the cutoff at 0.05.

Table 3. The top features identified by univariate analysis at the phylum level for non-smokers versus
smokers (regardless of gender).

# Phylum p-Values FDR

1 Proteobacteria 2.80 × 10−6 * 2.52 × 10−5 *
2 Firmicutes 7.16 × 10−6 * 3.22 × 10−5 *
3 Fusobacteria 0.0017 * 0.0053 *
4 Spirochaetae 0.2924 0.6579
5 Synergistetes 0.4506 0.8112
6 Actinobacteria 0.5616 0.8424
7 Candidate_division_SR1 0.7550 0.8939
8 Saccharibacteria 0.7946 0.8939
9 Bacteroidetes 0.9579 0.9579

The asterisks (*) and bold names indicate statistically significant p-values with a significance level set at 0.05. Note:
when the asterisk is on the right side of the value, it means significantly higher among smokers; when it is on the
left side of the value, it means significantly higher among non-smokers.

Results of the univariate analyses are reported in Tables 3 and 4 for phyla and genera levels
subsequently. Features were considered statistically significant based on their FDRs with a significance
level set at 0.05. Table 3 showed the phylum Firmicutes is significantly more abundant in smokers versus
non-smokers, while Proteobacteria and Fusobacteria were less abundant in the non-smokers’ group.

Table 4. The critical features identified by Univariate analysis at the Genus level.

# Genus p-Values FDR

1 Neisseria 4.58 × 10−6 * 0.0003 *
2 Streptococcus 3.27 × 10−5 * 0.0011 *
3 Prevotella 0.0013 * 0.0299 *
4 Veillonella 0.0016 * 0.0299 *
5 Bergeyella 0.0043 0.0522
6 Eikenella 0.0049 0.0522
7 Johnsonella 0.0050 0.0522
8 Fusobacterium 0.0062 0.0566
9 Megasphaera 0.0076 0.0591

The asterisks (*) and bold names indicate statistically significant p-values with a significance level set at 0.05. Note:
When the asterisk is on the right side of the value, it means significantly higher among smokers; when it is on the
left side of the value, it means significantly higher among non-smokers.

At the genera level, six specific genera consisting of Streptococcus, Prevotella, Vellionella, Rothia,
Neisseria, and Haemophilus, dominated the salivary microbiota of all examined samples from both
smokers and non-smokers (Figure 5). Univariate analysis results (Table 4) showed that Streptococcus,
Prevotella, and Veillonella were significantly more prevalent in smokers than in non-smokers, whereas
Neisseria, a bacterial genus that is part of the healthy flora in the human oral cavity, was significantly
lower in smokers versus non-smokers (Figure 6).
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3.6. LDA Effect Size (LEfSe)

Correlation analysis using LDA Effect Size (LEfSe) was performed at the phyla and genera
taxonomy levels, and testing for five experimental factors, namely: class (smoker or non-smoker), sex
(female or male), the number of smoking years, the number of cigarettes smoked (Figures 7–9) and
teeth-brushing habits (brushing or no brushing). To get meaningful insight from the number of years
of smoking and the number of cigarettes smoked, we binned all numbers into four and five classes
subsequently (Table 5). For the number of smoking years we binned the numbers into four classes:
class 0 for zero years of smoking (i.e., son-smoker), class 1 for smoking years from 1 to less than 5,
class 2 for smoking years from 5 to less than 10, and class 3 for more than 10 years. For the number
of cigarettes smoked per day, we binned the numbers into five classes: Class 0 for zero number of
cigarettes, class 1 for a number of cigarettes from 1 to less than 10, class 2 from 10 to less than 20, class 3
from 20 to less than 30, class 4 more than 30 cigarettes per day. We also applied a t-test/ANOVA to
study the effect of teeth brushing on the salivary microbiome (not tabulated). We studied the effects
at the phyla and genera levels and identified the phylum Synergistetes (p-value = 0.0015, and FDR =

0.0133) as a statistically significant phylum distinguishing the human subjects that brush and those that
do not brush their teeth. At the genus level however, we found there are five genera having to show
statistically significant differences in abundance between smokers and non-smokers. The five genera
were: (1) Haemophilus (p-value = 2.2273 × 10−4 and FDR = 0.0156), (2) Filifactor (p-value = 3.8769 ×
10−4 and FDR = 0.0204), (3) Eubacterium_brachy_group (p-value = 5.818 × 10−4 and FDR = 0.0204),
(4) Fretibacterium (p-value = 0.0015 and FDR = 0.0346), and (5) Parvimonas (p-value = 0.0027 and
FDR = 0.047327).

Table 5. Important taxonomic features at the phylum level identified by LEfSe.

Smoker versus Non-Smoker

Phylum p-Value * FDR
Abundance LDA

ScoreNon-SmokerSmoker

Proteobacteria 6.06 × 10−6 5.45 × 10−5 1,828,000 1,003,200 −5.62
Firmicutes 9.99 × 10−5 4.50 × 10−4 3,539,800 4,517,700 5.69

Fusobacteria 2.54 × 10−3 7.62 × 10−3 882,530 583,700 −5.17
Candidate_division_SR1 7.27 × 10−2 1.64 × 10−1 21,233 18,901 −3.07

Synergistetes 1.27 × 10−1 2.28 × 10−1 1706.6 1317.4 −2.29
Actinobacteria 2.73 × 10−1 4.10 × 10−1 1,334,300 1,422,600 4.65
Spirochaetae 3.87 × 10−1 4.97 × 10−1 13,132 6343.5 −3.53

Saccharibacteria 5.71 × 10−1 6.42 × 10−1 265,320 288,340 4.06
Bacteroidetes 6.44 × 10−1 6.44 × 10−1 2,114,000 2,157,900 4.34
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Table 5. Cont.

Binned Number of Years of Smoking

Phylum p-value * FDR
Abundance LDA

ScoreClass 0 Class 1 Class 2 Class 3

Proteobacteria 1.11 × 10−9 9.99 × 10−9 1,968,900 1,072,400 619,710 830,020 5.83
Firmicutes 2.26 × 10−7 1.02 × 10−6 3,368,600 4,624,900 5,071,300 4,371,100 5.93

Fusobacteria 4.06 × 10−4 1.15 × 10−3 910,010 652,060 500,500 487,050 5.33
Candidate_division_SR1 5.10 × 10−4 1.15 × 10−3 32,448 2398.8 8833.8 5397.3 4.18

Actinobacteria 4.17 × 10−2 7.51 × 10−2 1,244,500 1,287,900 1,664,300 1,606,300 5.32
Synergistetes 2.12 × 10−1 3.17 × 10−1 1579.1 538.51 799.61 3512.6 3.17
Spirochaetae 2.55 × 10−1 3.27 × 10−1 13,425 4161.2 5597.2 8196 3.67
Bacteroidetes 4.70 × 10−1 5.28 × 10−1 2,203,300 2,055,600 1,867,200 2,337,300 5.37

Saccharibacteria 8.80 × 10−1 8.80 × 10−1 257,200 300,020 261,740 351,060 4.67

Binned Number of Cigarettes

Phylum p-value * FDR
Abundance LDA

ScoreClass 0 Class 1 Class 2 Class 3 Class 4

Proteobacteria 5.63 × 10−9 5.06 × 10−8 1,968,900 1,096,000 799,060 865,290 545,000 5.85
Firmicutes 4.48 × 10−7 2.01 × 10−6 3,368,600 4,546,800 5,000,800 4,423,500 4,993,400 5.91

Fusobacteria 1.53 × 10−3 4.60 × 10−3 910,010 538,570 647,930 492,040 505,900 5.32
Candidate_division_SR1 4.04 × 10−3 9.10 × 10−3 32,448 5620.1 5607.6 7110.8 4922.3 4.14

Actinobacteria 6.14 × 10−2 1.10 × 10−1 1,244,500 1,279,700 1,438,900 1,882,600 1,458,900 5.50
Spirochaetae 8.35 × 10−2 1.25 × 10−1 13,425 4146.5 4018.8 4911.9 10,250 3.67
Bacteroidetes 3.95 × 10−1 5.08 × 10−1 2,203,300 2,298,200 1,761,300 1,958,300 2,234,600 5.43
Synergistetes 9.04 × 10−1 9.97 × 10−1 1579.1 856.72 778.84 885.28 3302.3 3.10

Saccharibacteria 9.97 × 10−1 9.97 × 10−1 257,200 230,080 341,600 365,390 243,750 4.83

* p-values were based on the FDR test, values with a significance level set at 0.05 are in bold.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 14 of 21 

 

 
Figure 7. A plot of the LDA scores of the top 15 genera showing statistically significant differences 
between smokers and non-smokers. LDA scores on the x-axis and genera on the y-axis. The color-coding 
in the squares of the right side of the plot refers to the cumulative abundance of each genus in each binned 
group, where red means high cumulative abundance and blue means low cumulative abundance. 

 
Figure 8. A plot of the LDA scores of the top 15 genera showing statistically significant differences 
between binned years of smoking. LDA scores on the x-axis, and genera on the y-axis. The color-coding 
in the squares of the right side of the plot refers to the cumulative abundance of each genus in each binned 
group, where red means high cumulative abundance and blue means low cumulative abundance. 

Figure 7. A plot of the LDA scores of the top 15 genera showing statistically significant differences
between smokers and non-smokers. LDA scores on the x-axis and genera on the y-axis. The color-coding
in the squares of the right side of the plot refers to the cumulative abundance of each genus in each binned
group, where red means high cumulative abundance and blue means low cumulative abundance.
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Figure 8. A plot of the LDA scores of the top 15 genera showing statistically significant differences
between binned years of smoking. LDA scores on the x-axis, and genera on the y-axis. The color-coding
in the squares of the right side of the plot refers to the cumulative abundance of each genus in each binned
group, where red means high cumulative abundance and blue means low cumulative abundance.
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Figure 9. A plot of the LDA scores of the top 15 genera showing statistically significant differences
between binned numbers of cigarettes smoked by human subjects. LDA scores are on the x-axis and
genera on the y-axis. The color-coding in the squares of the right side of the plot refers to the cumulative
abundance of each genus in each binned group, where red means high cumulative abundance and blue
means low cumulative abundance.

3.7. Multivariate Analysis by Linear Models (MaAsLin)

In order to identify (or rule out the presence of) any confounding covariates that may contribute
to the observed changes in microbiome composition with smoking status, we applied a multivariate
statistical approach from MaAsLin [28] to relate smoking status to microbiome structure and function
while accounting for potential correlates and confounding factors such as tooth-brushing and gender.
Clades were tested for statistically significant associations with demographic metadata of interest
by using a novel multivariate algorithm. Each clade was normalized with a variance-stabilizing
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arcsine square-root transformation and evaluated with a general linear model using the glm package
in R. Model selection for sparse data was performed per clade using boosting from gbm package.
A multivariate linear model associating all available metadata with each clade independently was
boosted, and any metadata selected in at least 1% of these iterations was finally tested for significance in
a standard generalized linear model. Within each metadatum/clade association independently, multiple
comparisons over factor levels were adjusted using a Bonferonni correction; multiple hypothesis
tests over all clades and metadata were adjusted to produce a final Benjamini and Hochberg false
discovery rate (i.e., Q-value). Significant association was considered below a q-value threshold of
0.25. MaAsLin Analysis did not result in any significant confounding variables that could explain
the differences in microbiome composition, on the phyla and genera levels, between smokers and
non-smokers. These results confirmed the that microbiome compositional differences between human
subjects are attributed to the smoking status identified by univariate analyses.

4. Discussion

To the best of our knowledge, this paper represents a first of its kind report in Jordan, documenting
statistically significant changes in the salivary human microbiome composition between smoker and
non-smoker human subjects. Our methods relied on high throughput next-generation sequencing of
the 16S rRNA marker gene determined in unstimulated salivary samples. Based on the outcomes of
previous studies addressing the adverse effects of smoking on health in general, it was anticipated that
pathogenic bacteria might be present at the expense of the commensal flora in smokers. This study
showed that alpha and beta diversity displayed intra and inter-individual variations. However, the
profile clustering direction for each study group (male smokers, female smokers, male non-smokers,
and female non-smoker) was apparent with interesting overlapping Venn diagrams for male and
female non-smokers versus male and female smokers. This implies a significant response to smoking
regardless of gender, even with slight significant statistical variation between males and females in
general. Firmicutes, Proteobacteria, and Bacteroidetes were found to have the highest relative abundance
percentage of the community at phylum level in all samples. However, smoking had affected the
Firmicutes, Proteobacteria, and Fusobacteria, as Firmicutes was statistically elevated in smokers at the
expense of Proteobacteria and Fusobacteria in non-smokers. This implies that smoking has a critical
impact on the homeostasis of human salivary microbiome. The biological meaning of these findings
was not evident until we performed the analysis at genera level.

At the genus level, Streptococcus, Prevotella, Vellionella, Rothia, Neisseria, and Haemophilus
predominated the salivary microbiota of all examined samples. Streptococcus, Prevotella, and Veillonella
were the most significantly predominant genera among smokers at the expense of Neisseria that
are healthy flora in the human oral cavity, which has been significantly decreased among smokers.
The increased levels of Streptococcus and Veillonella and the reduced level of Neisseria were consistent
with an extensive study of in a thorough survey of cigarette smoking and oral microbiome among
American adults [8]. The reduced level of anaerobic Neisseria in this study is consistent with a
human oral microbiota study [29], which might be related to the effect of oxygen deprivation in the
oral cavity caused by smoking. The predominance of the anaerobic Veillonella and the facultative
anaerobic Streptococcus may explain their success in tolerating the lack of oxygen in the smoking
microenvironment. Elevated Prevotella was correlated to oral malodor (halitosis) [30], which can be
caused by smoking in this study, which is consistent with a clinical review by Porter and Scully [31].

Since statistically significant taxa do not always convey the biological messages, we want to arrive
in to make important discoveries later on. We performed additional statistical tests to build confidence
in the prioritized taxa and make sure that these taxa are able to explain the differences between the
studies classes of smokers and non-smokers. This, in addition to a subsequent related classification
based on the number of years of smoking, the number of cigarettes smoked, and whether the human
subjects brush or did not brush their teeth, in terms of teeth brushing the phylum Synergistetes were
identified as a statistically significant phylum distinguishing the human subjects that brush and those
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that do not brush their teeth. Synergistetes has been reported in both periodontal health and disease [32];
thus, a further investigation at the species level of Synergistetes is needed. Our tests relied on LEfSe,
which combines standard tests for statistical significance with additional tests encoding biological
consistency and effect relevance. Based upon our LEfSe results analysis in Figures 7–9, we can see
that there is a microbial signature distinguishing smokers from non-smokers, which is consistent
with our univariate analysis except that the abundance of candidate division SR1 was statistically
significant (Table 5). The candidate division SR1 usually described in the literature as unknown or
unaffiliated [33]. We did not see such a clear signature distinguishing the different classes of human
subjects resulting from the binned numbers of years of smoking and the binned numbers of the number
of cigarettes smoked.

We can suggest that there is microbial signature at the genera level can be used to classify smokers
and non-smokers by LEfSe based on the salivary abundance of the 15 genera including, but not
limited to, Streptococcus, Prevotella, and Veillonella, which are all more abundance in smokers relative to
non-smokers, and Neisseria, which is more abundant in non-smokers relative to smokers.

It is worthy to note that infections are believed to be a cause of carcinogenesis, alongside other
known risk factors such as smoking tobacco and consuming alcohol. The case for role infections
in carcinogenesis is increasingly solidified with evidence that the inflammation bacteria can secrete
endotoxins, which in turn might induce DNA damage in mouth epithelial tissue [34,35]. A positive
correlation between proinflammatory cytokine levels and commensal bacteria was observed in smokers,
but that correlation was not present for non-smokers. A previous study suggested that smoking affects
both the composition of the nascent biofilm and the host reaction to this colonization [3]. The elevated
abundance of Streptococcus, Prevotella, and Veillonella in this study should be considered in future
research to explore the feasibility of being a salivary diagnostic predictor in Jordanian smokers for oral
squamous cell carcinomas. For example, a previous report concluded that some specific taxa have
a significant correlation with epithelial precursor regions and oral cancer, taxa such as Streptococcus
spp., Veillonella, Porphyromonas, Fusobacterium, Prevotella, Actinomyces, Clostridium, Haemophilus, and
Enterobacteriaceae [36].

Although we were successful in generating high-quality sequencing data that enabled the
subsequent bioinformatics analysis to identify significant compositional differences in the salivary
microbiome between smokers and non-smokers, this study has some limitations that we should disclose
here. First, targeting only two hypervariable regions, V3-V4 on the 16S rRNA gene, might group
closely related taxa into a single taxonomic unit. However, there is sufficient evidence in the biomedical
literature indicating that the V3-V4 exploration is adequate to produce a reliable phylogenetic ranking
at phyla and genus levels, but usually not at species level. Second, even though 16S rRNA remains the
most efficient available approach to study microbial communities, it suffers mosaicism, intra-genomic
heterogeneity, and lacks a universal threshold of what is known as sequence identity value [37]. Third,
we could not control for other confounders for example lifestyle, exact and complete oral health beyond
yes or no teeth brushing, alcohol consumption, drug abuse, and chemical and physical properties of
saliva. Last, it is challenging to determine whether the existing microbial colonization is a long-term
one or not.

5. Conclusions

The present investigation systematically combined NGS and bioinformatics to examine the effect
of tobacco smoking on the unstimulated salivary microbiome in human subjects by targeting the
16S rRNA gene. The results of this investigation confirmed a proven impact of smoking on the core
salivary microbiome between smokers and non-smokers in terms of relative abundance percentages.
Six genera—Streptococcus, Prevotella, Vellionella, Rothia, Neisseria, and Haemophilus—predominated the
salivary microbiota of all samples with different proportions. Three genera—Streptococcus, Prevotella,
and Veillonella—showed significant differences between the comparison groups at the expense of
Neisseria. Smoking has a definite impact on shifting the salivary microbiota in smokers. Further
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studies are needed to explore if dominant genera can be utilized as diagnostic biomarkers to predict or
early detect the periodontitis and oral epithelial precursor lesions among smokers in Jordan. Herein,
proteomics and metabolomics studies are recommended to fully understand the xenobiotic metabolism
and its effect on the interrelationships among bacteria of the salivary microbiome and how they affect
the growth of each other.
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Appendix A Sequencing Quality Metrics

A total number of 25,000 sequences were retrieved and passed the quality test (Table A1). As an
evaluation of the overall quality of a sequencing run, the % ≥ Q30 score was 79.62%, which is the
proportion of base calls that have a confidence score of 30 or more. The cluster density in the sequencing
run was 914 ± 16 k/mm2 that exceeded the minimum requirement ≥ 800 k/mm2, which gives an idea
on how efficiently the sequencer can bind sequences of DNA to the flow cell. The clusters passing filter
percentage was 91.47 ± 0.75% that exceeded the minimum requirement ≥ 80%, which is the proportion
of clusters that meet the sequencer’s minimum quality threshold for sequence quality. Only clusters
that passed filter were included in the sequencer’s FASTQ output, which is a text-based format for
storing nucleotide sequences and its quality scores. The sequencing yield was 12.36 Gbp, which refers
to how many nucleotide base pairs were called by the sequencer. 1 Gbp (Giga base pair) means the
sequencer generated 1 billion base pairs of output; the minimum requirement is ≥13.2 Gbp. The PhiX
alignment was 19.01%; the PhiX is a sequencing library that was used as a positive control of each
sequencing run. The sequencer aligns to the PhiX library to calculate sequence-based quality control
metrics. We require that the percentage of reads that align to the PhiX library is within 20% of the
spike-in amount of PhiX.

Table A1. Sequence quality metrics per sequencing run.

Metric Minimum Requirement Results

% ≥ Q30 ≥70% 79.62%
Cluster Density ≥800 k/mm2 914 ± 16 k/mm2

Clusters Passing Filter (%) ≥80% 91.47 ± 0.75%
Sequencing Yield ≥13.2 Gbp 12.36 Gbp

PhiX Alignment (%) 12%–18% 19.01%

All the classified sequences that were used here passed the threshold that is represented by the
dashed line in Figure A1.
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