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Abstract
Time delays, modelling the process of intracellular gene expression, have been shown
to have important impacts on the dynamics of pattern formation in reaction–diffusion
systems. In particular, past work has shown that such time delays can shrink the Tur-
ing space, thereby inhibiting patterns from forming across large ranges of parameters.
Such delays can also increase the time taken for pattern formation even when Turing
instabilities occur. Here, we consider reaction–diffusion models incorporating fixed
or distributed time delays, modelling the underlying stochastic nature of gene expres-
sion dynamics, and analyse these through a systematic linear instability analysis and
numerical simulations for several sets of different reaction kinetics. We find that even
complicated distribution kernels (skewedGaussian probability density functions) have
little impact on the reaction–diffusion dynamics compared to fixed delays with the
same mean delay. We show that the location of the delay terms in the model can lead
to changes in the size of the Turing space (increasing or decreasing) as the mean time
delay, τ , is increased. We show that the time to pattern formation from a perturbation
of the homogeneous steady state scales linearly with τ , and conjecture that this is a
general impact of time delay on reaction–diffusion dynamics, independent of the form
of the kinetics or location of the delayed terms. Finally, we show that while initial and
boundary conditions can influence these dynamics, particularly the time-to-pattern,
the effects of delay appear robust under variations of initial and boundary data. Overall,
our results help clarify the role of gene expression time delays in reaction–diffusion
patterning, and suggest clear directions for further work in studying more realistic
models of pattern formation.

Keywords Pattern formation · Time delay · Linear instability analysis

B Andrew L. Krause
andrew.krause@durham.ac.uk

1 Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford,
Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG,
United Kingdom

2 Mathematical Sciences Department, Durham University, Upper Mountjoy Campus, Stockton Rd,
Durham DH1 3LE, United Kingdom

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-022-01052-0&domain=pdf
http://orcid.org/0000-0001-9638-7278


98 Page 2 of 29 A. Sargood et al.

1 Introduction

The self-organisation of cells into an apparent order appears across many different
fields within biology. For example, the distribution of cells during the developmental
process of an embryo, the growth of cancerous tissue (Bard 1992), vertebrate limb
development (Miura and Shiota 2000a; Hentschel et al. 2004; Miura andMaini 2004),
and pattern formation on animal coats (e.g. spots on a jaguar (Painter et al. 2000),
feathers on birds (Bailleul et al. 2020)). Wolpert (1969) presented the idea that, under-
pinning the development of shape and form (morphogenesis) is a cell’s ability to
differentiate according to its position in space and time. Furthermore, the concentra-
tion of signalling molecules (morphogens), or the concentration gradients of certain
morphogens across a spatial domain of cells, affects the cell differentiation mecha-
nism, and thus cells adopt a state relative to the concentration of a specific morphogen
that they are exposed to.

The mechanism allowing cells to adopt an appropriate state is known as differential
gene expression, and depends crucially on the communication between cells, achieved
through cellular signalling (Gaffney and Monk 2006). Typical reaction–diffusion sys-
tems modelling such signalling implicitly assume a negligible timescale on which the
internal cellular signalling and gene expression processes occur. The gene expres-
sion process, however, is extremely complex and proceeds through several stages
(Gaffney and Monk 2006), including gene transcription and gene translation. These
sub-processes can take large amounts of time, and it has been experimentally shown
that these time delays are typically on the order of minutes, but in some cases can be
as large as several hours (Gaffney and Monk 2006; Tennyson et al. 1995). Such time
delays can therefore approach the timescale of pattern formation process itself. For
example, the basic body plan of a zebrafish is established in less than 24h (Kimmel
et al. 1995). Hence, it seems important to assess the impact of such time delays on
pattern formation in developmental biology.

In 1952, Alan Turing proposed that the pattern formation process could be math-
ematically modelled on a purely chemical basis via the interaction of morphogens,
whose evolutions are described by a system of coupled reaction–diffusion equations
(Turing 1952). Turing showed that a stable steady state, robust to small perturbations in
the spatially homogeneous setting (i.e. without diffusion), could become unstable and
sensitive to small perturbations with the introduction of diffusion, leading to spatially
inhomogeneous patterns. Cell fate decisions are then based on these morphogen con-
centrations, where regions of high morphogen or low morphogen concentration can
lead to different cell fate decisions. Turing’s model is therefore one of pre-patterning,
where the morphogen pattern concentrations across a spatial domain are modelled,
which in turn lead to cell fate decisions at a later stage. Typical reaction–diffusion
systems in the context of Turing pattern formation consist of two partial differential
equations describing the interaction and evolution of two morphogens, the activator
and inhibitor. Empirical evidence suggests that Turing instabilities are present in real
biological systems, and can be used to explain complex biological phenomena (Yi
et al. 2017; Harris et al. 2005; Miura and Shiota 2000b; Miura and Maini 2004; Sick
et al. 2006). However, whether Turing patterns may be found experimentally in bio-
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logical systems with simple two-species systems is still very much an active field of
research (Woolley et al. 2021).

Time delays have been investigated in the context of Turing patterns, both numer-
ically and analytically, through the incorporation of constant fixed time delays. One
of the canonical reaction–diffusion mechanisms that exhibits Turing instabilities is
the Schnakenberg model (Schnakenberg 1979), also known as the activator-depleted
model. This system has been extensively studied in the context of Turing pattern
formation with incorporated gene expression time delays. Two biologically moti-
vated variants incorporating time delays are the ligand-internalisation (LI) and reverse
ligand-binding (RLB) models (Seirin Lee and Gaffney 2010). The LI model places
gene expression time delay in purely the activator dynamics, whereas the RLB model
contains time delay in both the activator and inhibitor dynamics.

Numerical results in Gaffney and Monk (2006) on the LI model showed that the
time taken until pattern formation occurs drastically increases as the time delay in the
model is increased. In particular, small delays on the order of minutes can cause a large
increase in time-to-pattern, on the order of several hours, compared to a model with
no time delay. This highlights the impact of including gene expression time delays,
especially when considering patterning events that occur on a fast timescale.

The two papers (Jiang et al. 2019; Yi et al. 2017) consider both the LI and RLB
variants of the Schnakenberg model. Using linear analysis and numerical simulations,
the results in both papers suggest that the RLB model can exhibit spatially inhomo-
geneous temporal oscillations, as well as de-stabilisation of spatially inhomogeneous
steady states, inhibiting pattern formation via Turing instabilities. The results in Yi
et al. (2017) indicate that extensive ligand internalisation may inhibit the formation
of patterns within some regions of the parameter space. Results in both (Seirin Lee
and Gaffney 2010; Seirin Lee et al. 2010) suggest that time delay causes a signifi-
cant effect on the time taken until pattern formation occurs. A final observation from
Gaffney and Monk (2006), Seirin Lee et al. (2010), for both LI and RLB models,
is that an increasing time delay may also increase the sensitivity of the final pattern
formed to variations in initial conditions.

In contrast, analysis of one-dimensional spike solutions of the Gierer-Meinhardt
(GM) model in Fadai et al. (2017, 2018) shows that the placement of delay terms in
the model can affect the size of the parameter regimes for which the spike solution is
linearly stable. It was found that depending on the positioning of time-delayed terms,
an increasing time delay can have a stabilising or de-stabilising effect, enlarging or
shrinking the stable parameter region of the spike. Further details of spike solutions of
the GM model and their stability analysis can also be found in Iron and Ward (2000).
This analysis highlighted the importance of time delay positioning in the GM model
for the stability of spike solutions.

The key insights from the literature on delayed reaction–diffusionmodels above are
that fixed time delays can (a) change the space of parameters in which spatially inho-
mogeneous steady states are observed (the Turing space), and (b) delay the time for
patterns to form. These results have implications on the use of such models as mech-
anistic explanations of pattern formation in development. Namely, in cases where the
Turing space shrinks for realistic sizes of delay, this can challenge the robustness of
Turing pattern formation, which is already an open problem in using non-delayed
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reaction–diffusion models to explain robust biological phenomena (Maini et al. 2012;
Scholes et al. 2019). Additionally, the increasing time needed for patterns to form
can become an obstacle in quantitatively relating these models to developmental per-
spectives for patterning events that occur on relatively fast timescales (Seirin Lee
et al. 2010). Thus, our first objective will be to explore these observations in variants
of Schnakenberg and GM systems in more detail by explicitly constructing Turing
spaces via a linear stability analysis, and exploring the time taken for patterns to form
as a function of the delay time.

The current literature on Turing pattern formation in development has primarily
considered gene expression dynamics via fixed time delays in reaction–diffusion pro-
cesses. On a cellular level however, the biological processes responsible for gene
expression are inherently stochastic (Raj and Van Oudenaarden 2008; Elowitz et al.
2002; McAdams and Arkin 1997; Paulsson 2005). Distributed time delays have been
incorporated to model biological phenomena such as hematopoiesis, and lactose
operon dynamics (Cassidy 2021), Wnt/β-catenin signalling pathways (Cavallo et al.
2020), and Oncolytic virotherapy treatments for cancer (Elaiw and Al Agha 2020),
among other applications. A distributed delay can be thought of as a more ‘general and
realistic’ (Elaiw and Al Agha 2020) approach tomodelling, on a larger scale, a process
which may possess an intrinsic stochasticity on a small scale. Within the context of
Turing pattern formation, introducing a fixed time delay into the reaction–diffusion
mechanism is a simplification of the underlying biological process on a microscopic
level. This leads us to our second objective: to model distributed gene expression time
delays at the macroscopic level to ascertain if the results obtained in the case of fixed
time delays are sensitive to the shape of a distribution of delays, which is in principle a
more realistic model for gene expression dynamics (Bratsun et al. 2005; Krause et al.
2021). Of particular interest within this objective is to assess whether the distribution
of time delays induces substantial changes compared to a Dirac-delta kernel for the
time delay, noting the latter is equivalent to a fixed time delay.

In Sect. 2, we outline a general formulation of reaction–diffusion systems with
distributed time delay, as well as some specific reaction kinetics that we will examine.
We briefly review the underlying theory of Turing pattern formation and carry out a
linear stability analysis of our general distributed delay model in Sect. 3. In Sect. 4,
we apply this instability analysis to explore how Turing spaces change for increasing
time delays in fixed and distributed scenarios. We compare these predictions from the
linear theory against numerical solutions in Sect. 5, as well as exploring questions of
the time-to-pattern as a function of delay, boundary, and initial conditions. We close
with a discussion of our results in Sect. 6, further highlighting the importance of the
placement of time delayed terms within the models, and noting the surprising fact
that distributed time delays have almost no influence on pattern formation dynamics
compared to fixed delay models with the same mean delay.
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2 Models of Gene Expression Time Delay

We consider two morphogens, u and v, obeying the following non-dimensional
reaction–diffusion equations:

∂u

∂t
= ε2

L2

∂2u

∂x2
+ f (u, v,F(u, v)),

∂v

∂t
= 1

L2

∂2v

∂x2
+ g(u, v,G(u, v)), (1)

where x ∈ � = [0, 1], t > 0 and

F(u, v) =
∫ τ2

τ1

K (s; p)F(us, vs) ds, G(u, v) =
∫ τ2

τ1

K (s; p)G(us, vs) ds,

with us = u(x, t − s) and vs = v(x, t − s) the function evaluations of u and v at
some time delay s, which is an integration variable. We also have that τ1 and τ2 are the
minimum and maximum time delays of the distributions, L2 is the non-dimensional
scaling of the domain length, and ε2 the diffusion ratio between the activator u and
inhibitor v. Unless otherwise stated, we use the same value of ε2 = 0.001 as inGaffney
and Monk (2006), and a non-dimensional domain size, L2 = 4.5. The latter allows
larger numbers of stripes to form should the system pattern compared to the domain
length scales used in Gaffney and Monk (2006), enabling the prospect of greater
sensitivity of the final pattern when comparing different distributions of time delay,
since pattern mode selection is particularly sensitive on larger domains (Crampin et al.
1999).We primarily use no flux (homogeneous Neumann) boundary conditions on the
boundary of the spatial domain, namely

∂u

∂x
= ∂v

∂x
= 0, x = 0, 1, (2)

though we will consider an alternative set of boundary conditions in Sect. 5.3.
The functions f and g are the reaction kinetics, which we will vary in subsequent

sections. We will consider kinetics that have a unique positive homogeneous steady
state, (u�, v�). Unless otherwise stated, initial conditions (u0, v0) are chosen as a small
random Gaussian perturbation from this homogeneous steady state given by

(
u0
v0

)
=

(
u�(1 + ru(x))
v�(1 + rv(x))

)
, (3)

where ru(x), rv(x) are normally distributed random variables for each x ∈ [0, 1]
with zero mean and standard deviation σIC . Unless otherwise mentioned, we take
σIC = 0.01 throughout.

The stochastic nature of gene expression delays leads us to consider a mean-field
approach to modelling the time delay (Bratsun et al. 2005; Krause et al. 2021). The
function K is the kernel of our distributed delay, representing the distribution of
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delay times from the underlying process. The functions F and G model reaction
steps which incorporate this delay. By assuming each individual mechanism within
the gene expression process occurs independently and identically, we use the central
limit theorem to model the delay as a (truncated) Gaussian distribution, K (s; p), with
s the integral variable s ∈ [τ1, τ2], 0 < τ1 < τ2 and p the vector of distribution
parameters. We will also consider non-Normal distributions by investigating skewed
Gaussian distributions as well.

2.1 Symmetric Truncated Gaussian Formulation

Using a symmetric truncated Gaussian kernel, we have p = (τ, σ ), for some mean
delay τ and standard deviation σ , with integration limits chosen as τ1 = τ − nσ and
τ2 = τ + nσ for some n ∈ N, such that τ1 = τ − nσ > 0 to ensure positive time
delays only. The distribution is then given by

K (s; p) = KN (s; τ, σ ) = 	c
1

σ
√
2π

exp

(
−1

2

(
s − τ

σ

)2
)

, (4)

where 	c denotes the truncation scaling constant, which ensures that KN (s; τ, σ )

integrates to 1 over the given integration domain [τ1, τ2], and is computed as

	c = 1

φ
(

τ2−τ
σ

) − φ
(

τ1−τ
σ

) , (5)

with φ(x) the cdf of the standard Gaussian distribution,1

φ(x) = 1

2

(
1 + erf

(
x√
2

))
. (6)

Throughout this paper, we use n = 3 so that the integration limits are τ1 = τ − 3σ
and τ2 = τ + 3σ . This was chosen so that a relatively large σ value could be used
for each τ while maintaining τ1 > 0. For each τ value, a maximum σ value can be
computed such that τ1 = τ − 3σ ≥ 0 as σmax = τ

3 . By setting σ < σmax, we ensure
that the integration domain strictly considers positive time delays only.

As σ → 0, we have that KN (s; τ, σ ) → δ(s − τ). Using the sifting property of
the delta function, we remark that the continuous time delay problem formulation in
(1) reduces in the limit of σ → 0 to a discrete fixed delay case with delay τ , where

F(u, v) = F(uτ , vτ ), G(u, v) = G(uτ , vτ ).

Hence, the continuously distributed time delay model is a generalisation of the fixed
time delay model.

1 The error function is given by erf(x) = 2√
π

∫ x
0 e−z2 dz.
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2.2 Skewed Gaussian Formulation

Wewill also study the role that the shape of a distribution has by considering a skewed
Gaussian kernel, using the parameters p = (μ, ω, ρ). Such a distribution exhibits
asymmetry but is otherwise a relatively simple generalisation of the Normal distribu-
tion. The probability density function of the skewed truncated Gaussian distribution
is given by

K (s; p) = KS(s;μ,ω, ρ) = �c

ω

√
2

π
exp

(
−1

2

(
s − μ

ω

)2
)

φ

(
ρ
s − μ

ω

)
, (7)

where φ(x) is the same as in (6). The parameter ρ denotes the skew factor. The
distribution is negatively skewed for ρ < 0 and positively skewed for ρ > 0. Finally,
we have that �c is the truncation scaling constant, given as

�c = 1

�
(

τ2−μ
ω

, ρ
) − �

(
τ1−μ

ω
, ρ

) , (8)

with �(x, ρ) the cdf of a skewed Gaussian distribution, described by

�(x, ρ) = φ(x) − 2T (x, ρ). (9)

The function T (x, ρ) denotes the Owen’s T function (Patefield and Tandy 2000) and
is written as an integral in the form

T (x, ρ) = 1

2π

∫ ρ

0

e− 1
2 x

2(1+s2)

1 + s2
ds − ∞ < x, ρ < ∞. (10)

In the computational implementationof the skewed truncatedGaussianpdf, the integral
T (x, ρ) is resolved numerically using the composite Simpson’s rule with 100,000
discretisation points.

The parameters μ and ω no longer denote the mean and standard deviation of the
distribution, but instead the location of the maximum and a scaling factor. To compare
how the skewed distribution affects the onset of patterning compared to that of the
fixed delay case, we consider the mean of the skewed distribution, τ , which is given
by

τ =
∫ τ2

τ1

sKS(s;μ,ω, ρ) ds. (11)

FollowingFlecher et al. (2010), themeanof the skewed truncatedGaussian distribution
is computed as

τ = μ + ω�c [KS(τ1;μ,ω, ρ) − KS(τ2;μ,ω, ρ)

+ 2ρ

ρ̂
√
2π

(
φ

(
ρ̂

τ2 − μ

ω

)
− φ

(
ρ̂

τ1 − μ

ω

))]
, (12)

123



98 Page 8 of 29 A. Sargood et al.

(c)(b)(a)

Fig. 1 Probability density functions of the (symmetric) normal, and skew normal distributions with a fixed
mean of τ = 1 in all cases, and different standard deviations. The positively skewed distributions have
ρ = 10, and the negatively skewed ρ = −10. Note that the axes labels cover very different ranges, with
small values of σ and ω leading to very narrow distributions. For large values of ω, the negative and positive
skew cases are not symmetric about the mean due to the truncation used. For this value of τ , we have that
σmax ≈ 0.3333 and ωmax ≈ 0.3354

with ρ̂ = (
1 + ρ2

)1/2
. We note that, for a given ρ, all of the terms on the right-hand

side of (12), namely ω, �c, and KS(s;μ,ω, ρ), can be written explicitly in terms of
μ. Equation (12) can therefore be solved implicitly for μ(τ), for a given τ .

The integration limits were set to τ1 = μ − 3ω, τ2 = μ + 3ω, where ω was
chosen such that ω < ωmax, with ωmax = μ

3 to ensure only positive time delays
were considered. In Fig. 1, we give examples of these Skew normal distributions com-
pared to a standard symmetric normal distribution, for different values of the standard
deviation/scaling in each panel.

2.3 Reaction Kinetics

We consider the Schnakenberg (1979) and Gierer and Meinhardt (1972) models as
two canonical reaction–diffusion systems that exhibit Turing pattern formation. These
models have also been studied extensively in the context of fixed time delays as
described above.

The stoichiometry of the Schnakenberg kinetics (Woolley et al. 2012) is given by

A
c1−−⇀↽−−
c−1

U , B
c2−→ V , 2U + V

c3−→ 3U , (13)

where the ci represent reaction rates. The quantities A and B are reservoirs whose
evolution is not considered, and we assume a constant supply rate. We use u, v, a,
and b to denote the (nondimensional) concentrations of substances U , V , A and B
respectively, with a and b taken as constants. The form of the model we consider
with time delay is the Ligand Internalisation (LI) variant of the standard Schnaken-
berg model. The LI model assumes that a reaction at the cell surface is followed by
internalisation of a morphogen, before the gene expression process can continue and
morphogen production can occur (Seirin Lee and Gaffney 2010; Yi et al. 2017). The
time-delayed terms in the LI model only appear in the activator’s dynamics. This is
based on the assumption that the gene expression process, and thus the source of the
time delay, is responsible for autocatalysis of the activator in the reaction–diffusion
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mechanism (Gaffney and Monk 2006). Considering mass-action kinetics and adding
standard diffusion terms (Murray 2001), we nondimensionalise the resulting system
to find that the LI model with a distributed time delay is given by

∂u

∂t
= ε2

L2

∂2u

∂x2
+ a − u − 2u2v + 3

∫ τ2

τ1

K (s;p)u2svs ds,

∂v

∂t
= 1

L2

∂2v

∂x2
+ b − u2v. (14)

The steady state of the Schnakenberg model is given by (u�, v�) =
(
a + b, b

(a+b)2

)
.

We do not consider the RLB variant proposed in Seirin Lee and Gaffney (2010), as it
was shown to be able to exhibit negative concentrations for positive values of the feed
rates a and b (Dash 2020). We will also consider how this model compares to a fixed
time delay LI model which is obtained in the limit σ → 0.

Additionally, we consider delayed forms of the GM model in the fixed-delay case
in order to explore the role of different kinetics and delay terms on our results. We
will focus on two well-studied fixed time delay variants for simplicity, leaving an
analysis of distributed delay in GM models to future work. A chemical interpretation
of the kinetic reactions for the GM Model can be found in Seirin Lee et al. (2010).
The two non-dimensionalised model descriptions we consider, with kinetic reactions
taken from Murray (2001), and time-delayed terms motivated by Fadai et al. (2017)
and Fadai et al. (2018), are given by (15) and (16), and labelled GM1 and GM2,
respectively,2

∂u
∂t = ε2

L2
∂2u
∂x2

+ a − bu + u2τ
vτ

,

∂v
∂t = 1

L2
∂2v
∂x2

+ u2τ − v,

⎫⎬
⎭GM1 (15)

∂u
∂t = ε2

L2
∂2u
∂x2

+ a − bu + u2τ
v

,

∂v
∂t = 1

L2
∂2v
∂x2

+ u2τ − v,

⎫⎬
⎭GM2 (16)

with uτ = u(x, t − τ) and vτ = v(x, t − τ). The key difference between these models
is the inhibitor term in the activator’s kinetics being delayed or not. The homogeneous
steady state of the GM model is given by

(u�, v�) =
(
a + 1

b
,

(
a + 1

b

)2
)

.

3 General Linear Instability Analysis

We now consider the linear stability of homogeneous equilibria of the system (1).
Denoting the steady state as (u�, v�), we consider a small perturbation, u(x, t) =
2 We note that the papers (Fadai et al. 2017, 2018) label v as the activator and u as the inhibitor.
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u� + δξ(x, t), v(x, t) = v� + δη(x, t), where |δ| � 1. We have that

f (u�, v�,F(u�, v�)) = g(u�, v�,G(u�, v�)) = 0.

Truncating at O(δ), we thus find that perturbations evolve according to

∂ξ

∂t
= ε2

L2

∂2ξ

∂x2
+ ξ

∂ f

∂u
+ η

∂ f

∂v
+ ∂ f

∂F
∫ τ2

τ1

K (s; p)
[
ξs

∂F

∂u
+ ηs

∂F

∂v

]
ds,

∂η

∂t
= 1

L2

∂2η

∂x2
+ ξ

∂g

∂u
+ η

∂g

∂v
+ ∂g

∂G
∫ τ2

τ1

K (s; p)
[
ξs

∂G

∂u
+ ηs

∂G

∂v

]
ds, (17)

where all partial derivatives are evaluated at the steady state, and ξs = ξ(x, t −
s), ηs = η(x, t − s). Substituting into (17) an ansatz of the form (ξ, η)T =
eλk t cos(kπx)(ξ0, η0)T yields a homogeneous linear system for (ξ0, η0)

T given by

(
λk + ε2

L2 (kπ)2 − ∂ f
∂u − ∂ f

∂F
∂F
∂u Ek(λk) − ∂ f

∂v
− ∂ f

∂F
∂F
∂v

Ek(λk)

− ∂g
∂u − ∂g

∂G
∂G
∂u Ek(λk) λk + 1

L2 (kπ)2 − ∂g
∂v

− ∂g
∂G

∂G
∂v

Ek(λk)

)

︸ ︷︷ ︸
M

(
ξ0
η0

)

=
(
0
0

)
, (18)

with

Ek(λk) =
∫ τ2

τ1

K (s; p)e−λk s ds.

Looking for non-trivial solutions of this system, we set det(M) = 0 to compute
values of λk . This leads to a characteristic equation (or dispersion relation) of the form,

Dk = λ2k + αkλk + βk + (γkλk + δk)Ek(λk) + χk E
2
k (λk) = 0, (19)

with the coefficients given as

αk =
(

ε2

L2 + 1

L2

)
(kπ)2 − ∂ f

∂u
− ∂g

∂v
,

βk =
(

ε2

L2 (kπ)2 − ∂ f

∂u

) (
1

L2 (kπ)2 − dg

dv

)
− ∂ f

∂v

∂g

∂u
,

γk = − ∂g

∂G
∂G
∂v

− ∂ f

∂F
∂F
∂u

,

δk = − ∂g

∂G
∂G
∂v

(
ε2

L2 (kπ)2 − ∂ f

∂u

)

− ∂ f

∂F
∂F
∂u

(
1

L2 (kπ)2 − ∂g

∂v

)
− ∂ f

∂v

∂g

∂G

∂G

∂u
− ∂g

∂u

∂ f

∂F

∂F

∂v
,
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χk = ∂ f

∂F
∂F
∂u

∂g

∂G
∂G
∂v

− ∂ f

∂F

∂F

∂v

∂g

∂G

∂G

∂u
. (20)

The coefficients αk , βk , γk , δk , and χk depend only on the intrinsic model parameters,
which are independent of the time delay distribution and presented for the LI and the
two GM models, GM1 and GM2, in Table 1.

Hence, one may note that the only term in the dispersion relation that varies with
the distribution is Ek(λk), which can be computed for a skewed Gaussian distribution
via:

Ek =
∫ τ2

τ1

KS(s;μ,ω, ρ)e−λk s ds

= �c

ω
√
2π

∫ τ2

τ1

(
1 + erf

(
ρ
s − μ

ω
√
2

))
exp

(
−1

2

(
s − μ

ω

)2

− λks

)
ds. (21)

Setting μ = τ , ω = σ , and ρ = 0 to consider a symmetric distribution yields:

Ek =
∫ τ2

τ1

KN (s; τ, σ )e−λk s ds

= 	c

2

[
exp

(
λk(λkσ

2 − 2τ)

2

)
erf

(
λkσ

2 + s − τ√
2σ

)] ∣∣∣∣
τ2

τ1

. (22)

Finally, taking σ → 0 results in
Ek = e−λkτ , (23)

as expected, corresponding to the fixed delay case with time delay τ .
The Ek term represents the main impact of delay on linear stability. Even in the

relatively simple fixed delay case, we note that the (19) is not a quadratic equation
for λk , but a transcendental one. The more complicated forms of Ek in the distributed
cases can be evaluated numerically, which is in general necessary to analyse these
transcendental dispersion relations.We also remark that while (21) seemingly contains
many parameters, all of these can be rewritten in terms of τ and σ , and hence compared
directly with the symmetric case given in (22) (though the expressions for ρ 	= 0
provide no obvious insight, and again one must resort to numerical computation of
λk).

The characteristic Eq. (19) can be used to determine the parameter sets (a, b, ε2, L2,

τ, σ ) in which a Turing instability occurs (the ‘Turing space’) and hence where we
expect pattern formation. If there exists a k 	= 0 for a given set of parameters such that
maxk(
(λk)) > 0, then we expect pattern formation. The largest value of 
(λk) also
gives some indication of how quickly a perturbation grows away from the homoge-
neous steady state, and hence gives a heuristic estimate of the time taken for pattern
formation to start.
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Fig. 2 Turing spaces for the Schnakenberg and GM models without delay, with ε2 = 0.001 and L2 = 4.5.
The dashed black arc (leftmost boundary) corresponds to parameters in which 
(λ0) = 0, and the solid
black outer arc (rightmost boundary) corresponds to parameters satisfying maxk (
(λk )) = 0 for k 	= 0

4 Turing Spaces Under Delay

In this section, we apply the results of the linear instability analysis to produce bifur-
cation diagrams of Turing pattern formation as the form of delay varies. Our results
highlight the importance of the placement of time delay terms in the reaction kinetics,
and show that this can alter the effect that delay has on the Turing space. We finally
examine the effects that a continuously distributed delay has on the dominant eigen-
value of perturbation growth compared with that of a fixed delay with the same mean
delay.

4.1 Fixed Time Delay

In Fig. 2, we show Turing spaces of the Schnakenberg and GM models, which are
bifurcation diagrams indicating regions of Turing instability in the absence of delay.
We note two separate curves which separate the parameter space into its distinct
regions. These will be referred to as the stability lines, and are highlighted for the
models in red and green. The inner green arc corresponds to the values of (a, b)
such that 
(λ0) = 0 for the spatially homogeneous characteristic equation. The outer
red boundary is comprised of the points (a, b) such that maxk(
(λk)) = 0, k 	= 0.
We are interested in how these Turing spaces change as time delay is varied, and
are also interested in the quantitative effects that changing delay has on the value of
maxk(
(λk)), as this can be thought of as a proxy for the time taken for patterns to
form.

The roots of the characteristic equation were found using the roots command of the
MATLAB package Chebfun (Driscoll et al. 2014). In order to compute maxk(
(λk)),
we varied k ∈ Z over [0, 50] for a given τ and then took the maximum over k. We do
not consider k > 50 as full numerical solutions for the parameter values used tended
towards patterns with four ‘spikes’, so do not expect much larger wavenumbers to be

123



98 Page 14 of 29 A. Sargood et al.

Fig. 3 maxk (
(λk )) computed over a,b parameter space by solving (19) for the fixed time delay LI model
(14), with ε2 = 0.001, L2 = 4.5. As τ increases, |maxk (
(λk ))| decreases. Stability lines for 
(λ0) = 0
and maxk (
(λk )) = 0, k 	= 0, are overlaid, indicating the Turing space between them

excited (and full numerical simulationswere used to check this assumption throughout,
as well as to check the predictions of pattern formation).

4.1.1 The LI Model

Considering first the LI model with fixed time delay, in Fig. 3, we plot a heatmap
of maxk(
(λk)) over the (a, b) parameter space for the two fixed time delays
τ = 0, τ = 1.5. We overlay contour lines corresponding to where 
(λ0) = 0
and maxk(
(λk)) = 0, k 	= 0, highlighting the Turing instability region. As τ

increases, the region of homogeneous instability (leftmost curve in Fig. 3 correspond-
ing to 
(λ0) = 0) decreases, increasing the Turing space. It can be seen that the
absolute value |maxk(
(λk))| also decreases for τ = 1.5. This suggests pattern for-
mation will take longer to occur, but this will happen over a larger Turing instability
region of the (a, b) parameter space. It similarly suggests that for (a, b) such that
maxk(
(λk)) < 0, it will take a longer time for the eigenfunctions with modes
k 	= 0 to decay to a spatially homogeneous steady state. These results have been
verified through full numerical solutions. Furthermore, the outer curve, corresponding
to maxk(
(λk)) = 0 for k 	= 0, does not move at the resolution of the plotting τ

changes, while analogous results (not shown) were found for other values of τ and ε

(Sargood 2022a).
These results were confirmed through full numerical solutions, and pattern forma-

tion was found where suggested by linear theory. We note that care ought to be taken
when numerically simulating these models. The parameter region in the bottom left
of the parameter space is a delicate region that can exhibit both Turing and (homoge-
neous) Hopf bifurcations, leading to complex spatio-temporal behaviours. This type of
dynamics in reaction–diffusion systems has been studiedmore extensively in Sanchez-
Garduno et al. (2019), Jiang et al. (2019) and many others.

4.1.2 The GMModels

The results in Fadai et al. (2017) showed that an increasing time delay in GM1 had an
antagonistic effect, shrinking the parameter space exhibiting stable spike solutions. In
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Fig. 4 Maximum growth rate, maxk (
(λk )), corresponding to solutions of (19) for models (15) in (b) and
(16) in (c) with a fixed time delay, plotted for a, b ∈ [0, 1] × [0, 4], with varying τ . Note that these models
are equivalent for τ = 0 in a. Parameters ε2 = 0.001 and L2 = 4.5 used. Stability lines for 
(λ0) = 0 and
maxk (
(λk )) = 0, k 	= 0, are overlaid, indicating the Turing space between them

contrast, an increasing time delay for GM2 caused an expansion of the stable spike
solution parameter regime (Fadai et al. 2018). Here, we use our linear analysis of the
spatially homogeneous steady states to examine how an increasing time delay will
affect the Turing space for each of these variants.

Results in Fig. 4b show a shrinking Turing space for increasing τ for GM1, consis-
tent with the analysis conducted in Fadai et al. (2017), which showed a de-stabilisation
of the stable spike solution parameter space with an increasing τ . Similarly, results
in Fadai et al. (2018) showed a stabilising effect of increasing τ on the stable spike
solution parameter space for model GM2 in (16), and we find an analogous result
for the Turing space, shown in Fig. 4c. In both cases, we also observe a decrease in
|maxk(
(λk))| as the delay is increased. We remark that the choice of delay times
τ for these, and other plots using the dispersion relation (19) was sufficiently large
to demonstrate key trends for increasing τ , but not so large that there were conver-
gence issues in solving the transcendental dispersion relation (due to themultiple-scale
nature of polynomial and exponential rootfinding).

These results were also checked through full numerical solutions, and we found
that the linear theory in all cases successfully predicted where Turing patterns would
or would not form. These results indicate the importance of the positioning of time
delayed terms within the kinetic reactions, as these differences in positioning of time-
delayed terms shows both expansion and contraction of the associated the Turing
spaces. We finally note that in all the models considered, the ligand internalisation
(LI) model and the two Gierer-Meinhardt (GM) models, increasing τ changes the size
of the Turing space only via the curve associated with the homogeneous characteristic
equation (k = 0), suggesting a specific mechanism by which gene expression time
delays impact Turing space size.

4.2 A Symmetric Gaussian Distributed Delay

Next, we consider the LI model with a symmetric Gaussian distribution for the time
delay associated with the modelling of gene expression. The parameter σ corresponds
to a measure of the width of this distribution, with the limit σ → 0 capturing the
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Table 2 Table showing the maximum value over the parameter spaces (a, b) of the absolute difference of
maxk (
(λk )) between distributed delay cases and the fixed delay case, across the (a, b) ∈ [0, 1.4] × [0, 2]
parameter space, for multiple τ and ε2 values. Throughout we set L2 = 4.5. Results are displayed to 2
significant figures

Parameters Used σmax × 0.99 σmax × 0.2 σmax × 0.1

ε2 = 0.001 τ = 0.2 0.0010 4.2 × 10−5 1.1 × 10−5

ε2 = 0.001 τ = 1.0 0.0078 3.3 × 10−4 8.2 × 10−5

ε2 = 0.01 τ = 0.2 0.0025 9.4 × 10−5 2.3 × 10−5

ε2 = 0.01 τ = 0.5 0.0076 2.6 × 10−4 6.4 × 10−5

fixed time delay case. In particular, σmax has been defined to be the largest feasible
value of σ to avoid negative delays, as described in Sect. 2.1. We consider the absolute
difference of maxk(
(λk)) for varying σ values as a fraction of σmax, for multiple τ

and ε values. For each (τ, ε2), bifurcation plots analogous to those of the previous
subsection have been computed for the distributed delay casewith varyingσ ∈ {σmax×
0.99, σmax × 0.2, σmax × 0.1}. However, the differences are below plotting resolution
when compared to the fixed delay case, as may be found in Sargood (2022a); hence
for each (τ, ε2), we instead tabulate the absolute difference of maxk(
(λk)) between
each distributed delay case and the fixed delay case, across the (a, b) parameter space
as summarised in Table 2.

The largest absolute difference in maxk(
(λk)) in Table 2 for all σ , τ and ε2

considered across the parameter space (a, b) ∈ [0, 1.4] × [0, 2] is O(10−3). We
therefore expect that for all (a, b) ∈ [0, 1.4] × [0, 2], using a symmetric Gaussian
distribution centred at some mean τ (for small τ ) will not significantly affect Turing
instabilities compared to the fixed delay case, independent of the standard deviation σ

of the distribution. These results are a fairly robust indication that at the level of linear
instability, the distributed delay does not appreciably change the impact of time delay
on Turing instability analysis.

4.3 A Skewed Gaussian Distributed Delay

Evaluating the dispersion relation (19) in the skewed distribution case is substan-
tially more costly computationally, especially for larger values of τ where root-finding
becomes numerically difficult. Instead, we plot dispersion relations for certain fixed
(a, b) parameter values close to the Turing space boundaries of Fig. 2a, and compare
these plots to the fixed delay case. We show that for a small mean τ , the skew, positive
or negative, does not significantly affect the value of maxk(
(λk)). We highlight here
again that Eq. (12) can be solved implicitly for μ(τ), for a given τ , using the fzero
command inMATLAB. For a given ρ, and each foundμ, we computemaxk(
(λk)) by
solving for roots of the characteristic Eq. (19). In Fig. 5, we plot maxk(
(λk)) against
τ ∈ [0, 0.8] for skew parameter values of ρ = −10, 10, and ω = ωmax × 0.99, with
two different (a, b) parameter sets. The value ωmax is defined analogously to that of
σmax. A plot of maxk(
(λk)) for the fixed delay case is also added for comparison in
each case.
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Fig. 5 Comparison of maxk (
(λk )) computed from (19) plotted against τ ∈ [0, 0.8] for ρ = −10, 10
against the fixed delay case, with the distribution spread given by ω = ωmax × 0.99. Parameter values
ε2 = 0.001 and L2 = 4.5 used. In generating the plot, the time delay scale, τ , was varied at regular
intervals of 0.05 with k ∈ Z ranging over k ∈ [0, 50] before a maximum was taken

From Fig. 5, we see that the curves differ slightly for small τ , with ρ = −10
having a slightly higher value of the maximum growth rate, and ρ = 10 a slightly
lower value. The overall effect is very small despite the large skew implemented in
the distribution. Noting the overall unit scale of |maxk(
(λk))| in Figs. 3, 4b, c, we
anticipate that these effects are small enough not to have a significant impact on the
timescale for patterning onset, as confirmed numerically via simulations of the full
model with distributed delay near the boundary of these instabilities.

5 Numerical Exploration of theModels

To verify our linear instability results, as well as explore the dynamics of pattern
formation beyond the linear regime, full numerical solutions were conducted. The
spatial derivatives were discretised via the method-of-lines using the standard three-
point stencil for the Laplacian, withm = 500 equally spaced points on the domain x ∈
� = [0, 1]. This discretisation results inm = 500 delay differential equations (DDEs)
in time, which are solved via built-in time-stepping solvers in Julia, typically Rodas5,
a 5-th order A-stable solver, from the family of Rosenbrock methods (Rackauckas
and Nie 2017; Rosenbrock 1963). The distributed delay terms were approximated via
a composite Simpson’s rule using 50 quadrature points; see Sargood (2022a) for a
more thorough discussion of the numerical procedures used. The Julia code used to
generate all numerical solutions throughout this paper can be found at the open source
repository (Sargood 2022b).

With a maximum delay of τ2 = τ + 3σ (or μ + 3ω with a skewed-distribution),
we note that to solve DDEs, a history function is required to define the solution for
t ∈ [−τ, 0) for the fixed delay case, t ∈ [−τ − 3σ, 0) for the symmetric distributed
case, and t ∈ [−μ − 3ω, 0) for the skewed distributed case. Unless otherwise stated,
a constant history function equal to the initial conditions is used. Finally, as the LI
model has cross reaction kinetics, we have that when the concentration of the activator
u is high, the concentration of the inhibitor v is low, and vice versa (Murray 2001).
The concentration gradients of the two morphogens u and v are thus effectively ‘out
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Fig. 6 Dispersion curves of the characteristic equation given in (19) for the LI model plotted for (a, b, τ ) =
(0.4, 1.8, 0.2) and ε2 = 0.001. Discrete values of k overlaid as scatter points. A larger L2 results in more
unstable modes λk such that 
(λk ) > 0

of phase’, and so it is sufficient to show just the numerical solution of the activator u.
Hence, only the numerical solution of the activator u is plotted.

5.1 A Relationship Between Fixed Delay and Onset of Patterning

Here we show that for small τ and L2, the linear theory provides a good approximation
to the time taken until pattern formation occurs, and in fact, the relationship between
τ and time-to-pattern under these conditions is linear for the fixed delay case. We also
show that through full numerical solutions, the relationship between τ and time-to-
pattern on a longer timescale for larger τ is also linear. We first consider the former.

We restrict the domain size to L2 = 0.2, as a smaller domain results in fewer
unstable modes and thus less competition for the dominant mode, resulting in a better
approximation of the linear theory. This finite size effect can be seen in Fig. 6, where

(λk) is plotted against k for two different domain sizes, for a given (a, b, τ ). We also
use an initial small perturbation of the form of Eq. (3) for t ∈ [−τ, 0], but vary the
standard deviation, σIC , of these perturbations.

The linear theory suggests that the perturbation will be of the form ξ(x, t) ∼
Ak(t) cos(kπx), where k is the dominant mode and Ak(t) denotes the corresponding
Fourier coefficient at time t . For a givenparameter set (a, b, ε2, τ, L2),we can solve the
characteristic Eq. (19), and plot
(λk) against k, to determine the dominantmode k and
the corresponding growth rate, λk . When the perturbation ξ has grown sufficiently, in
absolute value, beyond a threshold where pattern formation is considered, we call this
time t = T �. More specifically, the time T � is the first time such that maxx |u(T �, x)−
u�| > uT � , where uT � is a given threshold. This then gives the first time such that any
solution point across the whole spatial domain is large enough, in absolute difference,
from the steady state. We refer to this value T � as the ‘true’ time-to-pattern. Finally,
using the relation Ak(T �) ≈ Ak(0)eλk T �

, we can rearrange for T � and thus compute
a linear theory approximation for the ‘true’ time-to-pattern, via

T � ≈ 1

λk
ln

(
Ak(T �)

Ak(0)

)
=: T . (24)
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Fig. 7 Predicted vs ‘true’ time-to-pattern for numerical solutions of the LI model with fixed time delay and
boundary conditions given by (2). Initial perturbations from the steady state are taken with σIC = 10−5 and
a threshold of uT ∗ = 0.1 is used to compute the ‘true’ time-to-pattern, T . The predicted time-to-pattern
is computed using (24) with λk computed via (19), for three different parameter sets, with L2 = 0.2,
ε2 = 0.001, and τ ∈ [0, 1.6], varied at regular intervals of 0.2

Fig. 8 ‘True’ time-to-pattern for full numerical solutions of the fixed time delay LI model plotted against
τ ∈ [1, 16] for σIC = 10−5 and threshold uT ∗ = 0.1. Parameters used are ε2 = 0.001 and L2 = 4.5

The approximate time-to-pattern, T , can thus be determined via λk , from (19), as well
as Ak(0) and Ak(T �), computed via the Fast Fourier Transform.

We repeat the evaluation of both the true and predicted times to pattern for varying
(a, b, τ ), and compare the evaluations in Fig. 7, which shows the comparison for three
different parameter sets for (a, b), with the time delay varied over τ ∈ [0, 1.6] at
intervals of 0.2. Other parameter values, and other choices of the threshold uT ∗ , gave
qualitatively similar results, essentially indicating that the computed value of λk for
the dominant mode accurately predicts the time to pattern, which is observed to vary
linearly in τ to a very good approximation (Sargood 2022a).We remark that computing
λk for τ > 1.6 is numerically difficult; thus full numerical solutions were used to plot
‘true’ time-to-pattern against τ on a longer timescale, for both the LI model and GM
models, to verify the linear relationship between the time delay and time to pattern. In
Fig. 8, we consider the time delay τ ∈ [1, 16] at unit intervals for the LI model, with
two different parameter sets of (a, b) and plot T , the time taken for a perturbation to
grow up to a threshold value uT ∗ = 0.1 from an initial perturbation of size σIC = 10−5,
which once more reveals a linearly increasing relationship between T and τ .

For the GM1 model (15), as a result of the shrinking Turing space, we only consider
small τ ∈ [0.1, 1], varied at regular intervals of 0.1. For the GM2 model (16), we
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Fig. 9 ‘True’ time-to-pattern results for the two fixed time delay GM variants given in (15) and (16).
Initial random perturbations given with σIC = 0.001, and threshold value as uT ∗ = 10. Parameters
(a, b) = (0.75, 0.5), ε2 = 0.001 and L2 = 4.5 are used. Boundary conditions set as in (2) (color figure
online)

consider both small τ ∈ [0.1, 2] and larger τ ∈ [1, 16], varied at regular intervals of 0.1
and 1, respectively. We set an initial perturbation from the steady state as σIC = 0.001,
and a threshold value of 10. (These larger values are chosen for computational reasons,
and qualitatively identical results are found for other choices.) ‘True’ time-to-pattern
results, analogous to the LI model, are presented in Fig. 9, for both Gierer-Meinhardt
models, Eqs. (15) and (16), where a linear relationship may be observed for both
models. Finally, we note that even though a linear relation is consistently observed
between the time delay and time to pattern, there is nonetheless a difference in line
slope between the different models, illustrating that kinetics can affect the sensitivity
in the timing of patterning onset with the time delay. Nonetheless, in all cases shown,
the slopes are generally steep, with delays of O(1) time units leading to an order-of-
magnitude increase in the time-to-pattern.

5.2 Onset of Patterning in Models with Distributed Delay

We have shown the linear stability analysis predicts that a continuously distributed
time delay with a symmetric or skewed Gaussian kernel has only a small (and often
negligible) influence on the value of maxk(
(λk)), regardless of the distribution prop-
erties, compared to a fixed delay model with the same mean delay. We thus look to
confirm this result directly via full numerical simulations of the distributed delay cases.

We first consider Figs. 10 and 11, which show numerical solutions for the LI model
with a symmetric Gaussian distributed delay, using (a, b) = (0.1, 0.9) for τ ∈ {1, 16}
and varying σ , and compared with the appropriate fixed delay case given an initial
small perturbation of the form of Eq. (3) for t ∈ [−τ, 0]. The results illustrate that the
onset of patterning, and the emergent pattern do not depend on the value of σ used at
the resolution of the plotting.
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Fig. 10 Numerical simulations of (14) showing a comparison of the fixed vs symmetric distributed delay
case for τ = 1. Boundary conditions are given by (2) and initial conditions by (3), with parameters
(a, b) = (0.1, 0.9), ε2 = 0.001, and L2 = 4.5

Fig. 11 Numerical simulations of (14) showing a comparison of the fixed vs symmetric distributed delay
case for τ = 16. Boundary conditions are given by (2) and initial conditions by (3), with parameters
(a, b) = (0.1, 0.9), ε2 = 0.001, and L2 = 4.5

We next present numerical results to show that even the skew of an asymmetric
distribution for both a small and large mean delay τ , does not have a significant
effect on observable patterning results, as highlighted for the LI model by Fig. 12 for
τ = 0.1 and Fig. 13 for τ = 16. Despite a range of skews under consideration (see
panel (a) in both Figures), the simulations are indistinguishable by eye to one another
and to the fixed delay simulations given in panel (b) in each case. We finally remark
that additional simulations in other parameter regimes, and for the Gierer-Meinhardt
models, illustrate the same independence of the skew, with further examples can be
found in Sargood (2022a).

5.3 Boundary and Initial Conditions

We next consider the robustness of our results under variation of the initial and bound-
ary conditions, focusing on the LI model with a fixed delay for simplicity. We first
consider the sensitivity of pattern formation in the context of a fixed time delay to
varying initial conditions. Fixing parameters by
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Fig. 12 Simulations of (14) with fixed and distributed delay with parameters (a, b) = (0.1, 0.9), ε2 = 0.01
and L2 = 4.5, ρ = −10, 10 and τ = 0.1. Initial conditions are given by (3) and boundary conditions by
(2)

(a, b, ε2, L2) = (0.1, 0.9, 0.001, 4.5)

we proceed to consider three different sets of initial conditions. We denote by IC1
initial conditions based on those used in Gaffney and Monk (2006). With u1(x) and
v1(x), the functions depicted in Fig. 14, these conditions are given by

u(x, t) = u1(x), v(x, t) = v1(x), (25)

for t ∈ [−τ, 0] and represent a specific perturbation of the homogeneous steady state.
We denote by IC2 the initial conditions defined in Eq. (3) with σIC = 0.01, and IC3
denote the same initial conditions, but with σIC = 0.1. As previously, both initial
conditions were specified for t ∈ [−τ, 0] and a fixed random seed was set for the
random variable, r , and hence the perturbations ru(x) and rv(x) of Eq. (3) are the
same in each simulation.

Figures 15 and 16 show simulations for each of these initial conditions for varying
fixed time delay τ ∈ {1, 16}. The final pattern is somewhat sensitive to the choice
of initial conditions. As one might expect, the larger σIC used in IC3, compared to
that of IC2, results in a faster onset of pattern formation, as does using a random
perturbation rather than one along a single mode. Although the time taken until onset
of patterning varieswith different initial conditions, the increase in time-to-patternwith
an increasing time delay is consistent independent of the initial conditions chosen. By
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Fig. 13 Simulations of (14) with fixed and distributed delay with parameters (a, b) = (0.1, 0.9), ε2 = 0.01
and L2 = 4.5, ρ = −10, 10 and τ = 16. Initial conditions are given by (3) and boundary conditions by (2)

Fig. 14 Functions u1(x), v1(x) used to generate the initial conditions IC1; algebraic expressions for these
functions are given in Appendices of Gaffney and Monk (2006)

considering the varying x-axis, we also note that in each case, this relationship appears
to be linear, as predicted earlier.

The effects of time-dependent histories were also considered. Taking initial data
to be the homogeneous steady states multiplied by 1 + r sin(wt), with varying real
w and r normally distributed at each spatial point, had only transient effects with no
noticeable impact on the long-time pattern structure or time to pattern results. See
Sargood (2022a) for examples.

Finally, we consider the effect of varying boundary conditions. Motivated by the
analysis in Krause et al. (2021), homogeneous Dirichlet boundary conditions are
implemented for the activator term, and homogeneous Neumann boundary conditions
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Fig. 15 Simulations of LI model (14) for varying ICs and τ = 1. Boundary conditions given by (2) with
parameters (a, b) = (0.1, 0.9), ε2 = 0.001, and L2 = 4.5

Fig. 16 Simulations of LI model (14) for varying ICs and τ = 16. Boundary conditions given by (2) with
parameters (a, b) = (0.1, 0.9), ε2 = 0.001, and L2 = 4.5

for the inhibitor term. Hence, we set

u = ∂v

∂x
= 0 x = 0, 1. (26)

The results in Fig. 17 were generated using IC2, with time delays of τ = 1 and
τ = 16, respectively. These show simulations generated with homogeneous Neumann
conditions for both u and v, as in the boundary conditions (2), and those generated
with the mixed conditions (26). While these mixed conditions changed the kind and
structure of pattern observed, as described inKrause et al. (2021) as ‘isolated’ patterns,
we do not observe a noticeable difference in the time taken for patterns to form.

6 Discussion

We have studied reaction–diffusion systems gene expression delays modelled as both
discrete and continuous distributions of delay. We used linear stability theory and
systematic numerical simulation to explore the impact of varying delay distribution,
as well as initial and boundary data, on the pattern formation process. Our results
contribute to the clarification of aspects of the impact of such delays from previous
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Fig. 17 Comparison of varying BCs for simulations of the LI model (14) with fixed delay and parameters
(a, b) = (0.1, 0.9), ε2 = 0.001, L2 = 4.5, with the initial conditions specified by Eq. (3). In the top row,
the time delay is fixed at τ = 1, and in the bottom row τ = 16

work, and shed light on which model features are important for consideration in
biological applications.

We have provided evidence, via both linear stability and full numerical simulations,
that the time until pattern onset linearly increases with increasingmean delay. This was
observed across different reaction kinetics and the form of the delay, as well as initial
and boundary data considered. This suggests that the impact of time delay on slowing
pattern formation processes in reaction–diffusion systems is a general phenomenon
which scales linearlywith timedelay.Although the typeof pattern seen can changewith
these variations (particularly for changes in boundary conditions), the increase in lag
until onset of patterning as a result of time delay appears to be robust. Importantly, for
the models studied here, this increase in time-to-pattern was substantial for even small
and moderate delays, confirming earlier predictions in Gaffney and Monk (2006). An
important avenue of future work will be to understand what leads to these particular
slopes, and hence refine our understanding of the plausibility of these models in the
presence of gene expression time delays for pattern forming systems.

For the Schnakenberg kinetics, where fixed gene expression delays were motivated
by ligand internalisation models, we have noted that increased time delays act to
expand the Turing space. This effect was displayed here through the use of bifurcation
diagrams, and was confirmed via numerical solutions. Motivated by the stability anal-
ysis of spike solutions of the GMmodel in Fadai et al. (2017, 2018), we demonstrated
the importance of the positioning of time delayed terms within a reaction–diffusion
mechanism.
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We further found increasing the time delay can either expand or contract the Turing
space and this was solely dependent on the boundary of the Turing space provided
by the stability of the spatially homogeneous mode in the presence of delay. For the
Schnakenberg ligand internalisation (LI) model, this observation may be explained by
first noting from Appendix A.3.1 of Gaffney and Monk (2006) that a Hopf bifurcation
cannot occur for a spatially inhomogeneous mode with nonzero wavenumber for this
system. Thus, the growth rate λk is real at a bifurcation for k 	= 0, and hence at the
boundary of the Turing space dictated by the spatially inhomogeneous modes, we have
λk = 0.Given the time delay only occurs in the dispersion relation, Eq. (19), via terms
of the form exp(−λkτ), these boundaries thus must be independent of τ. Thus, if the
Turing space is to change for the LI model with changes in the time delay, it must be
via the boundary of the Turing space dictated by the spatially homogeneous mode,
with k = 0 and a Hopf bifurcation on the boundary, which is generally possible, as
consistent with our observations. This further yields the question as towhen the change
in the Turing space with increasing time delay is solely due to the behaviour of the
spatially homogeneous mode, as also observed numerically for the Gierer-Meinhardt
(GM) models, in turn requiring a study of when a Hopf bifurcation cannot occur for
spatially inhomogeneous modes given a time delay. It is an open question whether
delay can induce Hopf bifurcations for inhomogeneous modes in models beyond the
ones studied here. In particular, such bifurcations can occur in hyperbolic reaction–
diffusion equations which can have approximately the same linearisation as delayed
reaction–diffusion systems for small delay (Ritchie et al. 2022).

Finally, driven by the inherent stochasticity of themolecular processes underpinning
gene expression (Raj and Van Oudenaarden 2008; Elowitz et al. 2002; McAdams and
Arkin 1997; Paulsson 2005), gene expression time delays were modelled as both a
symmetric and skewed Gaussian distribution. Through linear analysis, and verified by
numerical simulations, it was shown that the distribution of delay has no qualitative
(and negligible quantitative) impact on solutions to these reaction–diffusion systems
compared to a fixed delay model with the same mean delay. Namely, solutions of the
Schnakenberg model seem to be dependent on the mean delay of the distribution used,
but not on the standard deviation or skew, and thus can effectively be modelled as
purely a fixed delay.

Our findings, that a distributed representation of time delay does not alleviate the
increased timescales of patterning events caused with a fixed delay, reinforces ear-
lier work indicating that such results are at odds with rapid developmental biology
patterning events (Gaffney and Monk 2006). Of course, there are still important limi-
tations of our simple two-species models. It is becoming increasingly clear that going
beyond two-species models is crucial for representing biological reality (Krause et al.
2021; Satnoianu et al. 2000; Scholes et al. 2019). Hence, one potentially important
avenue for further research would be to investigate the effect of time delay on Turing
mechanisms encapsulating larger systems. This would aid in improving the possible
applicability and similarity of Turing’s models to more intricate biological dynamics.

Throughout this paper, we considered two different types of kinetics, namely those
based on Schnakenberg and GM models. Our results indicate some general attributes
that are common to both sets of kinetics. The first being a linearly increasing relation-
ship between incorporated time delay and time until onset of patterning. The second
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being that the effect of time delay on the Turing space is only dependent on the stability
of the homogeneous equilibrium in the absence of diffusion. A clear extension to these
observations would be to explore these effects for different reaction–diffusion systems
that can exhibit Turing patterns. Typical systems that could be examined include the
Gray and Scott (1986) or Thomas (Murray 2001) models.

The use of other forms of distribution, such as the gamma or exponential distribu-
tions could be considered, in order to verify our findings that, when onset of patterning
is being considered, the only relevant modelling parameter required is the mean delay.
We also only considered the problem on a one-dimensional stationary spatial domain.
Previous research has been conducted on higher-dimensional spatial domains, and
growing domains, with fixed delay (Gaffney and Monk 2006; Sanchez-Garduno et al.
2019). Althoughwe hypothesise that our results with a distributed delaywill be consis-
tent across variations in the spatial domain considered, there is room to explore these
possibilities. Finally, we note that due to numerical limitations when using Chebfun to
find roots of the transcendental characteristic equations, the linear theory could only
be tested for small-time delays. We found that for these small-time delays, the linear
theory generally provided a good approximation to the time-to-pattern, and all conclu-
sions from the linear theory could be verified using full numerical solutions. Further
work could therefore explore solving the characteristic equations derived in this paper
for larger time delay values, and examine whether the linear theory still provides
good approximations to the model behaviour. The development of such techniques
has applicability for other non-classical dispersion relations, such as those derived in
Krause et al. (2020) which have similar numerical difficulties due to the presence of
exponential functions.
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