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Model-based segmentation methods have the advantage of incorporating a priori shape information into the segmentation process
but suffer from the drawback that the model must be initialized sufficiently close to the target. We propose a novel approach
for initializing an active shape model (ASM) and apply it to 3D lung segmentation in CT scans. Our method constructs an atlas
consisting of a set of representative lung features and an average lung shape. The ASM pose parameters are found by transforming
the average lung shape based on an affine transform computed from matching features between the new image and representative
lung features. Our evaluation on a diverse set of 190 images showed an average dice coefficient of 0.746 ± 0.068 for initialization and
0.974 ± 0.017 for subsequent segmentation, based on an independent reference standard. The mean absolute surface distance error
was 0.948 ± 1.537mm. The initialization as well as segmentation results showed a statistically significant improvement compared
to four other approaches. The proposed initialization method can be generalized to other applications employing ASM-based
segmentation.

1. Introduction

Lung segmentation methods are required for automated
lung image analysis and to facilitate tasks like lung vol-
ume calculation, quantification of lung diseases, or nodule
detection. Model-based techniques, such as active shape
models (ASMs), have been employed for segmenting lungs in
three-dimensional CT scans [1–4] or two-dimensional chest
radiographs [5–8] because they incorporate prior knowledge
of anatomical shape variation into the segmentation process.
Progress has been made over the years in improving the
robustness and accuracy of fitting the ASMs, as described
in [9] for medical images in general and in [1, 4] for lung
segmentation.However, as Ibragimov et al. [9] concluded, the
major drawback of ASMs lies in its initialization; for correctly
converging to the target image structure, the ASM must be
initialized sufficiently close to it.

Several techniques have been proposed for initializing
ASMs for lung segmentation. The most straightforward ones

place the ASMmanually [8] or in a semiautomaticmanner by
annotating the lung size and position [7]. Van Ginneken et al.
[5] and Wang et al. [7] adopt a multiresolution framework
[10] to iteratively get closer to the target image structure.
However, their method assumes that the target is within a
certain distance to the initial model. Several other methods
initialize themodel based on detecting certain points on or in
close proximity to lung anatomy. Iakovidis et al. [6] employ
heuristics based on finding salient control points on the
spinal cord and rib-cage along with a selective thresholding
algorithm. Sofka et al. [4] detect the carina of trachea and use
a hierarchical detection network to predict pose parameters
of left and right lung. Wilms et al. [3] use heuristics based
on the bronchial tree, Sun et al. [1] detect the rib-cage,
and Gill et al. [2] predict the location of the carina and
lung apex to initialize an ASM. The drawbacks of these
methods are that, firstly, they depend on the quality of salient
point detection. For example, it is possible for rib-cage and
bronchial tree to be incorrectly identified due to local changes
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(e.g., disease, imaging artifacts, etc.) and the heuristics
employed may not be robust to the incorrect detections.
Secondly, they may not work equally well for lung images at
different respiratory states such as total lung capacity (TLC)
and functional residual capacity (FRC) because the heuristics
used may not account for the deformation of lungs [2].

This paper presents a fast and robust method for auto-
matically initializing an active shape model to lung CT scans
by learning a feature-based atlas Ψ comprising average lung
shape 𝜉 and a set of representative lung features 𝜌r. The
representative features 𝜌r can then be matched to features 𝜌t
in a new image, based on which a mapping is computed to
transform the average lung shape 𝜉 to the new image space.
This information is then utilized to calculate ASM initializa-
tion parameters. Our method is based on correspondences of
generic local features identified in the CT volume, rather than
a small set of specific salient points.

For computing the feature-based atlas Ψ, we adopt a
feature-based alignment (FBA) method [11], which identifies
generic lung features in a data-driven fashion and aligns a set
of training CT images. The original FBA method operates by
identifying a similarity transform between sets of 3D scale-
invariant image features. While feature correspondences can
be identified, the similarity transform is insufficient for
describing the geometrical variation across lung respiratory
states (e.g., TLC and FRC). In this paper, we extend the
FBA method to affine alignment, which allows us to capture
variation in lung shapes and respiratory motion within a
single atlas, and demonstrate the advantages compared to the
original approach.

We have evaluated our method on 190 images consisting
of normal and diseased lungs imaged at different respiratory
states. Comparison of results with those provided in [1, 2]
shows our initialization method significantly improves lung
segmentation accuracy. In order to establish the quality
of affine transform produced by our approach, we also
compare against a registration-based approach that provides
affine alignment based on the robust block matching (RBM)
method [12]. The RBM method is a well known registration
method that was one of the top performers in the EMPIRE
2010 challenge, which compared 34 registration algorithms
[13].

2. Prior Work

The presented approach builds on two main components: a
collection of local scale-invariant features for image align-
ment and a robust active shape model for image segmenta-
tion.

Local scale-invariant features are distinctive image
patches defined by location, scale, and orientation. Scale-
invariant features emerged in computer vision literature as a
means of repeatably detecting image structure arising from
the same underlying scene or object in different images,
despite global changes in translation, scale, and orientation.
Feature detection operates by identifying the location and
scale of image patches maximizing a function of saliency, for
instance, the magnitude of Gaussian derivatives in scale [14]
or space [15]. Once identified, distinctive intensity patches

are be encoded and robustlymatched between images despite
geometrical deformations or missing or occluded structure.
Extensive comparisons have shown the gradient orientation
histogram (GoH) descriptor to be among the most effective
feature encodings [16], in particular rank-ordered variants
[17] in terms of achieving correct correspondences. Scale-
invariant feature methods have been generalized to 3D
medical image context, and this work adopts the approach of
Toews andWells [11] where 3D features are detected extrema
in a difference-of-Gaussian scale-space pyramid, which are
encoded by a rank-ordered GoH descriptor.

Formodel-based lung segmentation, we utilized a combi-
nation of robust active shape model (RASM) and subsequent
graph-based optimal surface finding (OSF) algorithm [1].The
RASM employs a point distribution model (PDM), which
is constructed separately for left and right lungs, and the
subsequent segmentation steps are carried out separately
as well. Below we briefly review the steps employed for
initializing the PDM of the RASM.

Given 𝑁 training CT images {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑁
} and pre-

segmented training lung shapes (left or right) {S1, S2, . . . , SN},
a set of 𝑘 corresponding points or landmarks are automati-
cally identified for each training shape: Si = {(𝑥𝑖,1, 𝑦𝑖,1, 𝑧𝑖,1),
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)}. A PDM is constructed by aligning the
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A new shape S can be now represented in terms of the mean
shape, 𝜇pdm = (1/𝑁)∑𝑖 S

a
i , using the linear model:

S = 𝜇pdm +Pb, (1)

where P denotes the shape eigenvector matrix and b rep-
resents the shape coefficients [1]. To start the RASM fitting
process, themean shape 𝜇pdm is initialized in the target image
space based on pose parameters T comprising of isotropic
scale, location, and rotation. In this paper, we present a
novel approach to compute the pose parametersT for RASM
initialization.

3. Methods

In our method, we generate a feature-based atlas based on
aligning the training CT images 𝐶

𝑖
using the extended FBA

method (Section 3.3). Utilizing the alignment information,
the individual training lung shapes Si can be transformed to
the atlas space and averaged using existing landmarks. The
main purpose of building an atlas is to embed an average lung
shape with a set of representative lung features that can then
be matched to features in a new CT image.

Ourmethod for automatically initializing aRASM to lung
CT images primarily consists of 3 steps: (i) building an atlas
Ψ = {𝜉,𝜌r} comprising average lung shape 𝜉 and a set of
representative lung features 𝜌r (Section 3.1); (ii) transforming
𝜉 to the new subject image space based on matching features
between the new image and 𝜌r; followed by (iii) computing
the pose parametersT (Section 3.2) for RASM initialization.
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Figure 1: Generation of the feature-based atlas Ψ, comprising the average lung shape 𝜉 and representative lung features 𝜌r in the atlas space
R. Note that the features 𝜌r are derived from training CT images and encode both appearance and geometric properties [11]. For sake of
clarity, the above process is shown only for the right lung.

Figure 2: Example of representative lung features 𝜌r. Each column shows a single feature in axial and frontal view.

3.1. Feature-Based Atlas. To build an atlas Ψ, we derive an
average lung shape 𝜉 and associated set of representative lung
features 𝜌r as follows (Figure 1).

(a) 3D scale-invariant image features fi are extracted
from all training CT images 𝐶

𝑖
. One of the training

images is chosen as the reference image 𝐶
𝑟
. Let the

features in 𝐶
𝑟
be denoted by fr.

(b) The FBA method (Section 3.3) is employed to find an
affine transform 𝑇

𝑖
from a matching set of features in

fi and fr.
(c) Training features fi are transformed from training to

atlas spaceR via 𝑇
𝑖
. Let these be denoted by 𝑇

𝑖
fi.

(d) A modeling step [18] computes a new representative
set of features fr from the set {𝑇

𝑖
fi}
𝑁

𝑖=1
.

(e) Steps (b)–(d) are repeated until convergence, that
is, when the Frobenius norm of the transformation
matrix difference max ‖𝑇𝑡

𝑖
− 𝑇
𝑡−1

𝑖
‖ is zero [18]. This

yields a representative set of lung features𝜌r = fr (Fig-
ure 2). Note that the iterative group-wise alignment
procedure reduces the dependency on the selection
of the reference image [18].

(f) Training shapes {Si}
𝑁

𝑖=1
are transformed to the atlas

space by using the affine transforms 𝑇
𝑖
. We leverage

existing landmarks across shapes Si and take their

average to produce the average lung shape 𝜉 =
(1/𝑁)∑

𝑁

𝑖=1
𝑇
𝑖
Si. Note that same transformations 𝑇

𝑖

are used to separately compute the average for left and
right lung shapes.

3.2. Computing Pose Parameters. 3D scale-invariant image
features 𝜌t are extracted from the new CT image 𝐶new and
matched to the representative lung features 𝜌r (Figure 3).The
matching set of features output an affine transform 𝑇new that
describes how 𝐶new can be transformed to the atlas spaceR.
Since we already have a representation of the average lung
shape inR, it is transformed to the new subject image space
using 𝑇−1new𝜉. Note that the same transformation 𝑇−1new is used
for transforming both the left and right lung shapes.

RASM model fitting starts by placing the average PDM
shape 𝜇pdm (1) in the image space.The pose parametersT are
obtained by transforming 𝜇pdm to the image space by means
of a Procrustes analysisT: 𝜇pdm → 𝑇

−1

new𝜉.

3.3. Extending the Feature-Based Alignment Approach. As
noted earlier, our work extends the original FBA approach
[11] to compute affine alignment. First we briefly describe the
key step of feature matching, followed by the new procedure
for affine refinement.

Feature matching begins by computing nearest neigh-
bors (NN) between feature descriptors in the image and
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Figure 3: Schematic diagram showing the model initialization process for a new CT image. Features 𝜌t are shown superimposed on the
coronal slice of a CT image. Features matching with representative lung features 𝜌r are marked with a solid line while the others are marked
with a dashed line. For sake of clarity, the above process is shown only for the right lung.

atlas, using the Euclidean distance similarity measure. This
procedure can be computed efficiently via fast approximate
nearest neighbor methods. Each NN image-to-atlas feature
match provides an estimate of the global image-to-atlas
similarity transform, and a highly probable global transform
along with inlier image-to-atlas matches is identified via a
robust probabilistic voting formulation similar to the Hough
transform [11]. Note that incorrect outlier correspondences
have no effect on the transform identified, and for this reason
alignment is considered robust.

Once the inlier image-to-atlas matches are identified,
an affine transform 𝑇

𝑖
is fitted between them with a least

squares approach. This allows our framework to account for
a higher degree of shape variability, for example, lungs in
different respiratory states, and thus produce a lung shape
representative of lung variation across the population. Note
that the modeling step (d) in Section 3.1 requires isotropic
features (i.e., spherical as against elliptical 3D shape) [11]. For
that purpose, we compute the geometric mean from the scale
components of the affine transform to transform the feature
scale.

The original FBA approach achieves alignment across
global image rotation via rotationally invariant features,
where a 3D orientation is assigned to individual features
based on the structure of the local image gradient. Our lung
CT data exhibit only minor orientation differences between
subjects due to a similar imaging protocol, and we found
that assigning a fixed feature orientation results in a higher
number of image-to-image correspondences and improved
alignment. This may be because many pulmonary structures
exhibit rotational symmetry, for example, airways, in which
case orientation is inherently ambiguous. Thus, features of
fixed orientation appear to bemore effective than rotationally
invariant features for identifying correspondences in the case
of minor intersubject orientation differences.

4. Evaluation

4.1. Image Data. We selected 190 multidetector computed
tomography (MDCT) thorax scans of lungs for testing

from 6 different sets 𝑆normal, 𝑆asthma, 𝑆COPD, 𝑆mix, 𝑆IPF, and
𝑆tumor with no significant abnormalities (normals), asthma
(both severe and nonsevere), chronic obstructive pulmonary
disease (COPD with GOLD 1 to 4), mixture of different
lung diseases, idiopathic pulmonary fibrosis (IPF), and lung
cancer, respectively. The total number of scans in sets 𝑆normal,
𝑆asthma, 𝑆COPD, 𝑆mix, 𝑆IPF, and 𝑆tumor was 20, 24, 28, 26, 62,
and 30, respectively. The first four datasets contained pairs of
TLC and FRC images while the last two were all TLC images.
The image sizes varied from 512 × 512 × 205 to 512 × 512 ×
780 voxels. The slice thickness of images ranged from 0.5 to
1.25mm and the in-plane resolution from 0.49 × 0.49 to 0.91
× 0.91mm.

4.2. Experimental Setup. The PDMwas built using a separate
set of 75 TLC and 75 FRC normal lung scans. The average
lung shape 𝜉 was constructed using 50 TLC and 50 FRC
scans that were a subset of those used in building the
PDM. A 3D SIFT-based feature extractor [18] was used to
extract approximately 2500 features in each lung image from
which high density (>0HU) structures (e.g., bones) were
automatically removed. The affine feature-based alignment
system (Section 3.1) grouped these into 1000 representative
lung features, forming one component of our atlas.

We followed the implementation of the RASM-OSF
framework for lung segmentation presented in [1] with
the exception of RASM initialization. We refer to different
methods evaluated in this paper based on their method of
initialization: by detecting ribs (𝑀ribs) [1], carina and apex
(𝑀capex) [2], and average lung shape 𝜉 in this paper using
affine FBA (𝑀FBAAff), using similarity transform provided
by original FBA (𝑀FBASim) [18], and using affine trans-
form obtained from RBM (𝑀RBMAff) [12] (implementation:
NiftyReg, http://www.cs.ucl.ac.uk/staff/m.modat).

4.3. Independent Reference and Quantitative Indices. An
independent reference standard was generated for all test
data sets by first using a commercial lung image analysis
software package Apollo (VIDA Diagnostics Inc., Coralville,
IA) to automatically create lung segmentations. These were
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Table 1: Average initialization and final segmentation accuracy obtained by𝑀FBAAff for each test set.

𝑆normal 𝑆asthma 𝑆COPD 𝑆mix 𝑆IPF 𝑆tumor

𝐷init 0.786 ± 0.054 0.774 ± 0.057 0.741 ± 0.059 0.717 ± 0.067 0.718 ± 0.067 0.783 ± 0.054
𝐷final 0.985 ± 0.006 0.979 ± 0.011 0.981 ± 0.012 0.971 ± 0.017 0.963 ± 0.022 0.981 ± 0.005

Table 2: Comparison of median and average of initialization accuracy as well as the 𝑃 values of a paired Wilcoxon rank test between each
method and𝑀FBAAff .

𝑀ribs 𝑀capex 𝑀RBMAff 𝑀FBASim 𝑀FBAAff

Average𝐷init 0.683 ± 0.092 0.586 ± 0.168 0.527 ± 0.125 0.707 ± 0.116 0.746 ± 0.068
Median𝐷init 0.7018 0.6287 0.5236 0.7374 0.7484
𝑃 value 2.53𝑒−36 4.01𝑒−58 1.36𝑒−63 6.97𝑒−10 —

Table 3: Comparison of median and average of final segmentation accuracy as well as the 𝑃 values of a paired Wilcoxon rank test between
each method and𝑀FBAAff . For each method, the number of cases #with Dice values below 0.9, 0.8, and 0.7 is provided.

𝑀ribs 𝑀capex 𝑀RBMAff 𝑀FBASim 𝑀FBAAff

Average𝐷final 0.963 ± 0.056 0.944 ± 0.134 0.964 ± 0.058 0.963 ± 0.056 0.974 ± 0.017
Median𝐷final 0.9784 0.9784 0.9778 0.9786 0.9792
𝑃 value 6.47𝑒−05 1.18𝑒−07 6.92𝑒−04 6.01𝑒−04 —
Average 𝑑

𝑎
(mm) 1.350 ± 2.456 2.271 ± 6.546 1.398 ± 3.094 1.335 ± 2.493 0.948 ± 1.537

Median 𝑑
𝑎
(mm) 0.7342 0.7441 0.7958 0.7144 0.7108

𝑃 value 7.64𝑒−04 5.85𝑒−07 1.24𝑒−03 4.03𝑒−02 —
#(𝐷final < 0.9) 23 31 14 23 3
#(𝐷final < 0.8) 14 23 10 11 0
#(𝐷final < 0.7) 4 15 7 4 0

then inspected by a trained expert under the supervision
of pulmonologist, and segmentation errors were manually
corrected.

For performance assessment, the dice coefficient 𝐷 was
computed with respect to reference segmentations to mea-
sure the accuracy of model initialization (𝐷init) and of the
final segmentation after the RASM and OSF segmentation
steps (𝐷final). In addition, the mean absolute surface distance
𝑑
𝑎
was calculated.

5. Results

Table 1 presents the average initialization (𝐷init) and seg-
mentation accuracy (𝐷final) obtained by our method on
different test sets. Tables 2 and 3 compare the average
initialization (𝐷init) and segmentation accuracy (𝐷final and
𝑑
𝑎
) between different methods, respectively. Based on the

pairedWilcoxon rank test on𝐷init,𝐷final, and 𝑑𝑎, our method
𝑀FBAAff shows statistically significant improvement over all
other methods. Table 3 also shows the number of cases, for
eachmethod,whose final segmentation performance is below
a certain Dice value.

Figure 4 shows two examples of model initialization
generated using different methods. Our method 𝑀FBAAff

obtains initializations very close to the target while the other
methods are sometimes off. Figures 5(a)–5(f) show6 different
cases where the initialization obtained by other methods
causes the segmentation to be inaccurate. In all those cases,
our method (Figures 5(g)–5(l)) obtains a closer initialization
and good segmentation.

6. Discussion and Conclusion

Compared to the four other approaches, the proposed
method delivered significantly better initializations (Table 2),
which also translated into significantly better overall seg-
mentation performance (Table 3). In addition, it produces
segmentations with𝐷final ≥ 0.8 in all cases, while all the other
methods have 10 or more segmentations with 𝐷final < 0.8.
Table 1 shows that initialization performance (𝐷init) is in a
close range across test sets. Due to superior initialization,
the final segmentations generated by our method converge
correctly to the target structure across test sets (Figures 5(g)–
5(l)).

The importance of extending FBA to affine transform
is underlined by its statistically significant improvement
over the version using the similarity transform (𝑀FBASim ).
Moreover, it is also superior to the affine transforms produced
by the RBM method (𝑀RBMAff). The reason is that RBM, like
most registration methods, typically works well when lung
masks are available. For example, 16 out of 20 algorithms
discussed in the EMPIRE challenge paper used lung masks
[13]. Generating lungmasks is the goal of the presented work,
and thus we did not employ any masks for the RBMmethod.
Therefore, the affine global alignment produced by RBM
can be inaccurate, resulting in low initialization accuracy
(Table 2) and subsequent segmentation failures (Figures 5(a)
and 5(f)).

Our method produces robust ASM initializations as
demonstrated by an experiment on synthetic lung data
depicted in Figure 6. Despite different levels of occlusion,
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Figure 4: Two examples of model initializations based on different methods.Themethod𝑀FBAAff shows initialization quite close to the target
shape whereas the other methods are off in at least one of the examples.
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Figure 5: ASM initializations (green contour) and final segmentations (yellow contour) across different test sets. (a)–(f) Result of other
methods for comparison with results produced with the proposed method (g)–(l).

(a) 𝑟 = 0 (b) 𝑟 = 50 (c) 𝑟 = 100 (d) 𝑟 = 150

Figure 6: ASM initializations using𝑀FBAAff on an image with varying degree of synthetic occlusion. The synthetic occlusion is generated by
placing 𝑟 spheres, each of radius 25mm at random locations in the CT image. The voxels of the spheres are assigned a Hounsfield unit value
of 500HU. As can be seen, the method is robust to a large amount of occlusion.

the ASM is placed in close proximity to the actual lung in
all cases. In addition, our method is fast and takes about 30
seconds on average, the majority of which is required for
feature extraction. In comparison,𝑀RBMAff takes 2.5 minutes,
𝑀ribs 2 minutes, and𝑀capex 40 seconds on average.

We note that the mean PDM 𝜇pdm could be directly
transformed to the average lung shape 𝜉 during the training

phase. However, due to subsequent affine transformation of 𝜉
(Figure 3), the isotropic scale property of the PDMwould not
be preserved. Future efforts will use anisotropic scale during
PDM building and RASM fitting so that all calculations can
be done in the affine space.

The proposed method only requires a set of training
shapes with landmarks and a set of representative features
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learnt from training CT images to initialize an ASM in a new
image. Consequently, ourmethod can be generalized to other
medical imaging applications that employ an ASM-based
segmentation approach. Furthermore, it can be adapted for
2D and 4D applications.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors thank Dr. Milan Sonka and Dr. Eric Hoffman
at the University of Iowa for providing OSF code and image
data, respectively. This work was supported in part by NIH
Grants R01HL111453, P41EB015902, and P41EB015898.

References

[1] S. Sun, C. Bauer, and R. Beichel, “Automated 3-D segmentation
of lungs with lung cancer in CT data using a novel robust active
shape model approach,” IEEE Transactions on Medical Imaging,
vol. 31, no. 2, pp. 449–460, 2012.

[2] G. Gill, M. Toews, and R. Beichel, “An automated initialization
system for robust model-based segmentation of lungs in CT
data,” in Proceedings of the 5th International Workshop on
Pulmonary Image Analysis, pp. 111–122, 2013.

[3] M. Wilms, J. Ehrhardt, and H. Handels, “A 4D statistical shape
model for automated segmentation of lungs with large tumors,”
Medical Image Computing and Computer-Assisted Intervention,
vol. 15, part 2, pp. 347–354, 2012.

[4] M. Sofka, J. Wetzl, N. Birkbeck et al., “Multi-stage learning for
robust lung segmentation in challenging CT volumes,”Medical
Image Computing and Computer-Assisted Intervention, vol. 14,
no. 3, pp. 667–674, 2011.

[5] B. vanGinneken, A. F. Frangi, J. J. Staal, B.M. Ter Haar Romeny,
and M. A. Viergever, “Active shape model segmentation with
optimal features,” IEEE Transactions on Medical Imaging, vol.
21, no. 8, pp. 924–933, 2002.

[6] D. K. Iakovidis, M. A. Savelonas, and G. Papamichalis, “Robust
model-based detection of the lung field boundaries in portable
chest radiographs supported by selective thresholding,” Mea-
surement Science and Technology, vol. 20, no. 10, Article ID
104019, 2009.

[7] C. Wang, S. Guo, J. Wu, Q. Liu, and X. Wu, “Lung region
segmentation based onmulti-resolution active shapemodel,” in
Proceedings of the 7th Asian-Pacific Conference on Medical and
Biological Engineering (APCMBE ’08), pp. 260–263, April 2008.

[8] T. Xu, M. Mandal, R. Long, and A. Basu, “Gradient vector
flow based active shape model for lung field segmentation in
chest radiographs,” in Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 3561–3564, 2009.

[9] B. Ibragimov, B. Likar, F. Pernuš, and T. Vrtovec, “A game-
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