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ABSTRACT Biodiversity is important for supporting ecosystem functioning. To eval-
uate the factors contributing to the strength of microbial diversity-function relation-
ships in complex terrestrial ecosystems, we conducted a soil survey over different
habitats, including an agricultural field, forest, wetland, grassland, and desert. Soil
microbial multidiversity was estimated by the combination of bacterial and fungal di-
versity. Soil ecosystem functions were evaluated using a multinutrient cycling index
(MNC) in relation to carbon, nitrate, phosphorus, and potassium cycling. Significant
positive relationships between soil multidiversity and multinutrient cycling were
observed in all habitats, except the grassland and desert. Specifically, community
compositions showed stronger correlations with multinutrient cycling than a-diver-
sity, indicating the crucial role of microbial community composition differences on
soil nutrient cycling. Importantly, we revealed that changes in both the neutral proc-
esses (Sloan neutral modeling) and the proportion of negative bacterial-fungal asso-
ciations were linked to the magnitude and direction of the diversity-MNC relation-
ships. The habitats less governed by neutral processes and dominated by negative
bacterial-fungal associations exhibited stronger negative microbial a-diversity–MNC
relationships. Our findings suggested that the balance between positive and nega-
tive bacterial-fungal associations was connected to the link between soil biodiversity
and ecosystem function in complex terrestrial ecosystems. This study elucidates the
potential factors influencing diversity-function relationships, thereby enabling future
studies to forecast the effects of belowground biodiversity on ecosystem function.

IMPORTANCE The relationships between soil biodiversity and ecosystem functions are
an important yet poorly understood topic in microbial ecology. This study presents
an exploratory effort to gain predictive understanding of the factors driving the rela-
tionships between microbial diversity and potential soil nutrient cycling in complex
terrestrial ecosystems. Our structural equation modeling and random forest analysis
revealed that the balance between positive and negative bacterial-fungal associa-
tions was clearly linked to the strength of the relationships between soil microbial
diversity and multiple nutrients cycling across different habitats. This study revealed
the potential factors underpinning diversity-function relationships in terrestrial eco-
systems and thus helps us to manage soil microbial communities for better provi-
sioning of key ecosystem services.

KEYWORDS neutral community assembly, ecosystem types, biodiversity-function
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The assembly processes and functional contributions of ecological communities are
key topics in community ecology (1). In nature, community assembly processes are

influenced by both deterministic (niche) and stochastic (neutral) processes, and the
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relative importance of these processes changes in space and time (2–4). Deterministic
processes involve nonrandom and niche-based mechanisms (5), including environ-
mental filtering and interspecific interactions (e.g., competition, facilitation, mutual-
isms, and predation). In contrast, stochastic processes reflect mainly random changes
in the relative abundances of species, involving random birth, death, and dispersal
events (6, 7). Uncovering the community assembly processes is critical to understand-
ing the generation of biodiversity and its contribution to ecosystem functions (8–10).
On one hand, stochastic assembly processes were dominant in high-a-diversity com-
munities, associating with the existence of specialized functions that are correlated
with specific bacterial taxa (9). On the other hand, the prediction of niche theory stat-
ing that competing species lead to reduced niche overlap implies a negative covaria-
tion between species through competition (11). For example, the global niche differen-
tiation between fungi and bacteria relating to contrasting diversity responses to
precipitation (12) might induce negative bacterial-fungal covariation, whereas niche
partitioning may promote positive species covariations due to fitness differences
among organisms under environmental heterogeneity and the niche-partitioning sce-
nario (13, 14), which might consequently increase functional community performance
(15, 16). For example, bacteria profiting from the organic matter degradation of fungi
(17) may induce their positive covariation. Therefore, revealing the balance between
deterministic and stochastic processes may help to predict the functional contributions
of ecological communities, which should be higher in real-world environments than in
simplified experimental settings (11). Given this point, it is of great importance to
understand how these naturally diverse and fluctuating communities are organized
(e.g., community assembly) and how they influence the functioning of ecosystems.

Biodiversity is known as a critical determinant of ecosystem functioning (18).
Understanding the relationship between biodiversity and ecosystem functioning is a
central issue in ecology that contributes to better provision of key ecosystem services
to humans (19). The strength of the biodiversity-ecosystem function (BEF) relationship
may be determined by functional redundancy, complementarity, or species competi-
tion (19–21). For example, losses of one or a few species in a community with high
functional redundancy may have minimal consequences for ecosystem function (22);
the complementarity effect describes that niche differentiation or facilitation between
species can increase the functional performance of communities (23), and species com-
petition for resources can reduce community functioning when species performing
major functions are inhibited (20). However, these previous studies have been based
on well-manipulated experimental conditions (16, 19, 20); most natural communities
feature a highly complex taxonomic diversity (18, 24). Currently, it is very challenging
to characterize the determinants of BEF relationships in complex natural ecosystems.

The activities of microorganisms and their interactions greatly influence a variety of
ecosystem processes associating with soil productivity and nutrient cycling, as well as
many other ecosystem properties and services (24). Soil bacteria and fungi may share
common resources, and competition for a substrate might induce the antagonism
between bacteria and fungi (25). In addition, some soil-derived fungal and bacterial
species may synthesize antibiotics (26, 27), substantially affecting the species interac-
tions. Bacteria may exhibit antifungal activity via producing volatile compounds, which
were reported to inhibit the germination of fungal spores as well as hyphal growth
and to change fungal morphology, enzyme activity, and gene expression (28). Species
in highly competitive communities often grow less efficiently due to intense competi-
tion for shared resources (16, 20). Antagonistic interactions of Pseudomonas fluorescens
communities measured in vitro were related to bacterial root colonization and host
plant protection, suggesting that increasing antagonistic interactions may cause nega-
tive BEF relationships (20). In turn, coexisting species resulting from niche partitioning
by distinct resources may positively interact, which can increase functional community
performance (14). For example, soil fungi may decompose the recalcitrant organic mat-
ter, e.g., cellulose and lignin, and bacteria may symbiotically utilize fungus-derived
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substrates (17). Since complex soil processes are driven by interactions among soil bac-
teria and fungi, etc., revealing the intrinsic linkages between microbial interactions and
community functioning may facilitate the management of microbial communities for
improving ecosystem service provisioning (29–31).

Here, we aimed to evaluate the potential factors which affect the strength of biodi-
versity-function relationships in complex terrestrial ecosystems. To address this issue,
we conducted a large-scale soil survey ranging over different habitats, including an ag-
ricultural field, forest, wetland, grassland, and desert, along the Hexi Corridor (transect
intervals of 1,257.6 km) (see Fig. S1 in the supplemental material), which is a represen-
tative of an oasis-desert ecotone in the arid regions of northwest China (32). This spe-
cific ecological environment of oases scattered along the narrow desert belt contains
various ecosystems (32). We also took advantage of the strong changes in the soil bio-
diversity and processes that occur vertically along the soil profile. In total, 251 soil sam-
ples at 126 sites with two soil depth layers were selected in an agricultural field, forest,
wetland, grassland, and desert. This cross-habitat environmental gradient offers a
model system with an ecosystem and biodiversity gradient for the investigation of the
relationships between biodiversity and ecosystem function (multinutrient cycling, for
example). To control the effect of spatial scale, the sampling sites for each habitat were
evenly distributed along the transect of the Hexi Corridor. We hypothesized that (i) mi-
crobial diversity-ecosystem function relationships would exhibit habitat-specific pat-
terns and would be influenced by the community assembly processes and the balance
between negative and positive species associations and that (ii) more negative than
positive associations between bacteria and fungi would decrease the diversity-function
link, along with decreasing neutral assembly processes. Our results may help predict
and regulate biodiversity-driven ecosystem functioning and further develop proper
land use strategies for improving the provision of key ecosystem services.

RESULTS

A total of 15,429,528 and 19,350,877 high-quality bacterial and fungal sequences
were acquired from 251 cross-habitat soil samples along the Hexi Corridor (transect
intervals of 1,257.6 km), which were, respectively, grouped into 25,981 and 21,698
operational taxonomic units (OTUs). Our results showed that the microbial a-diversity
and multinutrient cycling index (MNC) in desert soils were lower than in other habitats
(Fig. 1). The microbial a-diversities did not significantly differ between surface (depth,
0 to 15 cm) and subsurface (depth, 15 to 30 cm) soils in any of the habitats (see Fig. S2
in the supplemental material). In agricultural and forest soils, the MNC values were
significantly higher in the surface soils than in the subsurface soils (Fig. S2). Moreover,
there were significant differences in the microbial community compositions among
the five habitats and between the two soil layers (Fig. S3A). In addition, a significant
correlation between microbial a-diversities and community compositions was
observed (Fig. S3B).

The relationships between microbial diversity and the MNC were explored in the
five habitats and the two soil layers. There were significant positive relationships
between microbial a-diversity and MNC only in agricultural and forest soils (Fig. 2A).
The microbial community composition was significantly correlated with the MNC in ag-
ricultural, forest, and wetland soils (Fig. 2A). Similar trends were observed in the surface
and subsurface layers in different habitats (Fig. S4A and B). Concerning each compo-
nent of multinutrient cycling, soil microbial diversity strongly correlated with most
individual variables measured (Fig. 3). More negative correlations between microbial
a-diversity and nutrient variables were observed in the grassland (n=3) and desert
(n=4) than in other habitats (n# 2). The microbial community composition showed
stronger correlations with most nutrient variables measured (Fig. 3) and higher correla-
tion coefficients with MNC in 73% of habitat and soil layer combinations than a-diver-
sities (Fig. 2A and Fig. S4A), indicating the major role of microbial community
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composition in soil nutrient cycling. This observation was further confirmed by the
multiple-regression model and variation partitioning analysis (Table S1).

We then estimated the microbial community assembly processes among the five
habitats and between the two soil layers. The neutral community model explained a
larger fraction of microbial community variation in agricultural soils (R2 = 0.752) than in
other habitats (R2 , 0.70) (Fig. 2B). In addition, the degree of fit in the neutral commu-
nity model was higher in surface layers than in subsurface layers of all habitats
(Fig. S4C), suggesting that microbial communities were more governed by neutral
processes in the surface layer, irrespective of habitat.

We further evaluated how the neutral assembly processes influenced the microbial
diversity-MNC relationships. We observed significant relationships between the fit of
the neutral model (R2) and the correlation coefficients of the microbial diversity-MNC
relationships (Fig. 4A), indicating that the habitat more governed by neutral processes
exhibited a stronger diversity-MNC relationship. Second, we estimated how the bal-
ance between positive and negative bacterial-fungal associations correlated with di-
versity-MNC relationships. Interestingly, the proportions of negative associations
between bacterial and fungal taxa were strongly and negatively (or positively) corre-
lated with the correlation coefficients of the microbial diversity-MNC relationships
(Fig. 4B and Table 1). In other words, negative bacterial-fungal associations relative to
positive ones modified the diversity-function link, whereas there were no significant
relationships (P. 0.1) between the microbial diversity-MNC correlation coefficients
and the negative associations among all taxa (Fig. S5A) within bacterial taxa (Fig. S5B)
or fungal taxa (Fig. S5C). In addition, no significant correlations (P. 0.05) were
detected between the soil pH-moisture (Fig. S5D and E) and the microbial diversity-
MNC relationships.

We applied a random-forest (RF) analysis to identify the major contributors to the
microbial diversity-MNC relationships. We observed that the negative associations
between bacterial and fungal taxa made a major contribution to predicting the micro-
bial diversity-MNC relationships (Fig. 5). We then conducted structural equation model-
ing (SEM) to verify this observation (Fig. S6). The structural equation models had a

FIG 1 Comparison of microbial a-diversities and soil multinutrient cycling among different habitats. The
microbial a-diversity was calculated as the average value of bacterial and fungal diversities after minimum-
maximum normalization. The soil multinutrient cycling index (MNC) was calculated as the average value of soil
organic carbon, dissolved organic carbon, microbial biomass carbon, nitrate-nitrogen, ammonium-nitrogen,
microbial biomass nitrogen, available phosphorus, and available potassium contents after minimum-maximum
normalization. The overall differences among habitats were estimated based on parametric one-way analysis of
variance (ANOVA). In addition, different lowercase letters within panels indicate significant differences among
the habitats (P, 0.05), which were found by multiple-comparison test after Kruskal-Wallis analysis. Error bars
represent the standard errors. F, F-statistic.
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FIG 2 Assessment of microbial diversity-multinutrient cycling relationships and community assembly processes in agricultural field, forest, wetland,
grassland, and desert soil samples from the Hexi Corridor in northwest China. (A) Relationships between microbial diversity and multinutrient cycling. The
microbial a-diversity was calculated as the average value of bacterial and fungal diversity after minimum-maximum normalization. The microbial
community composition (b-diversity) was estimated using the first axis of the nonmetric multidimensional scaling analysis by combining the bacterial
and fungal communities. Solid and dashed lines, respectively, denote the significant (P, 0.05) and nonsignificant (P. 0.05) Pearson’s correlations. (B) Fit
of Sloan’s neutral model for analysis of microbial community assembly. The analysis was based on combining the bacterial and fungal communities. The
solid blue line represents the best-fitting neutral model. The dashed line represents the 95% confidence intervals (CIs) around the best-fitting neutral
model. OTUs within the CIs (black points) follow the neutral process. OTUs that occur more frequently than predicted by the model are shown in red,
whereas those that occur less frequently than predicted are shown in blue. m indicates the estimated migration rate, and R2 indicates the fit to the
neutral model.
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good fit with the x 2 test, the root mean square error of approximation (RMSEA), the
comparative fit index (CFI), and their P values. Overall, the models explained 66.4 and
67.8% of the variance found in the microbial diversity-MNC relationships for a-diversity
and community composition, respectively (Fig. 5C and D). In support of our earlier
observations, we found the strongest and direct negative correlations between nega-
tive bacterial-fungal associations and the microbial diversity-MNC relationships. In
addition, there was a negative relationship between the neutral processes and nega-
tive bacterial-fungal associations.

DISCUSSION

Soil microbial diversity promotes multifunctionality in natural terrestrial ecosystems
(33, 34) but may be context dependent across complex ecosystems, with community
assembly processes and balance between positive and negative interaction potentially
controlling this context dependency. Therefore, characterizing determining factors is
crucial for advancing the prediction and regulation of biodiversity-ecosystem function
(BEF) relationships. Here, we reveal that community assembly processes and the bal-
ance between positive and negative bacterial-fungal associations were clearly linked
with the microbial diversity-MNC relationships. The habitats less governed by neutral
processes and dominated by negative bacterial-fungal associations exhibited stronger
diversity-MNC relationships.

High soil microbial diversity can promote ecosystem multifunctionality and regulate
multifunctionality resistance to climate change and fertilization in natural terrestrial
ecosystems (33, 35, 36). Growing evidence for a strong link between soil biodiversity
and multiple ecosystem functions has been reported (33, 34, 36–38); however, these
relationships have not yet been compared across habitats. Here, we observed that the
microbial a-diversity and MNCs in desert soils were lower than in other habitats along
the Hexi Corridor. This is supported by a previous study demonstrating that microbial
communities in desert soils had the lowest levels of taxonomic diversity and gene
abundances associated with nitrogen, potassium, and sulfur metabolism, compared to
those of forests, grasslands, and tundra habitats (39). Moreover, the significant

FIG 3 Heatmaps of correlation (Spearman’s) coefficients between microbial a-diversity (Alpha) and community composition (Beta)
and all individual nutrient variables. The numbers in the table are R values. The shading from white to red represents low-to-high
positive correlation, while the shading from white to blue represents low-to-high negative correlation. *, P, 0.05; **, P, 0.01; ***,
P , 0.001. DOC, dissolved organic carbon; MBN, microbial biomass nitrogen; MBC, microbial biomass carbon; NH4, ammonium-
nitrogen; NO3, nitrate-nitrogen; AP, available phosphorus; AK, available potassium; SOC, soil organic carbon.
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differences in the microbial community compositions among the five habitats and
between the two soil layers were in agreement with recent studies that demonstrated
strong habitat-specific patterns of microbial b-diversity in soil ecosystems (40, 41).
Specifically, we did not observe significant microbial diversity-MNC relationships in de-
sert and grassland soils. Since oases were scattered along the narrow desert belt in
arid regions, most of the grassland soil samples were collected from desert grassland
in this study (40). In this case, the nonsignificant microbial diversity-MNC relationships
in desert and grassland soils imply that desertification or grassland degradation might
weaken the diversity-function relationship.

Positive effects of local-scale biodiversity on ecosystem functions have been dem-
onstrated in theoretical, experimental, and observational studies across different types
of ecosystems and habitats (21, 24, 34, 36, 38, 42). Recently, the viewpoint that b-diver-
sity is important in the context of multifunctionality was proposed (1). In the present
study, we observed that community composition showed higher correlation coeffi-
cients with MNC than with a-diversity, suggesting the major role of microbial commu-
nity composition on soil nutrient cycling. This supports the notion that community
composition might be more important than community richness (43, 44). In addition,
the role of microbial community composition in regulating ecosystem functions is
related to variations in local-scale diversity, which may scale up to large-scale changes
in the provisioning of multiple ecosystem functions (45, 46). Multifunctionality resist-
ance to climate change and nitrogen fertilization is regulated by soil bacterial and fun-
gal community compositions in natural ecosystems (47). Bacterial and archaeal
b-diversities were strongly related to soil multinutrient cycling in a 30-year chronose-
quence of a reforestation ecosystem (48). S. Jiao et al. (41) demonstrated that soil mul-
tinutrient cycling in waterlogged rice fields was associated with bacterial b-diversity,

FIG 4 Relationships between the correlation coefficients of soil microbial diversity-MNC relationships and internal community
factors. (A) Relationships between the proportions of negative associations between bacterial and fungal OTUs and the
correlation coefficients of soil microbial diversity-MNC relationships in different habitats and soil layers, via Pearson’s correlation
analysis. (B) Relationships between neutral processes (fitting R2 in a neutral model) and the correlation coefficients of soil
microbial diversity-MNC relationships in different habitats and soil layers via Pearson’s correlation analysis. Whole, whole soil
profile; Up, surface soil (0- to 15-cm depth); Down, subsurface soil (15- to 30-cm depth); Significant, significant Pearson’s
correlations between microbial diversity and MNC (P, 0.05); Nonsignificant, nonsignificant Pearson’s correlations between
microbial diversity and MNC (P. 0.05).
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potentially attributable to the metabolic cooperation via syntrophy between bacterial
groups under oxygen-limited conditions (41). Based on these cases, our results there-
fore support the perspective that community composition is closely linked to the pro-
visioning of multiple ecosystem functions (multinutrient cycling, for example) (1). This
may improve our understanding of BEF relationships under various natural and anthro-
pogenic influences.

Biodiversity is a central topic in ecology, because the dramatic loss in biodiversity
may reduce ecosystem functions and services (49). It is crucial to reveal the factors
used to determine the strength of microbial diversity-function relationships in complex
terrestrial ecosystems, considering the intrinsic linkages between assembly processes
and species interactions. Understanding the assembly mechanisms of belowground
microbial communities is crucial for understanding the maintenance and generation of
terrestrial microbial diversity (50–52). Previous studies showed that microbial biogeog-
raphy exhibited strong habitat-specific patterns (40, 41). In the present study, we found
that the assembly of microbial communities in agricultural soils was more governed by
neutral (e.g., stochastic) processes than that in other natural habitats, indicating
that long-term cultivation and human-managed activities (53) might enhance the sto-
chastic influx and dispersal of microorganisms. Our result supported prior studies
reporting that stochastic processes were stronger in crop fields than in grassland (54).
Additionally, we observed that neutral processes were stronger in surface soils than in
subsurface layers, irrespective of habitat. This might be due to the difference in disper-
sal between surface and subsurface soils (55). Particularly, available nutrient substrates
usually decrease with soil depth because of the reduced input of plant litter and root
exudates (56). High available nutrients introduce more resources to soil microbes,
which can improve the ability of microorganisms to disperse and in turn increase the
dominance of stochastic (e.g., neutral) processes (3). Therefore, our results suggest that
soil depth may affect the microbial community assembly processes.

Species interactions are considered to be deterministic (niche-based) assembly
processes governing community structure (6, 57, 58). In the present study, the SEM
results showed a negative relationship between the neutral processes and negative
bacterial-fungal associations, indicating that negative relationships tended to be lower
when communities were driven primarily by neutral processes. That is, positive

TABLE 1 Associations among all OTUs, within bacterial OTUs and fungal OTUs, and between bacterial and fungal taxa in different habitats
and soil layersa

Habitat Layer

All Bacterial Fungal Bacterial-fungal

Neg Pos Pro Neg Pos Pro Neg Pos Pro Neg Pos Pro
Agricultural field Whole 164,927 259,619 0.388 138,192 212,108 0.394 109 10,822 0.010 26,626 36,689 0.421
Forest Whole 49,985 94,015 0.347 45,676 82,842 0.355 16 4,860 0.003 4,293 6,313 0.405
Wetland Whole 34,175 64,190 0.347 32,944 59,761 0.355 3 1,750 0.002 1,228 2,679 0.314
Grass Whole 130,126 235,602 0.356 116,905 221,191 0.346 26 4,216 0.006 13,195 10,195 0.564
Desert Whole 17,418 52,058 0.251 16,970 49,556 0.255 3 2,145 0.001 445 357 0.555

Agricultural field U 15,386 33,637 0.314 13,467 28,226 0.323 0 3,080 0.000 1,919 2,331 0.452
D 26,347 50,840 0.341 21,427 42,157 0.337 5 2,444 0.002 4,915 6,239 0.441

Forest U 1,830 4,913 0.271 1,628 4,188 0.280 2 407 0.005 200 318 0.386
D 1,436 4,568 0.239 1,346 3,778 0.263 1 687 0.001 89 103 0.464

Wetland U 777 1,699 0.314 709 1,547 0.314 1 59 0.017 67 93 0.419
D 545 1,288 0.297 508 1,159 0.305 0 85 0.000 37 44 0.457

Grass U 15,069 42,788 0.260 13,609 40,828 0.250 4 1,195 0.003 1,456 765 0.656
D 9,541 38,090 0.200 8,507 36,206 0.190 0 1,082 0.000 1,034 802 0.563

Desert U 1,316 4,846 0.214 1,259 4,510 0.218 1 283 0.004 56 53 0.514
D 403 1,294 0.237 363 1,059 0.255 1 197 0.005 39 38 0.507

aValues are numbers of associations (Spearman’s correlation) among all OTUs (All), within bacterial OTUs (Bacterial), within fungal OTUs (Fungal), and between bacterial and
fungal taxa (Bacterial-fungal) in different habitats and soil layers. Neg, negative association; Pos, positive association; Pro, the proportion of negative associations; Whole,
whole soil profile; U, surface soil (up) (0- to 15-cm depth); D, subsurface soil (down) (15- to 30-cm depth).
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bacterial-fungal associations were more widespread under stronger stochastic proc-
esses. This may be supported by a previous study demonstrating that soil microbial
cooccurrence associations are higher when communities are driven primarily by sto-
chastic processes (e.g., dispersal limitation) (59). Stochastic processes involve random
birth, death, and dispersal events; therefore, species tend to cooccur when random
changes and increased influxes of species are not associated with environmentally
derived fitness (6, 7). Previous studies have demonstrated that community assembly
processes were associated with the microbial interactions (e.g., cooccurrence associa-
tions based on the correlation network analysis) in soil (59) and river (60) systems. In
addition, a global soil microbiome study provided evidence for strong bacterial-fungal
antagonism, suggesting the role of species interactions in shaping microbial commun-
ities (12). On this basis, our findings more specifically uncover the intrinsic linkages
between assembly processes and microbial associations (e.g., positive or negative) and
suggest that the balance between positive and negative bacterial-fungal associations
is strongly related to community assembly processes.

FIG 5 Potential major drivers of the relationship between microbial diversity and the soil MNC. (A, B) Random
forest mean predictor importance of negative associations between bacterial and fungal taxa (Neg), neutral
community assembly processes (Neu), soil pH, and moisture for the correlation coefficients of the microbial
diversity-MNC relationships for a-diversity (A) and community composition (b-diversity) (B). The accuracy
importance measure was computed for each tree and averaged over the forest (5,000 trees). Percentage
increases in the MSE (mean squared error) of variables was used to estimate the importance of these
predictors, and higher MSE percentages imply more important predictors. (C, D) Structural equation model
describing the effects of different factors on the microbial diversity-MNC relationships for a-diversity (C) and
community composition (D). Numbers adjacent to arrows are indicative of the effect size of the relationship. R2

denotes the proportion of variance explained. Red arrows represent positive paths, and blue arrows represent
negative paths. Significance levels are as follows: *, P, 0.05; **, P, 0.01; ***, P, 0.001. RMSEA, root mean
square error of approximation; CFI, comparative fit index.
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Furthermore, we observed that the neutral processes substantially influenced the
magnitude and direction of the diversity-MNC relationships. The habitats more gov-
erned by neutral processes exhibited stronger positive or negative diversity-MNC
relationships for a-diversity or community composition, respectively. This may be
explained by two mechanisms: (i) immigration can add species or change species com-
position in a way that increases the biodiversity effect on functions through the sam-
pling effect if immigration from the regional pool brings new species carrying traits
that affect ecosystem functioning and that were not present in the initial community
(10) and (ii) a higher relative balance of a deterministic process (and thus the lower im-
portance of neutral ones) can decrease the biodiversity effect on ecosystem function
by a dilution effect if species selected by deterministic processes are not the ones
affecting ecosystem functioning (10). Thus, a lower influence of deterministic processes
(and thus a higher influence of stochastic ones) might reduce this dilution effect and
strengthen the BEF relationship, as observed in the present study. A previous study
used a model to assess how the relative balance between stochastic and deterministic
processes affect a generic biogeochemical function and revealed that higher dispersal
led to decreases in biogeochemical function due to the increased abundance of poorly
adapted organisms (61). The inconsistency might be attributed to the distinct models,
and we considered only the effect of microbial diversity on biogeochemical functions.
Uniquely, our study builds the linkage between the mechanisms underlying commu-
nity assembly and the BEF relationships and suggests that neutral processes governing
the distinct assembly patterns of a cross-habitat microbial community may enhance
the functional contributions of ecological communities. This highlights the potential
roles of community assembly mechanisms in generating and sustaining the multiple-
nutrient cycling of terrestrial ecosystems.

Species interactions play important roles in stimulating ecosystem processes (62). In
the present study, we observed that the proportions of negative associations between
bacterial and fungal taxa were clearly linked with the microbial diversity-MNC relation-
ship when we considered environmental factors and community assembly processes.
It indicated that the balance between positive and negative bacterial-fungal associa-
tions underpinned the context dependency of the microbial diversity-MNC relation-
ship. Negative species associations may be due to antagonistic biological interactions
(63), including competition. It is thus conceivable that a high number of antagonistic
or competitive interactions between bacterial and fungal taxa led to the weak micro-
bial diversity-MNC relationships observed in grassland and desert habitats, which was
supported by the SEM results. Competition was a major type of interaction between
fungi and bacteria in soil (19, 20, 64, 65). For example, some soil-derived fungal and
bacterial species may synthesize antibiotics and showed antagonistic effects (26, 27)
which had consequences for microbial community assembly (12). A study has shown
that strongly hierarchical competitive network communities comprising strong com-
petitors exhibit a negative diversity-function relationship (19). Positively interacting
species can increase functional community performance due to niche partitioning by
distinct resources (15, 16). Soil organisms with similar environmental preferences may
form strongly connected ecological clusters in ecological networks, with major implica-
tions for ecosystem functioning (66, 67). Previous studies showed that fungal-bacterial
interkingdom associations may enhance ecosystem functioning related to nutrient cy-
cling in grasslands (31) and promote plant health in the model plant Arabidopsis (68).
Thus, these studies may support our conclusion that the balance between positive and
negative associations were connected to the link between soil microbial diversity and
multinutrient cycling.

One potential limitation of this study is that the negative/positive associations
between taxa should not be interpreted as a proof of competition/facilitation, which
was based only on correlation (69). Correlation analyses are only a simplistic represen-
tation of a complex system, although they are frequently used to investigate microbial
interconnection patterns (70–72). In addition, species associations that are based on
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correlations can yield spurious results and cannot be automatically interpreted as inter-
actions (63). Consequently, it may not be possible to comprehensively depict the mi-
crobial interactions under real-world conditions. However, the information about nega-
tive/positive correlations between taxa is still essential for estimating potential species
interrelationships within complex environments and, in turn, for revealing the influ-
ence of microbial interconnection complexity on biodiversity-driven ecosystem func-
tioning (67).

Conclusions. Our study highlights that the balance between positive and negative
bacterial-fungal associations is clearly linked with the strength of the relationships
between soil microbial diversity and multiple nutrients cycling across different habi-
tats. Changes in both the level of neutrality and the proportion of negative bacterial-
fungal associations are linked to the magnitude and the direction of the diversity-MNC
relationship. These findings reveal the potential factors underpinning the context de-
pendency of the microbial diversity-MNC relationship, which makes it possible to pre-
dict the ecological consequences for the biodiversity-function relationship in the future
by uncovering how soil microbial assembly and associations are likely to respond to
the climate and land use changes. For example, the nonsignificant microbial diversity-
MNC relationship in desert soils suggests that desertification might weaken the micro-
bial diversity-function relationship, along with increasing negative bacterial-fungal
associations. The strongest neutral process of microbial assembly in agricultural soils
implies that the conversion from natural habitats to agricultural fields (e.g., the conver-
sion of grassland for agricultural crops, the conversion of forests for crop and wetland
degradation) might enhance the stochastic influx and dispersal of microorganisms and
strengthen the biodiversity-MNC relationship. Overall, our results represent a consider-
able advancement in facilitating the management of the functioning of microbial com-
munities for improving human well-being, in addition to informing strategies based on
community assembly and microbial interactions.

MATERIALS ANDMETHODS
Site description. The study site extended from 36°569N to 40°349N and from 94°379E to 103°319E

along the Hexi Corridor in the northwestern portion of Gansu Province and to the west of the Yellow
River in China (see Fig. S1 in the supplemental material). The Hexi Corridor is a long belt between the
South Mountains (including Mt. Qilian and Mt. Aerjin) and the North Mountains (including Mt. Mazong,
Mt. Heli, and Mt. Longshou). Due to the distribution of oases scattered along the narrow desert belt, the
Hexi corridor contains a variety of soil ecosystems (32).

Here, we selected five habitats: an agricultural field, forest, wetland, grassland, and desert, according
to a vegetation map at a scale of 1:1,000,000 (Data Centre for Resources and Environmental Sciences,
Chinese Academy of Sciences [RESDC], http://www.resdc.cn). The dominant species in these habitats
included Zea mays (agricultural field), Calligonum spp., Stipa spp., Leymus spp., and Achnatherum spp.
(wetland, grassland, and desert), and Populus spp. (forest). The dominant soil types were aripsamment
and calciorthids, which have a loose structure and low organic matter content. The climate of this region
is predominantly semiarid.

Sample collection. Field sampling was conducted during July and August 2017 near the period of
the highest aboveground plant biomass. To ensure appropriate spatial scale, the sampling sites for each
habitat were evenly distributed along the transect of the corresponding region. This meant that some
sampling sites for different habitats were spaced less than 5 km apart; hence, some of these sites over-
lapped on the map (Fig. S1). In total, 126 sites were selected; 37 were from an agricultural field, 28 were
from a forest, 15 were from a wetland, 26 were from a grassland, and 20 were from a desert.

At each site, three plots were sampled; each plot had an area of 100 m2. Five soil cores (2.5-cm diam-
eter) were combined per plot and were taken at depths of 0 to 15 cm and 15 to 30 cm (56, 73). The soil
cores from the three plots for a given soil depth layer were then mixed thoroughly to generate the final
soil samples. All soil samples were delivered to the laboratory in sterile plastic bags on dry ice and were
sieved through a 2.0-mm mesh to remove plant debris and rocks. A portion of each soil sample was
stored at 4°C for the analysis of nutrient factors. Aliquots of soil samples were stored at 220°C for subse-
quent DNA extraction. One subsurface desert sample was abandoned due to DNA extraction failure.
Therefore, a total of 251 soil samples at 126 sites with two soil depth layers were used for this study.
Standard testing methods were applied to measure soil pH, moisture, soil organic carbon, dissolved or-
ganic carbon, microbial biomass carbon, nitrate-nitrogen, ammonium-nitrogen, microbial biomass nitro-
gen, available phosphorus, and available potassium, as previously described (50, 71, 74). Detailed
descriptions are provided in the supplemental material. We acknowledge that many important environ-
mental parameters (e.g., the types of carbon/nitrogen/phosphorus, the hydrology, temperature, oxygen
stress, microsite structure, anion/cation/micronutrients, etc.) were not measured in this study, and these
should be considered in future work.
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Microbial DNA processing. Bacterial and fungal diversity scores were obtained via high-throughput
sequencing of the PCR amplicons of the 16S rRNA and internal transcribed spacer (ITS) genes. Briefly,
the total genomic DNA was extracted from the soil samples (0.5 g) using a FastDNA SPIN kit for soil (MP
Biochemicals, Solon, OH, USA). The microbial communities were profiled by targeting the V4-V5 region
of the 16S rRNA gene for bacteria and the ITS1 region of the 18S rRNA gene for fungi. The target sequen-
ces were amplified by PCR using the primer pairs 515F/907R (bacteria) and ITS5-1737F/ITS2-2043R
(fungi) (75, 76). Sequencing was conducted on an Illumina HiSeq2500 platform (Illumina Inc., San Diego,
CA, USA).

The acquired sequences were filtered for quality according to the method of J. G. Caporaso et al.
(77). Sequences were assigned to their corresponding samples according to the barcode and then qual-
ity trimmed with a threshold of average Phred quality scores of higher than 20. Any chimeric sequences
were removed with the USEARCH tool based on the UCHIME algorithm (78). The sequences were split
into groups according to their identity and assigned to operational taxonomic units (OTUs) at a 3% dis-
similarity level using the UPARSE pipeline (78). The OTUs with no more than two sequences were
removed, and their representative sequences were classified within the SILVA database (release 128) for
bacteria (79) and UNITE plus INSD (UNITE and the International Nucleotide Sequence Databases; release
7) for fungi (80). Counts of individual OTUs were scaled by the total number of reads in each sample to
account for sequencing biases using the R package DESeq2 (81). This measure of normalized abundance
allows samples with various read counts to be compared (82) and is widely applied to high-throughput
sequencing data (82, 83).

Soil microbial diversity analysis. To obtain a multidiversity index, we combined soil microbial di-
versity characteristics by averaging the standardized scores of bacterial Shannon diversity and fungal
richness. The scores standardized to a common scale ranging from 0 to 1 were calculated according to
the following formula: STD = (X 2 Xmin)/(Xmax 2 Xmin), where STD is the standardized variable and X, Xmin,
and Xmax are the target variable and its minimum and maximum values across all samples, respectively.
This multidiversity index is largely used and accepted in the current biodiversity function literature (34,
37, 84). The microbial b-diversity was quantified using the first axis of a nonmetric multidimensional
scaling (NMDS) analysis of Bray-Curtis dissimilarities by combining the bacterial and fungal communities
(85). Here, the analysis was based on combining the bacterial and fungal communities, including all of
the bacterial and fungal OTUs. Before the combination, the bacterial and fungal communities were
standardized to a total abundance of 1.

Evaluation of soil ecosystem function. Ecosystems perform multiple simultaneous functions and
services, rather than a single measurable process. Given that nutrient cycling is the most important
soil ecosystem process for supporting human welfare (62, 86), we estimated the multinutrient cycling
index (MNC) to evaluate soil ecosystem functions (41, 48). This index comprised information for 8 soil
nutrient variables in relation to carbon (soil organic carbon, dissolved organic carbon, and microbial
biomass carbon), nitrogen (nitrate-nitrogen, ammonium-nitrogen, and microbial biomass nitrogen),
phosphorus (available phosphorus), and potassium (available potassium) cycling. These variables
constitute an integrated proxy for nutrient cycling and are important determinants of ecosystem
functioning in terrestrial ecosystems (33, 34, 84). For example, nitrogen and phosphorus are the
nutrients that most frequently limit primary production in terrestrial ecosystems (87). In addition, po-
tassium is the third essential macronutrient required by plants; it participates in a range of biological
activities, such as protein synthesis, enzyme activation, and photosynthesis, that maintain or improve
plant growth (88). We acknowledge that some important functions, such as soil process rates, are
inevitably unmeasured, and future studies are encouraged to include more essential functions for
comprehensive understanding of ecosystem functioning. To derive a quantitative MNC value for
each site, we averaged the standardized scores (a common scale ranging from 0 to 1) of all individual
nutrient variables. This method was used to quantify soil multinutrient cycling because it is a straight-
forward and interpretable measure of a community’s ability to sustain multiple functions simultane-
ously (33, 34, 84).

Ecological analysis. The NMDS analysis was performed to visualize the sample relationships across
different habitats. An analysis of similarities (ANOSIM) was used to determine significant differences in
microbial community composition across different habitats, performed using the anosim function in the
vegan package in R (89). Multiple-comparison post hoc tests for Kruskal-Wallis analysis were used to test
for significant differences in microbial diversity and soil multinutrient cycling among different habitats,
performed using the kruskal function in the agricolae package in R (90). Pearson’s correlation analysis
was used to estimate the relationship between microbial diversity and multinutrient cycling, performed
using the cor.test function in the stats package in R (91).

Neutral modeling. A Sloan neutral community model was used to determine the contribution of
neutral processes to microbial community assembly (92). The model predicts that abundant taxa are
more likely to be dispersed by chance and widespread across a metacommunity, while rare taxa are lost
in different local communities due to ecological drift. The neutral model is fit to the relationship
between the frequency with which taxa occur in a set of local communities and their abundance across
the wider metacommunity by estimating the parameter describing the migration rate (m), a measure of
dispersal limitation. Higher m values indicate that microbial communities are less dispersal limited (92,
93). The formula (59) is Freq ¼ 12 I 1=N;N�m� p;N�mð12 pÞ½ �, where Freq is taxon occurrence fre-
quency, N is the number of individuals per community, p is the taxon relative abundance, and I[] is the
probability density function of the beta distribution. R2 indicates the fit of the parameter based on non-
linear least-squares fitting. The overall fit of the model to the observed data was assessed by comparing
the sums of squares of residuals, SSerr, with the total sum of squares, SStotal: model fit = 12 SSerr/SStotal
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(generalized R-squared) (93). Higher R2 values indicate a higher contribution of neutral processes to mi-
crobial community assembly. In the present study, we used the fit of the neutral model (R2) to infer the
neutral assembly processes. One point should be noticed, i.e., that stochastic processes do not exactly
incorporate a neutral process, although a few recent researchers have applied neutral-theory-based pro-
cess models to infer the stochastic processes (57, 94). Here, the analysis was based on combining the
bacterial and fungal communities, which were, respectively, standardized to a total abundance of 1.

Microbial association analysis. To explore the potential interactions among species, we estimated
the associations among all the members of the bacterial and fungal communities in different habitats
and soil layers. Robust correlations were estimated via Spearman’s correlation analysis with false-discov-
ery rate (FDR)-corrected P values of ,0.01, which were used to reflect the negative (Spearman’s correla-
tion coefficient [r ], 0) or positive (r . 0) associations among microbial taxa. The proportion of nega-
tive associations meant negative associations divided by the total associations. To avoid random effects
of rare taxa, only taxa detected in more than 60% of the soil samples in each habitat (e.g., different habi-
tats and layers) were used for the correlation analysis (95). To test whether the outcomes were sensitive
to the choice, we also estimated the microbial associations based on the 50% threshold. Similar results
with the 60% threshold were observed (data not shown), indicating that the outcomes were not sensi-
tive to the choice of threshold.

RF modeling. We first evaluated Pearson’s correlations between the strength of microbial diversity-
MNC relationships (correlation coefficients) and (i) the proportions of negative associations between
bacterial and fungal taxa, within all taxa, within bacterial taxa, and within fungal taxa; (ii) the neutral
community assembly processes (R2 of the neutral model); and (iii) environmental variables, including soil
pH and moisture. Additionally, random-forest (RF) analysis was performed to identify the main factors
influencing the microbial diversity-MNC relationships (33, 96). In the RF models, negative associations
between bacterial and fungal taxa, neutral community assembly processes, soil pHs, and moisture levels
served as predictors for the correlation coefficients of the microbial diversity-MNC relationships. To esti-
mate the importance of these variables, we used percentage increases in the mean squared error (MSE)
of variables: higher MSE percentages imply more important variables (97). The significance of the model
was assessed with 5,000 permutations of the response variable by using the A3 package (98). Similarly,
the significance of each predictor on the response variables was assessed with 5,000 trees by using the
rfPermute package (99).

SEM.We then used structural equation modeling (SEM) to evaluate the direct and indirect effects of
different factors on the strengths of microbial diversity-MNC relationships. The first step in SEM requires
establishing an a priori model based on the known effects and relationships among the drivers (Fig. S6).
The negative associations between bacterial and fungal taxa, neutral community assembly processes,
soil pH, and moisture were considered in the model. Since our sampling sites for each habitat were
evenly distributed along the transect of the Hexi Corridor to control the effect of spatial scale, the spatial
and climatic variables were not included in the model. We fitted the full model containing all potential
paths of our a priori model (Fig. S6) and then simplified the model by removing the variable (e.g., soil
pH) without any significant relationship (44). Each path removal was accepted if the model quality-based
Akaike information criterion (AIC) was improved. The goodness of fit of structural equation models was
checked using the following: the x 2 test, the root mean square error of approximation (RMSEA), and the
comparative fit index (CFI). The model has a good fit when the CFI value is close to 1, RMSEA values are
closer to 0, and x 2 and RMSEA P values are high (traditionally.0.05) (100). With a good model fit, we
were free to interpret the path coefficients of the model and their associated P values. A path coefficient
is analogous to the partial correlation coefficient and describes the strength and sign of the relationship
between two variables. SEM was conducted with the lavaan package (101).

All statistical analyses were performed in the R environment (v3.5.1; http://www.r-project.org/), using
vegan (89), stats (91), A3 (98), rfPermute (99), lavaan (101), fdrtool (102), Hmisc (103), ggplot2 (104),
relaimpo (105), and gplots (106) packages.

Data accessibility. The raw sequence data reported in this paper have been deposited in the
Genome Sequence Archive (107) and in the Beijing Institute of Genomics (BIG) Data Center (108), BIG,
Chinese Academy of Sciences, under BioProject accession no. PRJCA004036 and are publicly accessible
at http://bigd.big.ac.cn/gsa.
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