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Integration of a deep learning basal cell
carcinoma detection and tumor

mapping algorithm into the Mohs
micrographic surgery workflow and

effects on clinical staffing: A simulated,
retrospective study
Rachael Chacko, BA,a Matthew J. Davis, MD,b Joshua Levy, PhD,a,b and Matthew LeBoeuf, MD, PhDa,b
Background: Artificial intelligence (AI) enabled tools have been proposed as 1 solution to improve health
care delivery. However, research on downstream effects of AI integration into the clinical workflow is
lacking.
Objective: We aim to analyze how integration of an automated basal cell carcinoma detection and tumor
mapping algorithm in a Mohs micrographic surgery unit impacts the work efficiency of clinical and
laboratory staff.
Methods: Slide, staff, and histotechnician waiting times were analyzed over a 20-day period in a Mohs
micrographic surgery unit. A simulated AI workflow was created and the time differences between the real
and simulated workflows were compared.
Results: Simulated nonautonomous algorithm integration led to savings of 35.6% of slide waiting time,
18.4% of staff waiting time, and 18.6% of histotechnician waiting time per day. Algorithm integration on
days with increased reconstruction complexity resulted in the greatest time savings.
Limitations: One Mohs micrographic surgery unit was analyzed and simulated AI integration was
performed retrospectively.
Conclusions: AI integration results in reduced staff waiting times, enabling increased productivity and a
streamlined clinical workflow. Schedules containing surgical cases with either increased repair complexity
or numerous tumor removal stages stand to benefit most. However, significant logistical challenges must be
addressed before broad adoption into clinical practice is realistic. ( JAAD Int 2024;15:185-91.)
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INTRODUCTION
The introduction of artificial intelligence (AI) into

medicine has long promised to improve health care
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delivery and the experiences of both patients and
providers. The prevalence of AI applications within
health care is increasing rapidly, as evidenced by the
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343 Food and Drug Administration-approved AI-
enabled medical devices currently in clinical prac-
tice.1 AI-enabled medical devices aim to provide
diagnostic expertise where not otherwise able,
improve clinicians’ diagnostic accuracy, and increase
diagnostic efficiency while reducing fatiguability of
redundant tasks.2,3 Despite the numerous studies on
CAPSULE SUMMARY

d This study addresses the impact and
logistical requirements of
implementation of an artificial
intelligence algorithm into a real-world
clinical workflow.

d Results indicate the potential for
increased efficiency and productivity
with use of artificial intelligence in Mohs
micrographic surgery, particularly in
settings where timely reconstruction is
performed concurrently with tumor
removal.
the accuracy of AI-based al-
gorithms, research regarding
implementation of these al-
gorithms into clinical w ork-
flows and the downstream
effects on improving staff
efficiency is lacking.

Evolving over the last
decade, nationwide staffing
shortages and increased sta-
ffing costs have presented a
major challenge to health
care delivery.4 An aging pop-
ulation with increased health
care needs will continue to
drive demand as highlighted
by the United States Bureau
of Labor Statistics’ estimate
that over 195,000 additional

registered nurses and 112,000 medical assistants will
be necessary by 2031.5,6 The introduction of AI to
maximize the utility of available staffing resources is
1 approach to modify staffing demands. Automated
generation of actionable data will maximize the
ability of a staff member to complete tasks when
they are ready to do so. Improved understanding and
study of the downstream effects of AI on process and
staff efficiency may provide a solution to addressing
the increased staffing demands of health care.

Mohsmicrographic surgery (MMS) relies on seam-
less integration of surgeons, nursing staff, and
histotechnicians to provide real-time surgical and
histologic care for tumor removal and defect recon-
struction. This real-time health care delivery
approach offers a unique model system to study
how implementation of AI-driven algorithms can
improve clinical workflow efficiency. Throughout
each day, rate-limiting steps including tissue pro-
cessing, histologic analysis, and defect reconstruc-
tion can impact MMS efficiency and result in
increased patient and staff waiting times. AI provides
an opportunity to further streamline this process by
providing earlier diagnostic information for staff to
act on (Supplementary Fig 1, available via Mendeley
at https://doi.org/10.17632/4yv8zg4k2p.1).

We have developed an AI-driven algorithm
that provides intraoperative tissue grossing and
inking recommendations, tissue section quality
assessments, histologic basal cell carcinoma (BCC)
identification, and tumor map generation to inform
additional tumor removal, described further in the
methods section below.7 This algorithm has been
shown to rapidly and accurately localize tumor with
an area under the curve (AUC) of 0.97. This
algorithm was developed with the purpose of
reducing the time for the
histotechnician to process
tissue and the Mohs surgeon
to perform histologic exami-
nation of the tissue margins
and subsequent tumor
mapping, which can pr-
ovide the nursing staff with
earlier insight into potential
next steps in the process.
However, the down-stream
effects on staff efficiency
from integrating such an al-
gorithm into the clinical
workflow have not yet been
assessed.

In this study, the BCC
detection and tumor map-
ping algorithm is used in the
context of a MMS unit to simulate how automating an
important step through AI incorporation may affect
clinical and laboratory staff efficiency. Additionally,
this paper highlights important concepts in AI
implementation, including selection of processes
that most benefit from automation and the logistical
challenges that must be addressed prior to seamless
integration.

MATERIALS AND METHODS
The study included 104 consecutive MMS BCC

cases performed over a 20-day period. To create a
simulated MMS workflow that integrates the BCC
detection algorithm, 3 measures were defined to
evaluate algorithm integration: slide waiting time,
staff waiting time, and histotechnician waiting time,
depicted in Fig 1. Slide waiting time is defined as the
time between when the histotechnician places
the prepared slides next to the microscope and
when the surgeon performs histologic analysis of
the slides and subsequent tumor mapping. Staff
waiting time is the time between when the histo-
technician places the prepared slides next to the
microscope and when the nursing staff member
begins preparation for the next step, which is either
an additional stage or defect repair. Histotechnician
waiting time is the time between when the histo-
technician places the prepared slides next to the
microscope and when the surgeon delivers tissue

https://doi.org/10.17632/4yv8zg4k2p.1


Abbreviations used:

AI: artificial intelligence
BCC: basal cell carcinoma
MMS: Mohs micrographic surgery
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from the next stage in cases in which additional
stages of tumor removal are required. On the days of
surgery, slide, staff, and histotechnician waiting
times were measured for each of the 104 cases. To
generate simulated waiting times, the BCC detection
algorithm was implemented retrospectively at the
immediate time the slides were placed next to the
microscope.

The BCC detection algorithm uses a combination
of convolutional neural networks and graph neural
networks to identify tumor. In recently published
work, this algorithm has demonstrated an AUC of
0.97 in the identification of positive tumor margins,
comparable to or exceeding findings from previous,
similar studies.7 The algorithm has the capability to
provide (1) three-dimensional gross specimen
reconstruction with neural radiance fields, (2) tissue
completeness assessment with convolutional neural
networks to ensure high-quality sections without
holes or tears prior to analysis, (3) identification of
tumor confounders such as hair follicles with R101-
FPN neural network models, and (4) tumor mapping
that depicts histological findings on the image of the
surgical site to generate surgical recommendations.
These results are available for histotechnicians,
pathologists, and surgeons through a dynamic web
application that provides an interactive and export-
able pathology report. The BCC detection algorithm
was trained and validated using whole slide images
of specimens from patients undergoingMMS for BCC
removal that were manually annotated for tumor,
benign structures (eg, areas of inflammation and
follicles), and layers of skin (eg, epidermis, dermis,
etc.) by 4 pathologists. The algorithm is available on
GitHub for public use.7

To simulate nonautonomous algorithm integration,
slide scanning time, algorithm processing time, algo-
rithm runtime, and output review timeweremeasured
(Supplementary Fig 2, available via Mendeley at
https://doi.org/10.17632/4yv8zg4k2p.1). The sum of
these 4 components represented the simulated slide
waiting time. Sixty-five cases reflecting the normal
distribution of BCC histologic subtypes in MMS clinical
practice were selected to undergo slide scanning at
20X using an Aperio AT2 to generate whole slide
images in the SVS formatwith 8 bit color channels. The
scanning time per slidewas recorded and summed per
case to determine total slide scanning time. Whole
slide images were assessed using the BCC detection
and tumormapping algorithm, and algorithmprocess-
ing time and runtime were measured. All cases were
deidentified for the comparison of algorithm-versus
surgeon-generated tumor maps. Concordance be-
tween the tumor maps was established based on a
retrospective review and subjective interpretation of
visual agreement (yes/no). The proportion of times
the 2 maps agreed was recorded as a measure of
concordance and 95% confidence intervals were
obtained using a normal approximation of the bino-
mial probabilities. No clinical decisions were made
using algorithm output.

To generate simulated staff and histotechnician
waiting times for each case, the difference between
the actual and simulated slide waiting times was
calculated, which represented the time saved or lost
with algorithm integration. This amount of time was
then subtracted or added from the downstream staff
and histotechnician waiting times. For analysis of
repair approach on waiting times, complex repairs
were defined as local flaps, full thickness skin grafts,
or interpolation flaps, and simple repairs were
defined as linear closures or healing by second
intent. For analysis of number of tumor removal
stages on waiting times, data from 5 days with the
most number of tumor removal stages were
compared with data from 5 days with the least
number of tumor removal stages.
RESULTS
Removal of skin cancer with MMS relies on a

clinical workflow that involves nursing staff, the
surgeon, and histotechnicians in the on-site pathol-
ogy laboratory. Staffing numbers and operating
room space can affect the length of time required
to remove the tumor with iterative real-time histo-
logic margin analysis and subsequent repair of the
resulting surgical defect. Over the 20-day study
period, the numbers of nursing staff (3), histotech-
nicians (2), and operating rooms (5) were held
constant. Additional variables hypothesized to affect
staff and histotechnician waiting times included
number of tumor removal stages per day and repair
complexity.

Critical to the decision of whether to implement AI
in an autonomous versus nonautonomous manner is
the determination as to whether the algorithm
performs at or above the level of the human expert.
To test this, a cohort of 65 BCC cases reflecting the
normal distribution of BCC histologic subtypes in
MMS clinical practice were scanned and analyzed
by the BCC detection algorithm (Table I). The
algorithm-generated tumor maps were compared

https://doi.org/10.17632/4yv8zg4k2p.1


Fig 1. Definitions and depiction of slide, staff, and histotechnician waiting times.

Table I. Selected basal cell carcinoma case
histologic subtypes and algorithm accuracy

Number of cases 65

BCC histologic subtype
Nodular 37
Superficial 14
Infiltrative 15
Micronodular 5
No tumor 16

Accuracy (CI) 0.94 (0.88-0.99)
Average slide scanning time per case
(min)

10:25

Average algorithm processing and
execution time per case (min)

2:00

Average output review time per case (s) 30

BCC, Basal cell carcinoma.
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to the hand-drawn tumor maps created by the Mohs
surgeon at the time of surgery (Fig 2). The BCC
detection algorithm identified the tumor and appro-
priate location of tumor in 94% (95% CI: 88% to 99%)
of surgical cases. The 94% accuracy fell below the
presumed human diagnostic accuracy of 98% to 99%,
which was based on long term recurrence rates of 1%
to 4%, as highlighted in expert treatment guidelines.8

Therefore, the simulatedworkflow in this paper used
the algorithm in a nonautonomous manner, inte-
grating review of the algorithm output by the sur-
geon as the final step of the histologic analysis.

To determine how the BCC detection and tumor
mapping algorithm affects the MMS workflow, a
simulated nonautonomous workflow was created in
which histologic assessment was performed by the
BCC detection algorithm with subsequent verifica-
tion of algorithm output by the Mohs surgeon
prior to performing the next step of the process.
The amount of time required to scan the selected
65 BCC cases and generate output from the algorithm
was measured for each case (Supplementary
Table I, available via Mendeley at https://doi.org/10.
17632/4yv8zg4k2p.1). The average slide scanning
time, algorithm computation time, and output re-
view time per case were 10:25 minutes, 2:00 minutes,
and 30 seconds, respectively. Scan time was propor-
tional to the number of slides per case, the number of
tissue sections per slide, and the size of the tissue
sections. Scan times per case ranged from 4:00
to 43:00 minutes. Simulated waiting times were
adjusted by adding or subtracting the slide

https://doi.org/10.17632/4yv8zg4k2p.1
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Fig 2. Surgeon-generated (left) versus algorithm-generated (right) tumor maps.
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scanning/algorithm output time from the actual slide
waiting time for each of the 104 BCC cases.
Nonautonomous algorithm integration resulted in
saving 35.69% of slide waiting time (37:28 minutes
per day). As a result, 18.2% of staff waiting time and
18.6% of histotechnician time was saved (Table II).
Further analysis revealed that 55/104 (52.9%) of
cases had increased time savings when the AI
algorithm was implemented. Comparison of only
cases (55) that benefited from the implementation of
the AI algorithm revealed savings of 55%, 28%, and
25% for slide, staff, and histotechnician waiting time
respectively over the 20-day period (Table II).

Additional analysis was performed to determine
characteristics of MMS cases and days in which the
algorithm provided the most benefit to the clinical
workflow. Repair complexity and the number of
tumor removal stages performed per day were
identified as variables that affect the MMS clinical
workflow. Comparison of waiting times between the
5 days with the highest and lowest proportion of
complex repairs (see Methods) and most and least
tumor removal stages revealed more time saved on
days with increased complexity and/or increased
tumor removal stages (Table III).

DISCUSSION
Implementation of technology into clinical work-

flows offers 1 approach to increase the efficiency of
health care delivery. Here we demonstrate that
simulated use of a nonautonomous BCC detection
and tumor mapping algorithm within the MMS
workflow can reduce slide, staff, and histotechnician
waiting times. By aiding the surgeon in performing
the real-time histologic examination and tumor map-
ping, subsequent steps in the MMS process can be
carried out in a more efficient manner. Notably, the
nursing staff can act at an earlier timepoint to prepare
both the operating room and patients for either
additional tumor removal or defect reconstruction.
The surgeon can move between operating rooms
without the normal waiting time required for patient
and staff transition. This results in more efficient
tumor removal and subsequent defect repair.
Histotechnicians receive tissue in the lab at an earlier
time point than they would otherwise, decreasing
the overall amount of histotechnician time required.
Together, algorithm implementation in the simulated
scenario increased the parallelization of an other-
wise serial process.

Consideration of design of autonomous versus
nonautonomous algorithms relies on a number of
factors, most importantly task complexity and
algorithm accuracy. In the setting of an algorithm
accuracy of 94%, the BCC detection algorithm
would need to be implemented, at least initially,
in a nonautonomous manner. In this setting, this
study has identified that not all cases benefit from
implementation of the algorithm with number of
tumor removal stages and repair complexity being
important variables that affect time savings with
algorithm implementation. Scoring systems exist in
MMS to predict these factors and could be com-
bined with a nonautonomous algorithm-driven
system to generate increased operational efficiency
while ensuring the gold standard outcome measure



Table III. Waiting time analysis stratified by
comparing 5 days with highest proportion of
complex repairs to 5 days with lowest proportion of
complex repairs and 5 days with most tumor
removal stages to 5 days with least number of
tumor removal stages

Simple

repair

days

Complex

repair

days

Fewer

stage

days

More

stage

days

Slide 0:01:13 0:11:09 0:07:34 0:17:23
Staff 0:01:13 0:11:09 0:07:34 0:17:23
Histotechnician �0:00:06 0:05:22 0:02:14 0:09:36

Time saved displayed in (h:mm:ss).

Table II. Nonautonomous basal cell carcinoma
algorithm implementation effects on slide, staff,
and histotechnician waiting time per day for all
cases (104) and those with net positive time savings
(55)

All cases

Only cases with

net positive

time savings

Mean slide waiting
time saved per
day (h:mm:ss)

0:37:28* 0:57:47*

Proportion of slide
waiting time saved
over period

35.69%* 55.03%*

Proportion of staff
waiting time saved
over period

18.24%* 28.13%*

Proportion of
histotechnician
waiting time
saved over
period

18.62%* 25.53%*

Paired t tests were used to assess whether the difference between

actual and simulated waiting times were significant, *P\ .05.
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of highly accurate tumor removal with low risks for
tumor recurrence.9 While not simulated here, if the
algorithm was to be implemented in an autono-
mous manner, this would likely provide further
improvements in staffing time saved per case
assuming there would not be a need for the surgeon
to perform pathologic analysis and tumor mapping.
Additional training of the algorithm to approach the
accuracy of a human expert may allow for this in
future studies.

This simulated workflow thus far has only been
run retrospectively and at a single site. Real-time
clinical implementation may affect outcomes or even
more likely identify additional clinically relevant
workflow variables that have not been accounted
for. This study highlights the number of additional
considerations that must be taken into account, as
highlighted by the average slide scanning time of
over 10 minutes resulting in only approximately 50%
of the cases benefitting from implementation of the
algorithm. Furthermore, implementation of complex
AI algorithms requires a high level of computing
power that is unlikely to currently be available to
the average user. The cost of implementation
and complexity of such a robust automated system
is significant. AI integration in the MMS clinical
workflow requires a slide scanner, elevated levels
of computing power, and reliable access to
high-speed internet. Not only are these resources
expensive, but as with any technology-dependent
system, inferior performance of any of these com-
ponents may significantly impact real-life results.
With the introduction of more efficient and auto-
mated slide scanners combined with ready access to
powerful computing resources, AI technology will
provide a more realistic solution to a broader num-
ber of end users.

Future studies should involve analyzing the
broader implementation of the algorithm into
external MMS units with varying numbers of Mohs
micrographic surgeons, nursing staff, histotechni-
cians, operating rooms, cases per day, and cases
with complex repairs. Additionally, schedules could
be created containing cases with predicted
increased number of tumor removal stages and
high degrees of repair complexity. Based on the
current results, days maximizing these variables
may benefit most from implementation of the BCC
detection algorithm. As additional tumor detection
algorithms are developed, similar workflow ana-
lyses may be done to assess the generalizability of
this study to other tumor types, including squamous
cell carcinoma and melanoma. An additional po-
tential implementation of the BCC algorithm is in a
clinical setting where real-time analysis of tumor
margins is not available but a patient would benefit
from precise and real-time tumor removal. While
beyond the scope of this study, this scenario would
present a distinct set of logistical challenges and
workflow barriers that would need to be solved
prior to implementation.Wewould propose use of a
simulated scenario as performed in this study as an
initial approach to identify and develop solutions to
workflow barriers.

Processes that are repetitive or highly iterative and
where multiple or numerous individuals rely on
decision making from a single individual are ideal
for AI integration. This study in particular helps to
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provide proof of concept for potential uses of AI in
MMS while also highlighting the current limitations
to real-world implementation of the technology in
this setting.

Regardless of the specific algorithm being imple-
mented, perspectives and feedback from all mem-
bers of the clinical care team that might be affected
by AI integration should be taken into account.
Design and testing validation of AI solutions by
end users, including providers and medical staff,
offers an opportunity to correctly identify important
clinical variables that need to be controlled for and
the most relevant bottlenecks in the health care
delivery process. Early analysis of both positive and
negative neighborhood effects, including cost and
resource requirements, will help identify clinical
settings most likely to benefit from early AI
implementation.
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