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Comparative study of heat 
and mass transfer of generalized 
MHD Oldroyd‑B bio‑nano 
fluid in a permeable medium 
with ramped conditions
Fuzhang Wang1,2, Sadique Rehman3, Jamel Bouslimi4, Hammad Khaliq3, 
Muhammad Imran Qureshi5, Muhammad Kamran6, Abdulaziz N. Alharbi7, Hijaz Ahmad8,9 & 
Aamir Farooq10*

This article aims to investigate the heat and mass transfer of MHD Oldroyd-B fluid with ramped 
conditions. The Oldroyd-B fluid is taken as a base fluid (Blood) with a suspension of gold nano-
particles, to make the solution of non-Newtonian bio-magnetic nanofluid. The surface medium 
is taken porous. The well-known equation of Oldroyd-B nano-fluid of integer order derivative has 
been generalized to a non-integer order derivative. Three different types of definitions of fractional 
differential operators, like Caputo, Caputo-Fabrizio, Atangana-Baleanu (will be called later as 
C,CF,AB ) are used to develop the resulting fractional nano-fluid model. The solution for temperature, 
concentration, and velocity profiles is obtained via Laplace transform and for inverse two different 
numerical algorithms like Zakian’s, Stehfest’s are utilized. The solutions are also shown in tabular 
form. To see the physical meaning of various parameters like thermal Grashof number, Radiation 
factor, mass Grashof number, Schmidt number, Prandtl number etc. are explained graphically and 
theoretically. The velocity and temperature of nanofluid decrease with increasing the value of gold 
nanoparticles, while increase with increasing the value of both thermal Grashof number and mass 
Grashof number. The Prandtl number shows opposite behavior for both temperature and velocity 
field. It will decelerate both the profile. Also, a comparative analysis is also presented between ours 
and the existing findings.

Nomenclature
⌢

ρ̃nf 	� Density of nanofluid
⌢

�̃m	� Relaxation time
⌢

µ̃nf 	� Absolute viscosity of nanofluid
B20	� Magnetic field strength
⌢

�̃o	� Retardation time
k	� Permeability of porous medium
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⌣

Dnf 	� Chemical diffusivity of nanofluid
⌣

K	� Permeability of medium
...
M	� Magnetic parameter
R̃	� Radiation parameter
LT	� Laplace transform
f 	� Base fluid
⌢

σ̃ nf 	� Electrical conductivity of nanofluid
(

⌢

βT

)

nf

	� Thermal expansion of nanofluid
⌢
g 	� Acceleration due to gravity
(

⌢

βC

)

nf

	� Volumetric expansion of nanofluid

q̃r	� Radiative heat flux in Ỹ  direction
knf 	� Thermal conductivity of nanofluid
ĜT	� Thermal Grashof number
ĜC	� Mass Grashof number
Pr	� Prandtl number
Sc	� Schmidt number
nf 	� Nanofluid
s	� Solid nano-particles

Non-Newtonian fluids have much more applications in science and technology than Newtonian fluids. Non-
Newtonian fluids are still used in manufacturing of variety of extremely concentrated products, including fabrics, 
carbon, glass, and paints. Many non-Newtonian fluids are found in foods such as jams, chocolate, mayonnaise, 
and other condiments. Toothpaste also contains certain non-Newtonian fluids. The certain models that explain 
the non-Newtonian behavior of fluids are Oldroyd-B, Maxwell, Jeffry, second and third-grade, Casson1–5. These 
models are simple but each model has its own limitations. For example, the behavior of fluids with shear dangling 
viscosity is well supported by the power-law model, the elastic behavior does not include in the power-law model. 
Similarly, second and third grade show the inverse effects, they show the elasticity but viscosity for shear doesn’t 
depend on such models. Furthermore, these fluid models don’t convey the stress-relaxation period.

Nano-fluids are also non-Newtonian fluids, and this research focuses on nano-fluids. Choi et al.6 is the first 
who introduced the principle of nano-fluid in 1995. Such fluids are suspensions of nano-sized particles in a base 
fluid, such as metals, carbides, and oxides. The nano-fluids model produces very useful applications. Nanofluids 
contain a suspension of nanomaterials and show many interesting properties. Some of the applications involve 
enhanced heat transfer in electronic appliances, heavy-duty engines, industrial cooling, nuclear system cooling, 
heating building and reducing pollution, cooling of space defense equipment, vehicular brake fluids. In this article 
we are interested in Bio-magnetic fluid, because Bio-magnetic fluid dynamic (BFD) is a relatively new area in fluid 
mechanics investigating the fluid dynamics of biological fluids in the presence of magnetic field. The application 
of magnetic field on the flow of biological fluids is addressed for bioengineering and medical applications like 
drug targeting, cell separation, or reduction of blood flow during surgeries. The most characteristics bio-magnetic 
fluid is blood. Here blood is taken as a base fluid and gold nano-particles introduced in it. Das et al.7 pioneered the 
comprehensive discussion, relevance, and potential scope of nanofluids. Nano fluids had slightly higher thermal 
conductivity than base fluids, according to Wong and Kurma8. In fluid dynamics, fractional derivatives models 
have been discussed for viscoelastic materials, like glassy state and polymers. Recently, real life problems have 
been analyzed via fractional time derivative operator, like Caputo9, Caputo-Fabrizio10, and Atangana-Baleanu11. 
Fractional calculus is an emerging field which is based on various types of kernels. The main application of kernels 
is to provide a better description of the dynamics among complex systems, for example, collecting the memory 
at whole and partial domain of certain processes. The non-locality of the new kernel investigated the memory 
structure with alternate scales. Asifa et al.12 investigated the generalized MHD transport of rate-type fluid under 
Newtonian heating and non-uniform velocity conditions near an unbounded upright plate. Free convection flow 
of various MHD fluid models using fractional-order derivative having local and non-local kernel was analyzed 
by13–20. Saqib et al.21 deliberated the blood-gold nanofluid in a permeable medium with ramped conditions. They 
took Oldroyd-B fluid as a base fluid (Blood). In this they utilized the Laplace transform to acquire the solu-
tions for temperature and velocity profiles of the model. Generalized magnetic blood flow with dust particles in 
cylindrical shape was studied by Saqib et al.22. Misra et al.23 investigated the bio-magnetic fluid over an extended 
sheet numerically using FDM. Apparent viscosity of blood in the presence of magnetic effect was addressed by 
Haik et al.24. Papadopoulos et al.25 was examined blood as bio-magnetic fluid in rectangular duct numerically. 
Hussain et al.26 researched the peristaltic transport of gold nanoparticles using blood as base fluid. In this, they 
obtained analytical solutions by the homotopy analysis method (HAM). The influence of nanosolid particle 
shapes, permeability material, viscous dissipative flow, Cattaneo-Christov heat flux and radiate flux are studied 
by Jamshed. et al.27. The predominant flow equations are systemized in form of PDEs. Keller-box’s computational 
method was employed to identify the self-similar solution for transformed principles into ODEs by appropriate 
transformations. Saqib et al.28 considered the ferro-nanofluid with Brinkman type fractional model for the first 
time using ramped heating. LT was used to obtain the solution of the fractional CF model. The base fluid is con-
sidered as Casson fluid (blood) and CNT’s nanoparticles present inside it was illustrated by Khalid et al.29. They 
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used LT to acquire the exact solution of the ordinary model. Aman et al.30 explained the hybrid nanoparticles in 
the well-known model of MHD Casson nanofluid in a permeable medium. Waqas et al.31 studied the magneto-
hydrodynamic flow of Burgers nanofluid with the interaction of nonlinear thermal radiation, activation energy, 
and motile micro-organisms across a stretching cylinder. The developed PDEs are transformed into a system of 
ODEs with the help of similarity transformations. The extracted problem is rectified numerically by using the 
bvp4c program in computational software MATLAB. Recently, Arshad et al.32 investigated bio-convective hybrid 
nanoparticles on a stirring needle in the presence of micro-organisms considered chemical reaction and viscous 
dissipation. HAM was used to acquire the analytical solution. MHD natural convection flow of nanofluid and 
CNT’s Oldroyd- B nanofluid in the presence of ramped conditions was illustrated by33,34. Entropy optimization 
of a system is important step of modeling35,36. The solution to the constructed problem is achieved by using 
the innovative CVFEM approach. Shah. et al.37 investigated the thermal effect for a mixed convection flow of 
Maxwell nanofluid spinning motion produced by rotating and bidirectional stretching cylinder. The modeled 
equations are converted to set of ODEs through group of similar variables and are then solved by using semi 
analytical technique HAM. Jamshed et al.38 studied the entropy generation in a magnetohydrodynamic flow of 
a Maxwell nanofluid over an infinite horizontal surface. Similarity solutions are obtained by transformation of 
governing PDEs to ODEs using similarity variables. Keller box method is then adopted to find the approximate 
solutions of reduced ODEs. The natural convection flow of different hybrid nanofluid over a radiative vertical 
plate and extended surfaces is discussed by39–41. Moured et al.42 studied the heat transfer and steady magneto-
hydrodynamic natural convection in a fined cold wavy-walled porous enclosure with a hot elliptic inner cylinder 
occupied by hybrid Fe3O4-MWCNT /water nanofluid. The enclosure is also placed in a uniform magnetic field. 
The governing equations are verified by using the Galerkin Finite Element Method (GFEM). A single-phase 
mathematical model of Casson and second-grade nanofluid past over a stretching surface was analyzed by43,44. 
The Cattaneo-Christov based and unsteady Casson nanofluid over a stretching surface is investigated by45,46. The 
well-known nonlinear ODEs are solved via Keller-Box method.

The influence of a chemical reaction is determined by whether it is homogeneous or heterogeneous. The 
inclusion of pure water and air is impossible in nature. It’s possible that any outer matter is naturally there, or 
that it’s mixed with air or water. When an outer mass is present in air or liquids, it induces a chemical reaction. 
Many chemical technologies, such as the manufacture of glassware or ceramics, the production of polymers, 
and food processing, benefit from the study of related chemical reactions. Mazhar et al.47 studied the ramped 
wall temperature and velocity of MHD Oldroyd-B fluid of convective flow. For inverse LT, Stehfest’s algorithms 
are utilized. Anwar et al.48 extended the work of47, in this, they added 

(

1+ �
∂
∂t

)

 with the coefficient of thermal 
expansion. Permeability is the property of porous medium which gives information how easily a fluid can pass 
through the porous medium. Flow via porous media is very common in nature. The concept of porous media 
is used in many areas of applied science and engineering, such as filtration, mechanics, petroleum engineering, 
geosciences, biology, and biophysics. Two important current fields of application for porous materials are energy 
conversion and energy storage, where porous materials are essential for supercapacitors, fuel cells, and batteries. 
Iftikhar et al.49 illustrated the concept of heat and mass transfer of MHD Oldroyd-B fluid in a permeable medium 
using ramped conditions. They saw the comparison between three various types of non-integer order derivatives. 
Mehmood et al.50 studied the non-Fourier heat flux model of MHD Oldroyd-B fluid of oblique stagnation flow 
numerically. Runge–Kutta-Fehlberg quadrature and shooting method was utilized to acquire the solution. In51,52, 
authors studied the MHD Oldroyd-B nanofluid heat and mass transmission OHAM. Electro-osmotic slip flow 
of generalized Oldroyd-B fluid was researched in53,54. Soret and Hall effects of radiating chemically MHD fluid 
past on a vertical plate in a rotating system with ramped temperature also concentration in a permeable medium 
was discussed by Seth et al.55,56. Narahari et al.57 investigated the natural convection current impact of heat and 
mass transmission with ramped temperature. The parabolic trough solar collector (PTSC) is widely installed in 
concentrated solar power technology with a temperature range of 325–700 K, deliberated by58–61. The Keller box 
numerical scheme was used to find the solution of the resulting nonlinear ODEs.

The basic purpose of this investigation is to study the bio-magnetic Oldroyd-B nanofluid with ramped con-
ditions. However, ramped velocity and ramped temperature have attracted a little attention of the researchers 
examining such flows. The simultaneous use of ramped wall temperature and velocity conditions are physically 
important, but mathematically relations are extremely intricate and handling them analytically is sometimes 
troublesome. Operating ramped wall temperature and ramped wall velocity is highly significant in various 
subdivisions in present-day technology and science. For instance, ramped velocity is useful in evaluating the 
functioning of heart and blood vessels. Diagnoses of cardiovascular deceases, determining treatment and estab-
lishing prognosis involve treadmill testing and Ergometry, which operate on the basis of ramped velocity. To 
see the behavior of fluid flow, fractional order model is good to explain the dynamics and memory effect with 
respect to classical model. Three types of non-integers definitions of Caputo, Caputo-Fabrizio, and Atangana-
Baleanu are used to develop the given nano-fluid model. LT and numerical Laplace inverse algorithms including 
Zakian’s62, Stehfest’s63 are utilized to acquire the solution of temperature, concentration, and velocity. Finally, 
show the impacts of physical parameters on temperature and velocity fields that are present in the problem 
graphically as well as theoretically.

Model of flow problem
Consider the unsteady flow of Oldroyd-B nano-fluid with heat and mass transmission. The vertical plate is infinite 
and the medium is considered to be porous. The fluid is assumed to be electrically conducting, as a result, the 
external magnetic force is applied parallel to the flow direction. Both the fluid and the plate are initially at rest. 
After some time at t = 0+ the plate begins oscillation in its plane ( Y = 0 ) as indicated with ramped velocity. Y  is 
perpendicular to the plate while plate is along X-axis. The fluid starts movement along X-direction. The geometry 
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of the flow problem is portrayed in Fig. 1. The governing equation of the respective problem is taken from21,49. 
However, in the work of Saqib et al.21, the term 1+

⌢

�̃m
∂

∂ t̃
 is missing with the coefficient of thermal expansion 

pointing out the deficiency of their model.

Using Rosseland approximations55 and accepting the small temperature variations among the temperature 
T∞ of the free stream and the fluid’s temperature T , expanding the Taylor theorem on T4 about T∞ and ignoring 
the 2nd and higher-order, we obtain

And

where β̃∗, δ̃∗ are respectively Stefan-Boltzmann constants and the mean absorption coefficient. Introducing 
Eq. (4) in (2), we get

The appropriate ICs and BCs are as follow21,55

(1)
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Figure 1.   Flow geometry of the problem.
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The thermophysical properties of nano-fluid are given as21

where nf , f and s respectively represent nanofluid, base fluid and solid nano-particles. Blood is taken as a base 
non-Newtonian fluid, and gold nanoparticles are put on it to make nanofluid. The thermophysical estimation of 
blood and gold nanoparticles is presented in Table 1.

Blood‑gold nanofluid fractional derivative model
Consider the following dimensionless parameters

Incorporating Eqs. (9), from Eqs. (1–7), we acquired the following linear PDEs
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Table 1.   shows the numerical estimation of base fluid and solid nanoparticles21.

Material Base fluid (blood) Gold nanoparticles
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and

where

are the thermal Grashof number, the permeability of the permeable medium, mass Grashof number, magnetic 
factor, and, Prandtl number, respectively. Definition of Caputo fractional derivative and their LT are following

The kernel of Caputo fractional derivative is singular if τ = s̃ and, ⌣r  is LT parameter. Without singular kernel, 
the definition of CF fractional derivative and their LT are following
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Ỹ , t̃
�

∂Ỹ
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Similarly, the definition of AB fractional derivative and their LT without singularity and locality are following

Now, these three definitions of fractional derivative are being utilized to find the expressions of temperature, 
concentration and velocity profiles.

Solutions of the temperature and concentration profile
The solution of the problem is sought via the following methodology chart in Fig. 2

Temperature profile using Caputo’s definition.  Think time derivative in Eq. (11) as the Caputo’s frac-
tional time derivative given by Eq. (17), then taking LT of resulting Eq. (11) and make use of respective trans-
formed ICs and BCs, we get expression

Temperature profile using Caputo‑Fabrizio’s definition.  Think time derivative in Eq.  (11) as the 
Caputo-Fabrizio’s fractional time derivative given by Eq. (18), then taking LT of resulting Eq. (11) and make use 
of respective transformed ICs and BCs, we get expression

Temperature profile using Atangana‑Baleanu’s definition.  Think time derivative in Eq. (11) as the 
Atangana-Baleanu’s fractional time derivative given by Eq. (19), then taking LT of resulting Eq. (11) and make 
use of respective transformed ICs and BCs, we get expression

In the absence of R̃ , we get the solution of Saqib et al.21 and if α̃ → 1 we acquire the solution of Seth et al.55.

Concentration profile using Caputo’s definition.  Think time derivative in Eq.  (12) as the Caputo’s 
fractional time derivative given by Eq.  (17), then taking LT of resulting Eq.  (12) and make use of respective 
transformed ICs and BCs, we get expression

Concentration profile using Caputo‑Fabrizio’s definition.  Think time derivative in Eq. (12) as the 
Caputo-Fabrizio’s fractional time derivative given by Eq. (18), then taking LT of resulting Eq. (12) and make use 
of respective transformed ICs and BCs, we get expression
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Ỹ , 0
�

(1− γ̃ )
⌣
r + γ̃

.































(19)

ABD
γ̃
τ õ
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�
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�
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Concentration profile using Atangana‑Baleanu’s definition.  Think time derivative in Eq. (12) as the 
Atangana-Baleanu’s fractional time derivative given by Eq. (19), then taking LT of resulting Eq. (12) and make 
use of respective transformed ICs and BCs, we get expression

Velocity profile
Now, for velocity profile first we change the time derivative in Eq. (10) with fractional time derivative of orders 
α̃ and β̃.
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r
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Non-Dimensionalization Process

Mathematical Modeling

Governing Equations 
Boundary Conditions (BCs)Initial Conditions (ICs)

Dimensionless Governing 

PDEs
Dimensionless ICs Dimensionless BCs

Velocity Profile

Numerical Laplace inversion

Linear ODEs

Laplace Transform

Graphical Representation

Discussion of Results

Proposed Problem

Governing Equations with 

Multiple Fractional Derivative

Solution of ODEs

Temperature Profile Concentration Profile

Figure 2.   Methodology of the flow problem.
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Velocity profile via Caputo approach.  Think time derivative in Eq. (26) as the Caputo’s fractional time 
derivative given by Eq. (17), then taking LT of resulting Eq. (26) and make use of respective transformed ICs and 
BCs along with Eqs. (20) and (23), we get the expression

where �
�

⌣
r
�

=
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1
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ĜT ,

...
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ϕ̈2

ϕ̈0
M, b0 =

ϕ̈1

ϕ̈0
.

Velocity profile using Caputo‑Fabrizio’s definition.  Think time derivative in Eq. (26) as the Caputo-
Fabrizio’s fractional time derivative given by Eq.  (18), then taking LT of resulting Eq.  (26) and make use of 
respective transformed ICs and BCs along with Eqs. (21) and (24), we get the expression

where;Â
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Velocity profile using Atangana‑Baleanu’s definition.  Think time derivative in Eq. (26) as the Atan-
gana-Baleanu’s fractional time derivative given by Eq. (19), then taking LT of resulting Eq. (26) and make use of 
respective transformed ICs and BCs along with Eqs. (22) and (25), we get the expression
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Ĝ0
T B̂

�

⌣
r
�

�

1− e−
⌣
r

�

⌣
r
2

Â
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where Â11
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If α̃ → 1 and β̃ → 1 then non-integer model is reduced to integer-order (classical model). Further, if 
R̃ → 0 and Ĝ1

C → 0 , then the flow problem reduces to the problem of Saqib et al.9. We discuss some results as a 

special case, like if 
⌢

⌣

�2 → 0 , then we obtain the solution for Maxwell nanofluid and also if 
⌢

⌣

�1 → 0 and 
⌢

⌣

�2  = 0 , the 
solution for second-grade nanofluid is acquired. For Newtonian fluid both the times, relaxation and retardation, 
must be zero. Due to the complex combination of Laplace transform in Eqs. (20–29), it is not very easy to com-
pute the inverse Laplace analytically, so now we utilize numerical algorithms for the inversion of Laplace numeri-
cally, like of Zakian’s and Stehfest’s. Also, we will present the comparison of these two algorithms in tabular form.

Results and discussion
In this article we investigated the heat and mass transfer of MHD Oldroyd-B fluid with ramped conditions. The 
Oldroyd-B fluid is taken as a base fluid (Blood) with a suspension of gold nano-particles, to make the solution 
of non-Newtonian bio-magnetic nanofluid. The surface medium is taken as porous. The well-known equation of 
Oldroyd-B nano-fluid of integer order derivative has been generalized to a non-integer order derivative. Three 
different types of definitions of fractional differential operators, like Caputo, Caputo-Fabrizio, Atangana-Baleanu 
are used to develop the resulting fractional nano-fluid model. The graphs for related parameters are plotted via 
MATLAB. Laplace transform technique is utilized for the solution of temperature, concentration, and velocity 
distributions, and for inversion purposes numerical algorithms for the inversion of Laplace numerically, like 
of Zakian’s and Stehfest’s are utilized. Their comparison is also presented in tabular form. The range of plots for 
various parameters is taken from 0 to 10.

Figure 3, 4, 5, 6 depict the temperature profile of Oldroyd-B nanofluid against different flow parameters. The 
impact of the radiation factor for various fractional models is shown in Fig. 3. Clearly, it illustrates that the 
temperature profile is accelerated for increasing value of radiation factor, R̃. Since increase in R̃ at a fixed value 
of T̃∞ and 

⌣

knf  , reduces the value of δ∗ , therefore slope of radiative heat flux ∂ q̃r
∂Ỹ

 increases which pushes the radia-
tive heat transfer rate to increase and gradually the fluid’s temperature rises. It shows that the thickness of energy 
boundary layer reduces and temperature is more uniformly distributed. Figure 4 presents the behavior of frac-
tional parameter, α̃ on the energy equation of nanofluid. It is witnessed that with the increase of α̃ , fall in tem-
perature of Oldroyd-B nanofluid for all the fractional models is observed. The influence of the volume factor, ϕ̈ 
is presented in Fig. 5. It displays that the temperature for Caputo, CF, AB under the ramped conditions is 
decreased for the growing value of ϕ̈ . Physically, it had to be happened that the rate of heat transmission must 
fall with increasing the volume factor of nanoparticles in the nanofluid. It is due to the growing resistance among 
the particles in nanofluid that resultantly reduced the flow of Oldroyd-B nanofluid. Figure 6 demonstrates the 
impact of the Prandtl number on the temperature profile of the fractional nanofluid. It highlights that elevating 
the Prandtl number, decreases the temperature field. The Prandtl number and thermal conductivity are inversely 
related. The reason behind this is that as we enhance the Prandtl number, it reduces the thermal conductivity, 
which in result reduces both the thermal boundary layer and conductance thickness. So as a result, the nanofluid 
is subjected to higher thermal tolerance and temperature decay. Figures 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 
present the velocity profile of Oldroyd B- nanofluid under different circumstances.

Figure 7 represents the behavior of the radiation factor R̃ on the velocity of the nanofluid. It is found that the 
enlargement of the radiation factor R̃ boosts the velocity of fractional nanofluid models. This is due to growing 
the value of R̃ escalating the rate of heat transmission. Because of this accelerating rate of the heat transfer makes 
the bonding among the particles of nanofluid weak and eventually this reduces the interaction of the viscous 
forces. The weak viscous forces give freedom to the nanofluid to flow with higher velocity. The impact of α̃ on 
the velocity profile is presented in Fig. 8. It displays that the velocity of nanofluid depletes with the elevation of 
the value of fractional parameter α̃ . Physically, there is an inverse relation between α̃ and momentum boundary 
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Figure 3.   Temperature profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for radiation factor R̃.
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Figure 4.   Temperature profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for fractional parameter α̃.
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Figure 5.   Temperature profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for volume concentration ϕ̈.
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Figure 6.   Temperature profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for Prandtl number Pr.
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Figure 7.   Velocity profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for radiation factor,R̃.
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Figure 8.   Velocity profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for fractional factor, α̃.
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Figure 9.   Velocity profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for β̃.



18

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23454  | https://doi.org/10.1038/s41598-021-02326-8

www.nature.com/scientificreports/

0 1 2 3 4 5 6
Y

0

0.1

0.2

0.3

0.4

0.5

Ve
lo
ci
ty

Pr
of
ile

Pr=25, =0.3,R=5, =0.5,K=5,λ1=0.5,λ2=0.3,

Sc=0.7,M=10,b0=1,φ=0.04,GC=5.

GT=1, C

GT=2.5, C

GT=5, C

GT=6.5, C

0 0.5 1 1.5 2 2.5 3 3.5 4
Y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ve
lo
ci
ty

Pr
of
ile

Pr=25,GT=5,R=5, =0.5,K=5,λ1=0.5,λ2=0.3,

Sc=0.7,M=10,b0=1,φ=0.04,GC=5.

GT=1, CF
GT=2.5, CF

GT=5, CF

GT=6.5, CF

0 1 2 3 4 5 6
Y

0

0.1

0.2

0.3

0.4

0.5

0.6

Ve
lo
ci
ty

Pr
of
ile

Pr=25,GT=5, =0.5,R=5,K=5,λ1=0.5,λ2=0.3,

Sc=0.7,M=10,b0=1,φ=0.04,GC=5.

GT=1, AB
GT=2.5, AB

GT=5, AB
GT=6.5, AB

Figure 10.   Velocity profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for thermal Grashof number ĜT.
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Figure 11.   Velocity profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for mass Grashof number, ĜC.
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Figure 12.   Velocity profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for schmidt number, Sc.
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Figure 13.   Velocity profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for Prandtl number Pr.



22

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23454  | https://doi.org/10.1038/s41598-021-02326-8

www.nature.com/scientificreports/

0 1 2 3 4 5 6
Y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ve
lo
ci
ty

Pr
of
ile

K=5, =0.3,R=5, =0.5,Sc=0.7,λ1=0.5,λ2=0.3,

GC=5,Pr=25,b0=1,φ=0.04,GT=5.

M=3, C
M=5, C
M=7, C
M=10, C

0 0.5 1 1.5 2 2.5 3 3.5 4
Y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ve
lo
ci
ty

Pr
of
ile

Sc=0.7,R=5, =0.5,K=5,λ1=0.5,λ2=0.3,

GC=5,Pr=25,b0=1,φ=0.04,GT=5.

M=3, CF
M=5, CF
M=7, CF
M=10, CF

0 1 2 3 4 5 6
Y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ve
lo
ci
ty

Pr
of
ile

Sc=0.7, =0.5,R=5,K=5,λ1=0.5,λ2=0.3,

GC=5,Pr=25,b0=1,φ=0.04,GT=5.

M=3, AB
M=5, AB
M=7, AB
M=10, AB

Figure 14.   Velocity profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for magnetic factor 
...
M.



23

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23454  | https://doi.org/10.1038/s41598-021-02326-8

www.nature.com/scientificreports/

0 1 2 3 4 5 6
Y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ve
lo

ci
ty

Pr
of

ile

K=5, =0.3,R=5, =0.5,Sc=0.7,?1=0.5,?2=0.3,

GC=5,Pr=25,b0=1,M=10,GT=5.

φ=0.01, C
φ=0.02, C
φ=0.03, C
φ=0.04, C

0 0.5 1 1.5 2 2.5 3 3.5 4
Y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ve
lo

ci
ty

Pr
of

ile

Sc=0.7,R=5, =0.5,K=5,λ1=0.5,λ2=0.3,

GC=5,Pr=25,b0=1,M=10,GT=5.

φ=0.01, CF
φ=0.02, CF
φ=0.03, CF
φ=0.04, CF

0 1 2 3 4 5 6
Y

0

0.1

0.2

0.3

0.4

0.5

Ve
lo

ci
ty

Pr
of

ile

Sc=0.7, =0.5,R=5,K=5,λ1=0.5,λ2=0.3,

GC=5,Pr=25,b0=1,M=10,GT=5, =0.3.

φ=0.01, AB
φ=0.02, AB
φ=0.03, AB
φ=0.04, AB
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Figure 18.   Velocity profile of Caputo, Caputo-Fabrizio, and Atangana-Baleanu for permeability of medium ⌣K.
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layer thickness under the ramped conditions. However, when α̃ accelerates, the momentum boundary layer 
reduces which results in the reduction the velocity profile. Figure 9 shows the effect of β̃ , which illustrates that 
the velocity profile aggrandizes with an increase of β̃ . Figure 10 depicts the influence of thermal Grashof num-
ber ĜT . Clearly, the velocity of nanofluid boosts with enhancing the value of ĜT in case of fractional models. 
Physically, this characteristic is due to increase of the viscous and thermal forces during the flow. The larger the 
value of ĜT depicting the nanofluid is energized that bolsters the impact of thermal force because of the exist-
ence of convection current. These currents get the value of great importance due to prevailing temperature slop 
and eventually cause the viscous forces to sink. As a result, the nanofluid velocity enhances and we obtained 
the elevated velocity profile. From Fig. 11 we see that the velocity of nanofluid increases with the growing value 
of mass Grashof number ĜC under ramped conditions. This is because of viscous and mass buoyancy forces. 
The impact of the Schmidt number Sc is displayed in Fig. 12. It highlights the reduction of velocity profile with 
increasing value of Sc. An escalation in Sc gives the domination of viscous force on the diffusional impact. Schmidt 
number in fact gives the relative effectiveness of mass and momentum diffusion in specie (concentration) and 
momentum boundary layers. Lower values of Sc associates to smaller molecular weight species or diffusing while 
greater values to a denser diffusing medium. Therefore, growing value of Sc has an inverse effect on momentum 
diffusion, since the viscosity of nanofluid will higher and molecular diffusivity will be lowered. That’s why the 
flow of nanofluid is decreasing as we increase the value of Sc.

Figure 13 displays the physical behavior of Prandtl number Pr. The Prandtl number is the ratio of momentum 
diffusivity (kinematic viscosity) to thermal diffusivity of a fluid. It shows that the speed of nanofluid flow de-
escalates with the escalating value of Pr with ramped conditions. The Pr of blood is taken as 25. Physically, for 
the greater value of Pr, the thermal conductivity of nanofluid is smaller due to increase in viscosity which further 
causes the reduction in the velocity of nanofluid. The influence of the magnetic parameter on momentum limiting 
layer is shown in Fig. 14. It is found that if we boost the value of the magnetic factor 

...
M , the nanofluid decelerates. 

This is due to Lorentz’s force which causes resistance in the motion that occurs because of the transverse applied 
magnetic field, which is responsible for the falling of velocity of nanofluid. Figure 15 depicts the effect of ϕ̈ on the 
velocity field. It shows if we enhance the ϕ̈ , the velocity of nanofluid is reduced for ramped condition. There is a 
direct relation between the viscosity and ϕ̈ , if we grow the value of volume concentration it boosts the viscosity 
of nanofluid and it becomes thick. Figures 16, 17 characterize the behavior of relaxation and retardation time 
on fluid’s velocity. It represents that the nanofluid’s velocity escalates with incrementing the value of 

⌢

⌣

�1 , while 
⌢

⌣

�2 
shows inverse effect, the motion of the fluid reduces with increasing 

⌢

⌣

�2 . From this, we conclude that, if we increase ⌢

⌣

�1 , fluid will take a smaller time to come in the rest position. It is found in Fig. 18 that increase in the perme-
ability of medium boosts the boundary layer thickness of the fluid. The escalation in permeability reduces the 
tolerance which in turn accelerates the momentum development of the regime that’s why the nanofluid’s velocity 
increases. Figure 19 investigates the comparison of various fractional time derivative (C, CF, AB) and integer-
order derivative (α̃ → 1) of both velocity and temperature profiles. In order to authenticate our obtained solu-
tions, a comparative analysis is presented in Fig. 20. It can be observed if the radiation parameter R̃ is removed 
from temperature field and R̃ and Ĝ1

C are deleted from the velocity field of the current model, then the present 
solutions for temperature and velocity field are in excellent agreement with velocity and temperature solutions 
of21. Similarly, if α̃ → 1 and R̃ are removed from temperature field of present solution, then we will obtain the 
solution of55. Tables 2, 3 highlight the computations of dimensionless governing equations of Caputo, CF, and AB 
by Zakian’s and Stehfest’s algorithms at various spatial steps to confirm the authenticity of our solutions up to the 
desired accuracy. Additionally, it also depicts AB fractional model has higher values as compared to the other’s 
fractional models. It can be seen easily that AB fractional derivative better explains the memory impact of the 
solutions of temperature, concentration, and velocity profiles as compared to Caputo and Caputo-Fabrizio. As 
the kernel of Atangana-Baleanu possesses the characteristics of without singularity and locality because of this 
it is more efficient than the Caputo and Caputo-Fabrizio. It also displays that the concentration of the nanofluid 
reduces with the increasing value of Schmidt number. It also describes that the temperature and velocity both 
increase with increasing the increasing values of R̃, β̃ , ĜT , ĜC ,

⌢

⌣

�1,
⌣

K , while decrease for the rest of parameters.

Conclusion
This aims to study the heat and mass transfer of Oldroyd-B bio-magnetic nanofluid with ramped conditions 
in the permeable medium. Some unitless parameters are used to make the dimensional governing equations 
into non-dimensional form. To develop the resulting Oldroyd-B nanofluid model three type definitions of frac-
tional operators are introduced. LT technique is used for the solutions of the flow problem. For comparison and 
authenticity of our solutions, Zakian’s and Stehfest’s algorithms are used. Following key points are concluded 
from this investigation;

•	 The temperature profile of nanofluid increases with incrementing the value of R̃ , It means that the thickness of 
energy boundary layer decreases and temperature is more uniformly distributed, while reduces it reduces with 
increase in α̃, ϕ̈, and Pr, because the rate of heat transfer decreases with increasing ϕ̈ , this is due to the higher 
value viscosity of nanofluid reduces the flow of fluid. Also, with increasing Prandtl number Pr decreases the 
temperature of nanofluid, because the thermal conductivity reduces, which further cause reduction to both 
the thickness of the thermal boundary layer and conductance.
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•	 The velocity of nanofluid de-escalates with the increase of volume concentration ϕ̈. However, the viscosity 
and the volume concentration have a direct relation. If we increase the value of ϕ̈ that increases the viscosity 
of nanofluid and it becomes thick. Because of this the velocity of nanofluid decreases.

•	 Concentration and velocity profiles get reduced while accelerating the Schmidt number Sc. An increasing 
value of Schmidt number gives the domination of viscous force on the diffusional effect. Due to this flow of 
nanofluid slows down.

•	 The fluid’s velocity boosts with various parameters like ĜT , β̃ , ĜC , R̃, and
⌣

K for Caputo, CF, and AB fractional 
models.

•	 For the growing value of 
...
M, Pr and α̃ , the velocity profile reduces.

•	 The velocity of nanofluid rises near the plate with increasing 
⌢

⌣

�1 but depletes after some critical value of Ỹ  , 
while 

⌢

⌣

�2 shows the inverse effect to that of 
⌢

⌣

�1.

0 0.5 1 1.5 2 2.5 3 3.5 4
Y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ve
lo
ci
ty

Pr
of
ile

λ1=0.5, =0.005,R=5, =0.3,Sc=0.7,φ=0.04,
λ2=0.3,GC=5,Pr=25,b0=1,M=3,GT=5.

C
CF
AB
=1

0 2 4 6 8 10
Y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Te
m
pr
at
ur
e
Pr

of
ile

t=0.5,Pr=25,R=5,α=0.5,φ=0.04

C
CF
AB
=1
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Figure 20.   Validation of temperature and velocity fields for Caputo, Caputo-Fabrizio, Atangana-Baleanu.

Table 2.   Represent the solutions of the flow problem utilizing Zakian’s algorithms with ĜT = 5, R̃ = 5,

ϕ̈ = 0.04, ĜC , Sc = 0.7,
...
M = 10,Pr = 25,

⌢

⌣

�1 = 0.5,

⌢

⌣

�2 = 0.3,
⌣

K = 5, α̃ = 0.5, β̃ = 0.3.

α̃ β̃ R̃ ϕ̈
Zakian’s �̃ 
(C)

Zakian’s �̃ 
(CF)

Zakian’s �̃ 
(AB)

Zakian’s 
⌢

�
(C)

Zakian’s 
⌢

�
(CF)

Zakian’s 
⌢

�
(AB)

Zakian’s Ũ∗

(C)
Zakian’s Ũ∗

(CF)
Zakian’s 
Ũ

∗(AB)

0.5 0.3 5 .04 0.11289 0.12274 0.14066 0.02837 0.03552 0.04593 0.06086 0.06288 0.07411

0.9 0.3 5 .04 0.06964 0.07421 0.08277 0.00781 0.01150 0.01454 0.02787 0.03087 0.03539

0.5 0.3 5 .04 - - - - - - 0.06086 0.06288 0.07411

0.5 0.5 5 .04 - - - - - - 0.06097 0.06298 0.07418

0.5 0.3 3 .04 0.07235 0.08183 0.09756 - - - 0.04394 0.04694 0.05730

0.5 0.3 5 .04 0.11289 0.12274 0.14066 - - - 0.06086 0.06288 0.07411

0.5 0.3 5 .02 0.17587 0.18500 0.20372 - - - 0.08719 0.08722 0.09879

0.5 0.3 5 .04 0.11289 0.12274 0.14066 - - - 0.06086 0.06288 0.07411

Pr Sc

⌢

⌣

�1

⌢

⌣

�2

Zakian’s �̃ 
(C)

Zakian’s �̃ 
(CF)

Zakian’s �̃ 
(AB)

Zakian’s 
⌢

� 
(C)

Zakian’s 
⌢

� 
(CF)

Zakian’s 
⌢

�
(AB)

Zakian’s Ũ∗ 
(C)

Zakian’s Ũ∗

(CF)
Zakian’s 
Ũ

∗(AB)

10 0.3 0.5 0.3 0.19718 0.20588 0.22437 - - - 0.09612 0.09542 0.10691

25 0.3 0.5 0.3 0.11289 0.12274 0.14066 - - - 0.06086 0.06288 0.07411

25 0.3 0.5 0.3 - - - 0.07918 0.08880 0.10503 0.08217 0.08364 0.09714

25 0.7 0.5 0.3 - - - 0.02837 0.03552 0.04593 0.06086 0.06288 0.07411

25 0.3 0.5 0.3 - - - - - - 0.06086 0.06288 0.07411

25 0.3 4 0.3 - - - - - - 0.05962 0.06198 0.07330

25 0.3 0.5 0.3 - - - - - - 0.06086 0.06288 0.07411

25 0.3 0.5 0.7 - - - - - - 0.06155 0.06337 0.07451

ĜT ĜC

...
M

⌣

K

Zakian’s Ũ∗ 
(C)

Zakian’s Ũ∗

(CF) Zakian’s Ũ∗(AB)

1 5 10 5 0.02237 0.02414 0.02970

5 5 10 5 0.06086 0.06288 0.07411

5 1 10 5 0.05067 0.05132 0.05924

5 6.5 10 5 0.06468 0.06721 0.07969

5 5 3 5 0.15116 0.12542 0.14741

5 5 10 5 0.06086 0.06288 0.07411

5 5 10 3 0.06036 0.06240 0.07353

5 5 10 5 0.06086 0.06288 0.07411



30

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23454  | https://doi.org/10.1038/s41598-021-02326-8

www.nature.com/scientificreports/

Received: 31 May 2021; Accepted: 15 November 2021

References
	 1.	 Oldroyd, J. G. On the formulation of rheological equations of state. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 200(1063), 523–541 

(1950).
	 2.	 Farooq, U. et al. MHD flow of Maxwell fluid with nanomaterials due to an exponentially stretching surface. Sci. Rep. 9(1), 1–11 

(2019).
	 3.	 Kahshan, M., Lu, D. & Siddiqui, A. M. A Jeffrey fluid model for a porous-walled channel: Application to flat plate dialyzer. Sci. 

Rep. 9(1), 1–18 (2019).
	 4.	 Alamri, S. Z., Khan, A. A., Azeez, M. & Ellahi, R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: 

a novel perspective of Cattaneo–Christov heat flux model. Phys. Lett. A 383(2–3), 276–281 (2019).
	 5.	 Khan, Z. et al. MHD and slip effect on two-immiscible third grade fluid on thin film flow over a vertical moving belt. Open Phys. 

17(1), 575–586 (2019).
	 6.	 J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, & S. Lee, Enhanced thermal conductivity through the development of nanofluids (No. 

ANL/MSD/CP-90462; CONF-961202–94). Argonne National Lab., IL (United States), (1996).
	 7.	 Das, S. K., Choi, S. U., Yu, W. & Pradeep, T. Nanofluids: science and technology (Wiley, 2007).
	 8.	 Wong, K. F. V. & Kurma, T. Transport properties of alumina nanofluids. Nano Technology 19, 8 (2008).
	 9.	 Caputo, M. Linear models of dissipation whose Q is almost frequency independent: II. Geophys. J. Int. 13(5), 529–539 (1967).
	10.	 Caputo, M. & Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 1–13 

(2015).
	11.	 A. Atangana, & D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat 

transfer model. (2016).
	12.	 P. Kumam, A. Tassaddiq, W. Watthayu, Z. Shah, & T. Anwar, Modeling and simulation based investigation of unsteady MHD 

radiative flow of rate type fluid; a comparative fractional analysis. Math. Comput. Simul. (2021).
	13.	 Saeed, S. T., Riaz, M. B., Baleanu, D., Akgül, A. & Husnine, S. M. Exact analysis of second grade fluid with generalized boundary 

conditions. Intel. Autom. Soft Comput. 28(2), 547–559 (2021).
	14.	 Saeed, S. T., Abro, K. A. & Almani, S. Role of single slip assumption on the viscoelastic liquid subject to non-integer differentiable 

operators. Math. Methods Appl. Sci. 44(7), 6005–6020 (2021).
	15.	 R. Tang, S. Rehman, A. Farooq, M. Kamran, M. I. Qureshi, A. Fahad, & J. B. Liu, A comparative study of natural convection flow 

of fractional maxwell fluid with uniform heat flux and radiation. Complexity, (2021).

Table 3.   Represent the solutions of the flow problem utilizing Stehfest’s algorithms with ĜT = 5, R̃ = 5,

ϕ̈ = 0.04, ĜC , Sc = 0.7,
...
M = 10,Pr = 25,

⌢

⌣

�1 = 0.5,

⌢

⌣

�2 = 0.3,
⌣

K = 5, α̃ = 0.5, β̃ = 0.3.

α̃ β̃ R̃ ϕ̈
Stehfest’s 
�̃ (C)

Stehfest’s �̃ 
(CF)

Stehfest’s �̃ 
(AB)

Stehfest’s ⌢

�(C)
Stehfest’s 

⌢

�
(CF)

Stehfest’s 
⌢

�
(AB)

Stehfest’s 
Ũ

∗(C)
Stehfest’s Ũ∗

(CF)
Stehfest’s 
Ũ

∗(AB)

0.5 0.3 5 .04 0.11320 0.12310 0.14109 0.02842 0.03561 0.04606 0.06093 0.06291 0.07416

0.9 0.3 5 .04 0.06970 0.07434 0.08292 0.00779 0.01151 0.01455 0.02801 0.03097 0.03550

0.5 0.3 5 .04 - - - - - - 0.06093 0.06291 0.07416

0.5 0.5 5 .04 - - - - - - 0.06104 0.06300 0.07422

0.5 0.3 3 .04 0.07253 0.08206 0.09785 - - - 0.04402 0.04697 0.05735

0.5 0.3 5 .04 0.11320 0.12310 0.14109 - - - 0.06093 0.06291 0.07416

0.5 0.3 5 .02 0.17640 0.18555 0.20435 - - - 0.08720 0.08724 0.09884

0.5 0.3 5 .04 0.11320 0.12310 0.14109 - - - 0.06093 0.06291 0.07416

Pr Sc

⌢

⌣

�1

⌢

⌣

�2

Stehfest’s 
�̃ (C)

Stehfest’s �̃ 
(CF)

Stehfest’s �̃ 
(AB)

Stehfest’s ⌢

�(C)
Stehfest’s 

⌢

�
(CF)

Stehfest’s 
⌢

�
(AB)

Stehfest’s 
Ũ

∗(C)
Stehfest’s Ũ∗

(CF)
Stehfest’s 
Ũ

∗(AB)

10 0.3 0.5 0.3 0.19779 0.20649 0.22506 - - - 0.09611 0.09544 0.10694

25 0.3 0.5 0.3 0.11320 0.12310 0.14109 - - - 0.06093 0.06291 0.07416

25 0.3 0.5 0.3 - - - 0.07938 0.08906 0.10534 0.08225 0.08367 0.09719

25 0.7 0.5 0.3 - - - 0.02842 0.03561 0.04606 0.06093 0.06291 0.07416

25 0.3 0.5 0.3 - - - - - - 0.06093 0.06291 0.07416

25 0.3 4 0.3 - - - - - - 0.05969 0.06200 0.07335

25 0.3 0.5 0.3 - - - - - - 0.06093 0.06291 0.07416

25 0.3 0.5 0.7 - - - - - - 0.06161 0.06339 0.07456

ĜT ĜC

...
M

⌣

K

Stehfest’s Ũ∗

(C)
Stehfest’s Ũ∗

(CF) Stehfest’s Ũ∗(AB)

1 5 10 5 0.02242 0.02415 0.02973

5 5 10 5 0.06093 0.06291 0.07416

5 1 10 5 0.05071 0.05134 0.05927

5 5 10 5 0.06093 0.06291 0.07416

5 5 3 5 0.15145 0.12570 0.14778

5 5 10 5 0.06093 0.06291 0.07416

5 5 10 3 0.06043 0.06243 0.07357

5 5 10 5 0.06093 0.06291 0.07416
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