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Activation of allylic esters in an intramolecular
vinylogous kinetic resolution reaction with
synergistic magnesium catalysts
Dan Li1, Yuling Yang1, Minmin Zhang1, Linqing Wang1, Yingfan Xu1, Dongxu Yang 1✉ & Rui Wang 1✉

Kinetic resolution (KR) of racemic starting materials is a powerful and practical alternative to

prepare valuable enantiomerically enriched compounds. A magnesium-catalyzed kinetic

resolution based on a designed intramolecular vinylogous Michael reaction is disclosed. Here

we show a synergistic catalytic strategy based on the development of chiral ligands. Sub-

strates containing linear allylic ester structures are designed and synthesized to construct key

[6.6.5]-tricyclic chiral skeletons via this kinetic resolution process. Detailed mechanistic

studies reveal a rational mechanism for the current intramolecular vinylogous KR reaction.

The desired direct intramolecular asymmetric vinylogous Michael reaction of linear allylic

esters is realized in high efficiency and enantioselectivity with the synergistic catalytic

system.
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Catalytic nonenzymatic kinetic resolution (KR) of racemic
starting materials that mediates the selective reaction of one
enantiomer has been recognized as a powerful and practical

alternative to preparing valuable enantiomerically enriched com-
pounds, and found wide applications in both academia and
industry1–4. Most documented nonenzymatic KR reactions use
intermolecular pathways, with the selection of one appropriate
reactive partner to finish the desired KR process. In contrast, the
development of intramolecular KR reactions have been relatively
less investigated, as they require an ideal match between the
designed substrates and small molecule catalysts5–14. Herein, we
design an intramolecular vinylogous Michael reaction of linear
allylic esters for a KR process to build chiral parallel [6.6.5]-tricyclic
skeletons, which exist in many natural products and pharmaceuti-
cally active compounds, such as Juglocombin B, Glaziovianol,
and some COX-2 and ubiquitin-connected enzymes inhibitors
(Fig. 1)15–19. This reaction also represents one alternative to
asymmetric dearomatizative pathways of 1-naphthols20–26.

Compared with other linear allylic carbonyl compounds, sim-
ple linear allylic esters are less reactive and less investigated in
asymmetric reactions27–29. To date, there are still very few studies
on the direct activation of linear allylic esters in catalytic asym-
metric reactions. Moreover, the α-position of linear allylic esters
might dominate the C-C bond formation process especially in the
reaction with Michael acceptors30–32. In most cases, activated or
modified allylic esters are often necessary to overcome the low
reactivity of these types of substrates33–39. For example, in the
widely used vinylogous Mukaiyama reaction, it is necessary to
prepare the unstable dienolsilanes in a separate step33–37. Only
until very recently, the Yin group reported direct asymmetric
vinylogous aldol reactions of allylic esters using chiral copper
catalysts and additive bases40. They also achieved the asymmetric

alkynylogous aldol reaction by an optimized propargyl copper(I)
catalytic method41. These reactions are highly efficient and ideal
for the direct use of allylic esters as feedstock. However, the direct
catalytic asymmetric intramolecular vinylogous reaction of allylic
esters has not yet been achieved42–44. Herein, by developing a
synergistic in situ generated magnesium catalytic strategy45–55,
we successfully employ the vinylogous Michael reaction of linear
allylic esters in a rationally designed intramolecular KR process
(Fig. 1).

Results
Reaction optimization. Initially, we designed and synthesized the
allylic ester 1a for the intramolecular KR reaction. Bifunctional
diols containing amine groups (Fig. 2) were selected as chiral
ligands for sequencing process to the magnesium catalysts. The
desired intramolecular vinylogous Michael reaction proceeded
primarily from one enantiomer, and resulted in enantiomerically
enriched parallel [6.6.5]-tricyclic skeletons (Table 1). Different
tertiary amines-modified diol ligands were screened, and
pyrrolidine-modified ligand L1 had better resolution results
compared with those of other tertiary amine groups (Table 1,
entries 1-5). Further modification at the 6,6’-position of the
BINOL skeletons led to the successful synthesis of a series of
bifunctional chiral ligands (Fig. 2, L7-L10). These modifications
dramatically affected the efficiency of the magnesium catalysts,
and the introduction of chloride was identified as giving the best
results for the intramolecular vinylogous KR reaction (Table 1,
entry 10). The synthetic route for ligand L10 is illustrated in Fig. 2.

Substrate scope. Next, we investigated the scope for the intra-
molecular vinylogous KR reaction (Fig. 3). The magnesium
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Fig. 1 Reaction design and related compounds containing the key [6.6.5]-tricyclic skeletons. a Synergistic catalytic strategy for the direct intramolecular
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catalytic system proved to be robust for the selective conversion
of different alkyl-substituted substrates, furnished the desired KR
process smoothly under mild conditions. A variety of substituted
[6.6.5]-tricyclic rings were obtained in high enantioselectivities
(92:8-98.5:1.5 er), and the enantiomerically enriched allylic esters
1* were recovered in satisfactory results. Substrates with aryl
groups also finished the designed KR process, although relatively
higher catalyst loading (20 mol%) was required (Fig. 3). The
absolute configuration of the resolution adducts was determined
by the X-ray crystallographic analysis of 2b (Fig. 3).

Subsequently, different benzohexene ketone motifs were
introduced into the allylic ester substrates and used in the
vinylogous KR reaction. Polycyclic structures were established
under the magnesium catalytic system. Electron-withdrawing or
electron-donating groups were under trial in the KR process
(Fig. 4).

Interestingly, it was observed that for substrate 1t, bearing
two Michael receptor sites, the vinylogous Michael reaction
occurred during the KR process to form the quaternary
stereocenter, and generate the bridged-ring adduct 2t56. In
addition, some of 1t* was recovered at a moderate er value. The
common cyclization adduct 2t’ was not observed under the
catalytic system, instead, some undetermined decomposition
products were generated, resulting in the relatively lower yields of
2t and 1t* (Fig. 5).

Transformations. The vinylogous KR reaction was then carried
out at the gram scale and transformations of the recovered 1a*
were conducted. As illustrated in Fig. 6, the recovered substrate
1a* formed the cyclization adduct 2a’, by treatment with NaOMe.

Under photocatalytic conditions lead to the polycyclic product 3
after finishing the [2+ 2] cyclization process (Fig. 6)57–60.

To our pleasure, the rearomatization reaction was easily
realized by treating 2a with p-toluenesulfonic acid under mild
conditions, This reaction can be used for the formal construction
of γ-arylation adduct 4 with high enantioselectivity and good
yield (Fig. 7).

Additional transformations of the tricyclic rings were
performed for this central [6.6.5] skeleton to form compounds
that might be useful for pharmaceutical investigations15–19. We
introduced different functional groups or heterocyclic structures
to the central skeletons by selected cross-coupling reactions.
These transformations were carried out by established transition-
metal mediated coupling reactions as illustrated in Fig. 7.

Mechanistic studies. To investigate mechanistic aspects of the
intramolecular vinylogous KR reaction, we performed a variety of
mechanistic experiments. We first performed control experiments
to identify the reason for the high efficiency of the bifunctional
magnesium catalyst. As illustrated in Fig. 8, simple in situ gen-
erated magnesium catalyst from BINOL cannot promote the
intramolecular vinylogous reaction (Fig. 8, a). Introduction of
tertiary amine at high loading mediated generation of the trace
cyclization adduct, and the combined use of the BINOL-Mg
catalyst and tertiary amine activated the allylic ester 1a to form
intramolecular vinylogous Michael adduct 2a. These results
indicate the magnesium center and the Brønsted base can
synergistically activate the designed allylic ester substrate. The
developed bifunctional magnesium catalyst is more effective in
the vinylogous KR reaction even with the ligand L12 with lower
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Brønsted basicity (Fig. 8, a). Subsequently, studies of nonlinear
effects revealed the synergistic catalyst interacts with the bidentate
substrate as a mono-species (Fig. 8, b)61,62. Further investigations
on ESI experiments of the initial reaction complexes clearly
indicated the coordination results of the immediately introduced
bidentate substrate 1a to the bifunctional magnesium catalyst,
which is well in accordance with the calculated results (Fig. 8, c).

Proposed mechanism. Combination with the mechanistic
insights, a possible mechanism cycle of the intramolecular
vinylogous KR reaction is proposed (Fig. 9). The bifunctional
magnesium catalyst is smoothly generated from L10 and
Bu2Mg after the neutralization process, then the bidentate

substrate coordinates to the magnesium center and the tertiary
amine synergistically promotes enolation of the allylic ester. At
the same time, the bidentate coordination results in synchro-
nous activation of the Michael receptor to promote the intra-
molecular vinylogous reaction in the well-controlled chiral
environment (Fig. 9, II and III). Finally, the protonation pro-
cess and the entry of another molecule of 1a lead to the release
of the KR product 2a.

Discussion
In summary, we have accomplished a direct catalytic asymmetric
intramolecular vinylogous Michael reaction. Bifunctional chiral
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ligands were developed to generate synergistic magnesium cata-
lysts. Using the designed allylic ester substrates, the KR process
successfully led to the expected [6.6.5]-tricyclic key skeletons.
Several transformations were conducted to give types of chiral

polycyclic structures and derivatives of the [6.6.5]-tricyclic ske-
letons, as well as the enantioselective γ-arylation adduct. Com-
binational mechanistic insights, including control experiments,
nonlinear effects studies and relative ESI investigations, led to the
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proposal of a possible mechanism of this intramolecular vinylo-
gous KR reaction. Further developments of the reported syner-
gistic magnesium catalyst in asymmetric reactions are underway
in our laboratory.

Methods
General procedure for the vinylogous KR reaction. To a stirred solution of L10
(10.42 mg, 0.02 mmol) in CPME (0.5 mL) was added Bu2Mg (20 μL, 1.0 M in
heptane, 0.02 mmol) under an argon atmosphere, the mixture was then stirred at
room temperature for 30 min to generate the catalyst. The substrate 1 (0.2 mmol)

in CPME (0.5 mL) was quickly added to the flask containing the in situ generated
magnesium catalyst. After the addition, the reaction was stirred at 40 °C and
analyzed by TLC. The reaction was quenched with saturated NH4Cl and extracted
with CH2Cl2. The organic layer was dried over anhydrous Na2SO4 and con-
centrated under vacuum. Then the residue was purified by column chromato-
graphy to afford the product 1* and 2.

Data availability
Detailed experimental procedures and characterization of compounds can be found in
the Supplementary Information. The X-ray crystallographic coordinates for structures
reported in this article have been deposited at the Cambridge Crystallographic Data

a Control experiments

b Nonlinear investigations

c ESI experiments of the initial reaction complexes (left: experiment results: right: calculated results)
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Center (L10: CCDC 1978958; 2b: CCDC 1978955). These data could be obtained free of
charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/
data_request/cif. All data are available from the authors upon request.
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