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Abstract: Persistent infection by human papillomaviruses (HPVs), small, double-stranded DNA
viruses that infect keratinocytes of the squamous epithelia, can lead to the development of cervical
and other cancers. The viral oncoprotein E7 contributes to viral persistence in part by regulating host
gene expression through binding host transcriptional regulators, although mechanisms responsible
for E7-mediated transcriptional regulation are incompletely understood. Type I IFN signaling
promotes the expression of anti-viral genes, called interferon-stimulated genes (ISGs), through the
phosphorylation and activation of STAT1. In this study, we have observed that the CR3 domain
of E7 contributes to the episomal maintenance of viral genomes. Transcriptome analysis revealed
that E7 transcriptionally suppresses a subset of ISGs but not through regulation of STAT1 activation.
Instead, we discovered that E7 associates with Mediator kinase CDK8 and this is correlated with
the recruitment of CDK8 to ISG promoters and reduced ISG expression. E7 fails to suppress ISGs
in the absence of CDK8, indicating that CDK8 function contributes to the suppression of ISGs
by E7. Altogether, E7/CDK8 association may be a novel mechanism by which E7 inhibits innate
immune signaling.

Keywords: STAT1; IFN signaling; interferon-stimulated genes; transcription; Mediator kinase CDK8;
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1. Introduction

Infection by human papillomaviruses (HPVs), small, double-stranded DNA viruses that infect
keratinocytes of stratified squamous epithelia, can lead to the development of benign lesions and
anogenital and oropharyngeal cancers [1,2]. Infection by certain HPV types (so-called “high risk”
types) causes essentially all cervical cancer worldwide, with over half of cases caused by HPV type
16 [3]. The HPV life cycle is tightly regulated by cellular differentiation [4]. In basal epithelial cells,
viral genomes are maintained as episomes at a low copy number. As the host cell detaches from the
basal layer and undergoes terminal differentiation, the viral late promoter is activated to drive the
productive phase of infection in which genomes are replicated to high copy numbers, capsid proteins
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are synthesized, and progeny virions are assembled and released [4–6]. This life cycle organization is
one mechanism by which the virus persists as it restricts the production of antigenic viral proteins to
the upper, differentiated layers of the skin that have reduced immune-surveillance [7–10]. Persistent
infection by high risk HPV types is the major risk factor for the development of cancer as this allows
for genetic mutations to accumulate in proliferating, infected cells [1].

In addition to its overall life cycle organization, HPV16 encodes several oncoproteins that
function to promote the viral life cycle and are required for viral persistence. The oncoprotein E7
is the main transforming protein and is sufficient to immortalize human epithelial cells [11–13].
E7 contributes to viral persistence, in part, by promoting cell cycle progression and inhibiting host
immune responses [14,15]. Interactions between the three conserved domains of E7 (CR1-3) and
numerous transcriptional regulators have been reported [14,16], including with hypoxia-inducible
factor 1 (HIF1α) [17], chromatin modifying enzymes [18–20], TATA box binding protein (TBP) [21],
interferon regulatory factor 1 (IRF1) [22], and transcriptional repressor E2F6 [23]. E7 is best known for
binding to and targeting the transcriptional repressor retinoblastoma (pRb) for proteasomal degradation
to promote cell cycle progression in differentiated keratinocytes, which facilitates the replication of
viral genomes [24–26].

Type I interferons (IFNs), which include IFN-α and IFN-β, signal through the Janus kinase/signal
transducer and activator of transcription (JAK/STAT) pathway. Importantly, human foreskin
keratinocytes (HFKs) constitutively produce IFN-κ, a keratinocyte-specific IFN that stimulates type I
IFN signaling [27]. Autocrine or paracrine IFN stimulation induces STAT1 and STAT2 to dimerize,
bind IRF9 to form the IFN-stimulated gene factor 3 (ISGF3) complex, and translocate to the nucleus to
bind the interferon-specific response element (ISRE) of target promoters [28–30]. Nuclear STAT1 gains
full transcriptional activity once phosphorylated in the carboxy-terminal transactivation domain on
serine 727 (pS727) to drive the expression of genes induced by both type I and type II IFNs [31–36].
These IFN-stimulated genes (ISGs) have a variety of anti-viral activities [37]. It has been reported
that E7 can inhibit IFN signaling by binding IRF9 to block formation of the ISGF3 complex and
prevent nuclear translocation [38], along with other potential mechanisms [22,39–44]. While many
E7 interacting partners have been reported, our understanding of the biological significance of these
interactions remains largely incomplete. Numerous studies have reported that certain CR3 mutations
can alter E7’s biological activities [14,17,45–47], but, because E7 is indispensable for completion of
the HPV life cycle, generation of HPV16+ cells harboring mutations in the E7 open reading frame
(ORF) has been largely unsuccessful using primary keratinocytes. A study by Todorovic et al. used
the HPV1A E7 CR3 domain crystal structure as a guide to identify CR3 residues that likely affect
HPV16 E7’s ability to interact with cellular proteins without disrupting the overall structure of the CR3
domain [47].

Cyclin-dependent kinase 8 (CDK8) is a regulator of transcriptional complexes and is a component
of the CDK8 submodule of the Mediator complex [48]. CDK8 kinase activity can affect transcription
through positive or negative regulation of certain activators and transcription factors and the
phosphorylation of histone H3S10 [49,50]. The CDK8 submodule also has kinase-independent
regulatory functions, such as regulation of the association of RNA polymerase II (Pol II) with
Mediator [51], the recruitment of factors required for transcriptional elongation [52,53], and histone
H3K9 methylation [54].

This paper is part of a larger effort to investigate the consequences of E7 CR3 mutations in order
to uncover novel biological activities of E7. We report that certain residues in the CR3 domain of E7 are
critical for episomal maintenance of the viral genome. The CR3 domain influences the ability of E7 to
suppress a subset of type I IFN-induced ISGs. We found E7 interacts with CDK8 and that E7 requires
CDK8 to suppress ISG expression. Additionally, CDK8 is enriched at ISG promoters in cells containing
E7 but there is reduced CDK8 enrichment in cells containing the E7 F57A mutant, suggesting that E7
regulates CDK8 occupancy at ISG promoters. Altogether, our data suggest a novel function by which
E7 suppresses IFN signaling in a manner that requires interacting with and altering CDK8 function.
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2. Materials and Methods

2.1. Cloning of E7 Mutants

HPV16 genomes containing CR3 mutations in the E7 open reading frame were created by
mutagenesis of wild type pEGFP Ni HPV16 plasmid with the QuickChange II Site Directed Mutagenesis
kit (Agilent, Santa Clara, USA) using the primers listed in Supplementary Table S1. Mutagenesis was
based on the work of Todorovic et al. [47] in which surface exposed amino acid residues in CR3 domain
were replaced with residues of opposite charge. The presence of the mutations was confirmed by
sequencing. To create expression vectors for E7 mutants, mutagenized pEGFP Ni HPV16 plasmids
were used as templates for PCR using 16E7 Xho frame 5’ and 16E7 Not stop 3’ (Supplementary Table S1).
These fragments were digested with XhoI and NotI and cloned into digested pcDNA TapN 16E7 [17].
The E7 CR2 LYCYE deletion mutant was created as previously described [45]. The pLXSN E6/E7 F57A
plasmid was created by site directed mutagenesis using the primers in Supplementary Table S1.

2.2. Cell Culture and Creation of Cell Lines

Human foreskin keratinocytes (HFKs) were isolated from discarded and de-identified neonatal
foreskins; HFKs containing HPV16 genomes (W12 strain) were created by transfection and selection as
previously described [45]. Episomal maintenance of the virus was confirmed by Southern analysis:
total DNAs were isolated and digested with XhoI (which does not cut the HPV16 genome) before being
analyzed by Southern blotting using the whole HPV16 genome as a probe as described previously [45].
HFKs expressing HPV oncogenes were created by retroviral transduction as described previously [45,55].
Retroviral stocks were generated by transfection of retrovirus vector plasmids and into a packaging
cell line as previously described [56]. HFKs and keratinocyte-derived cell lines were cultivated in
E medium with 5% fetal bovine serum (FBS) (HyClone, Logan, USA) in the presence of mitomycin
C-treated NIH-3T3 J2 fibroblast feeders [45,57]. Cell lines derived from at least three donors were
used in separate experiments, and data for all figures were compiled from at least three individual
experiments. U2OS cells were cultivated in DMEM (Gibco, Grand Island, USA) containing 10% bovine
growth serum (BGS) (HyClone, Logan, USA).

The drugs used in this study are Ruxolitinib (Selleckchem, Houston, USA, #S1378), Senexin A
(Tocris, Bristol, United Kingdom, #4875), and recombinant IFNβ (PBL Assay Science, Piscataway, USA,
#11415-1). Drugs were reconstituted per manufacturer’s instructions and added to monolayer media
at the time of seeding at the following concentrations: 10 µM of Ruxolitinib, 10 µM of Senexin A,
or 50 units/mL of IFNβ.

2.3. Cellular Growth Rates

To determine cellular growth rate, each cell line was cultured in a monolayer, passaged at
a 1:10 dilution. The number of days required for cells to reach confluency after each passage (i.e., time
required for 3.3 population doublings) was recorded for a maximum of 60 days.

2.4. RNA Extraction, RT-qPCR, and Western Blotting

Cells were seeded and grown in monolayer for 24 h and total RNA was isolated using
RNA-STAT 60 (TelTest, Inc. Friendswood, USA), digested with RNase-free DNase (Promega, Madison,
USA), phenol-chloroform extracted, and reverse transcribed using qScript (Quanta, Beverly, USA).
Quantitative PCR (qPCR) was performed using the PerfeCTa SYBR green SuperMix ROX (Quanta,
Beverly, USA) on an Applied Biosystems StepOne Plus real-time PCR machine using the primers
listed in Table S1. Western blotting was performed as follows: Cells were grown in monolayer for
24 h and protein lysates were prepared by adding 1× Lysis Buffer (Cell Signaling, Danvers, USA,
supplemented with 1 mM PMSF) to cells and incubated on ice for 5 min followed by scraping, brief
sonication, and clarification by centrifugation. SDS-PAGE and Western blotting were performed as
described previously [56] with 100 µg of protein. Blocking and antibody dilution was performed
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using Li-Cor Odyssey®blocking buffer containing 0.1% tween-20 and images were acquired using a
Li-Cor Odyssey®near infrared imaging system. Antibodies used include: CDK8 (Bethyl Laboratories,
Montgomery, USA, #A302-501A), pRb (Cell Signaling, Danvers, USA, #9309S), p53 (Calbiochem,
San Diego, USA, #OP43), phospho-STAT1 (Y701; Cell Signaling, Danvers, USA, #9167), phospho-STAT1
(S727; Cell Signaling, Danvers, USA, #8826), total STAT1 (Cell Signaling, Danvers, USA, #9172), GAPDH
(Santa Cruz Biotechnology, Dallas, USA, #47724), and HPV16 E7 (Valdospan GmbH, Tulln, Austria,
#VS13004L). Band intensity was quantified using Image Studio Lite Software (Li-Cor, Lincoln, USA).

2.5. RNA Sequencing

Total RNA was isolated using RNA-STAT 60 (TelTest, Inc., Friendswood, USA), and purified
using the RNeasy RNA isolation kit (Qiagen, Hilden, Germany). Total RNA integrity was assessed on
an Agilent TapeStation 2200 using RNA ScreenTape assay. Libraries were prepared using Illumina’s
TruSeq Stranded RNA LT kit. Libraries were analyzed on an Agilent TapeStation 2200 D1000 assay to
determine average size and were quantitated using the NEBNext Library Quant qPCR Kit. Libraries
were normalized to 4 nM, pooled, denatured, and diluted to approximately 1.8 pM. A 1% library of
1.8 pM PhiX was spiked in as an internal control. The library pool was sequenced on an Illumina
NextSeq 550, with a read length of 101 × 51 base pairs. Base calling and quality scoring were performed
with Illumina Real Time Analysis software (RTA). Two runs were performed. Reads were aligned to
the human (GRCh38.p10) and HPV16 (NC_001526.3) genomes using STAR_2.4.2a and counted using
RSEM 1.2.31. Differentially expressed genes were identified with EBSeq 1.12. A gene was considered
differentially expressed if expression was at least 2-fold change different in pLXSN E6/E7 F57A cells,
as compared to pLXSN E6/E7 cells, and had a p value of 0.05 or less.

All pathway analyses were performed using Reactome [58,59]. Reactome performs a statistical
(hypergeometric distribution) test that determines whether certain Reactome pathways are over-represented
in a list of genes [58,59]. The lists of genes submitted to Reactome consisted of all up- or downregulated
genes in pLXSN E6/E7 F57A cells, as compared to pLXSN E6/E7 cells. Significantly enriched pathways were
determined by a false discovery rate (FDR) of 0.05 or less. The FDR is the corrected over-representation
probability calculated using the Benjamini-Hochberg approach [58,59]. Reactome results were reported
in table format. Entities found refers to the different components of the pathway that correspond to the
submitted genes (the up- or downregulated list of genes). A gene may map to more than one entity in
a certain pathway, as it may represent the gene, protein, or a modified protein within the listed pathway.
Entities total refers to all the components within the listed pathway [58,59].

2.6. siRNA Transfection

CDK8 was targeted with ON-TARGETplus SMARTpool L-003242-00-0005 and the negative control
was D-001810-10-20 (both from Dharmacon, Lafayette, USA). The DharmaFECT siRNA protocol
was followed. Briefly, cell lines were seeded in a 6-well plate at 500,000 cells/well and incubated
with E medium + 5% FBS. Twenty-four hours post seeding, the siRNA was diluted to 35 nM in
Opti-MEM (Gibco, Grand Island, USA, #11058-021) using DharmaFECT1 (Dharmacon, Lafayette, USA,
T-2001-02) at a concentration of 5 µL/mL and added to cells incubated with E medium + 5% FBS,
according to the manufacturer’s protocol. Cells were harvested for RNA or protein as described above
72 h post-transfection.

2.7. Immunoprecipitation

U2OS cells were transfected with 1 µg of HA-tagged E7 expression plasmid overnight using
polyethyleneimine (PEI; Polysciences, Warrington, USA). Immunoprecipitation was performed as
described previously using the anti-CDK8 antibody (Abcam, Cambridge, United Kingdom, ab176559)
for immunoprecipitation and anti-HA antibody (Santa Cruz Biotechnology, Dallas, USA, sc-7392)
for Western blotting and detection of HA-E7 [17]. From HPV16+ cells, HPV E7 and CDK8 were
immunoprecipitated following the manufacturer’s instructions in the Pierce Cross-link IP kit (Thermo
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Fisher Scientific, Waltham, USA, #26147). Briefly, based on primary antibody source 20 µL of
either protein A or protein G agarose per sample was added to a spin column and washed with
IP lysis/wash buffer (25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Igepal CA-630, 5%
glycerol). Two micrograms of either E7 (Valdospan GmbH, Tulln, Austria, #VS13004L) or CDK8 (Bethyl
Laboratories, Montgomery, USA, A302-500A) antibody per sample was added to the prewashed protein
A or G agarose and incubated at RT for 1 h. The primary antibody was cross-linked to the protein A or
G agarose by adding the cross-linking reagent disuccinimidyl suberate (DSS) to a final concentration of
25 mM and incubating at RT for 1 h. Anti-CDK8-crosslinked protein A agarose or anti-E7-crosslinked
protein G was washed twice with elution buffer (50 mM glycine (pH 2.8)) to remove non-cross-linked
antibody and to quench the reaction followed by equilibration with IP lysis/wash buffer. Pellets of
wild type HPV16-containing HFKs were resuspended in 500 µL of IP lysis/wash buffer containing
protease inhibitor cocktail (Thermo Fisher Scientific, Waltham, USA). The cell lysates were centrifuged
at 13,000× g for 10 min at 4 ◦C; the lysate was transferred to new tube and protein concentration was
measured with Bradford’s assay. One thousand and five hundred micrograms of whole cell lysate
were transferred to a new tube, and 20 µL of cross-linked antibody-agarose was added, followed by
gentle rocking overnight at 4 ◦C. The complex was washed 2× with IP lysis/wash buffer and once with
50 mM HEPES, pH 7. The bound proteins were eluted by the addition of 50 µL of 1× SDS sample
buffer and boiling at 95 ◦C.

2.8. Chromatin Immunoprecipitation

Cells grown in monolayer culture were trypsinized and resuspended in 10 mL E medium.
Formaldehyde was added to a final concentration of 1% and incubated for 15 min at room temperature
with rocking. Next, 1 mL of 1.25 M glycine was added and incubated for an additional 5 min
at room temperature. Cells were then washed three times with ice cold PBS containing protease
inhibitors and resuspended in 1× Lysis Buffer (Cell Signaling, Danvers, USA) at a final cell density
of 10 million cells/mL. ChIP was performed by coupling 3 µg of antibody to Protein G Dynabeads
(Invitrogen, Carlsbad, USA) and incubating with 5 × 106 cells. Dynabeads were washed and suspended
in 5 mg/mL BSA buffer and then incubated with IgG (Santa Cruz Biotechnology, Dallas, USA, #2027)
or CDK8 (Bethyl Laboratories, Montgomery, USA #A302-500A) antibodies overnight at 4 ◦C with
rotation. The following day, cells were sonicated briefly and then treated with micrococcal nuclease
(final concentration 60 U/µL, New England Biolabs, Ipswich, USA) for 1 h on ice. EDTA was added
to a final concentration of 50 mM and debris was removed by centrifugation. Dilution buffer (1%
Triton X-100, 0.1% deoxycholate (DOC) sodium salt, 1 mM PMSF, TE) was added to chromatin and
Dynabeads blocked with 5 mg/mL BSA buffer were added to chromatin to pre-clear for 1 hour at 4 ◦C
with rotation. The antibody Dynabead complexes incubated overnight were washed three times with
1 mL of 5 mg/mL BSA buffer and suspended in 100 µL of 5 mg/mL BSA buffer. Following pre-clearing,
the antibody Dynabead complexes were added to chromatin and incubated overnight at 4 ◦C with
rotation. Beads were washed seven times in freshly prepared RIPA buffer (50 mM HEPES pH 8.0,
1mM EDTA, 1% NP-40, 0.7% DOC sodium salt, 0.5 M LiCl, 1 mM PMSF, dH2O) and once with TE
buffer (Fisher) by gently inversion. Beads were resuspended in TE buffer containing 0.3% SDS, 200 mM
NaCl, and 0.5 mg/mL proteinase K (Sigma, St. Louis, USA) and incubated for 2 h at 45 ◦C followed by
65 ◦C overnight. Supernatants were collected, beads were washed with TE buffer containing 500 mM
NaCl, and wash was added to the supernatants. DNA was purified using the PCR Clean-up DNA
Purification Kit (MoBio, Hilden, Germany). Immunoprecipitated DNA fragments were subjected to
qPCR as described above using the primers listed in Supplementary Table S1.

2.9. Statistics

RT-qPCR analysis included at least 3 technical replicates and n ≥ 3 biological replicates using cell lines
derived from separate foreskin keratinocyte donors. Immunoblot densitometry analysis included at least 1
technical replicate of n ≥ 3 biological replicates using cell lines derived from separate foreskin keratinocyte
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donors. The significance of genome integration rates between wild type HPV16 and HPV16 CR3 mutants
was determined using Fisher’s exact test. Significance of other experiments was calculated using Welch’s
unequal-variance t test. p values are as follows: * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

3. Results

3.1. The CR3 of E7 Contributes to Episomal Maintenance of the HPV16 Genome

The CR3 domain is comprised of amino acids 38–98 of the E7 protein. CR3 contains two cysteine
motifs that facilitate zinc binding and formation of the tertiary protein structure, and is required
for transformation [47,60]. Certain mutations of the hydrophobic core residues of CR3, such as
L67R, are reported to disrupt E7’s association with host factors but this may be due to significant
structural changes of the C terminus rather than disruption of specific binding residues on E7 [14,47].
Surface-exposed residues that are accessible to mediate interaction with cellular proteins but which
are not needed to maintain the overall tertiary structure have been modeled for HPV16 E7 based on
the x-ray crystal structure of the CR3 domain of HPV1A [47,61]. We sought to determine how CR3
mutations affect cellular immortalization, growth rate and episomal maintenance of viral genomes.
Using human foreskin keratinocytes (HFKs), we created cell lines that contain the complete wild type
HPV16 genome (HPV16+ cells), or HPV16 genomes harboring single amino acid mutations in the CR3.
In total, we generated thirteen cell lines that harbor unique CR3 mutations (Y52A, N53D, M84S, G85A,
D62K, ED80-81KK, S63D, V55T, QKP96-98EEA, F57A, R66E, T64D, R77E) in at least three HFK donor
backgrounds. HFKs containing HPV null E7 genomes were not generated because E7 is required for
immortalization, as noted by us and others [11,45]. Cellular immortalization was not disrupted by
any of the tested CR3 mutations. There was no significant difference in cellular growth rate between
wild type HPV16+ cells and cells containing CR3 mutant genomes (Figure S1a). In preliminary
studies, CR3 cell lines were analyzed by Western blot for E7 and p53 (surrogate for E6) but there were
no consistent differences in protein levels when compared to HPV16+ cells, and therefore was not
investigated further. Southern blotting was used to determine how CR3 mutations affect long-term
episomal maintenance of viral genomes. Table 1 shows the total number of samples for each cell line
in which the cell population was either episomal or integrated. Seven mutant genomes (S63D, V55T,
QKP96-98EEA, F57A, R66E, T64D, R77E) integrated at a significantly higher frequency than wild type
genomes (p < 0.05) (Table 1). Together, these data demonstrate that the CR3 of E7 contributes to proper
episomal maintenance of the HPV16 genome.

Table 1. Tabulation of Southern blots showing episomal maintenance of viral DNA in wild type
HPV16+ or CR3 mutant cells.

Genotype Number of Samples Episomal Integrated Fraction Episomal p Value (Wt v Mutant)

HPV16 (wild type) 51 40 11 0.78

M84S 8 4 4 0.50 0.18

G85A 6 3 3 0.50 0.15

Y52A 10 5 5 0.50 0.11

ED80-81KK 5 2 3 0.40 0.09

D62K 7 3 4 0.43 0.07

N53D 12 6 6 0.50 0.07

S63D 9 3 6 0.33 <0.05

QKP96-98EEA 11 3 8 0.27 <0.01

V55T 13 4 9 0.31 <0.01

T64D 7 1 6 0.14 <0.01

R77E 7 0 7 0.00 <0.001

R66E 13 2 11 0.15 <0.0001

F57A 34 6 28 0.18 <0.0001
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3.2. E7 F57A Is Defective in E7-Mediated Suppression of ISGs

Previous work has demonstrated that type I IFN signaling promotes viral genome integration [56,62–64].
We sought to investigate whether CR3 mutations associated with integration alter the expression of genes
involved in IFN signaling or other immune-related pathways, as compared to wild type E7. The F57A
mutant was selected for further analysis based on the abundance of Southern blot data that show frequent
integration of F57A genomes (Table 1). Directly comparing the gene expressing profiles of cells containing
the F57A mutant to wild type HPV16 was problematic due to the fact that the F57A genome was integrated
into the host genome, thus potentially changing the pattern of gene expression.

To test our hypothesis and circumvent the problem of genome integration, we generated cell
lines immortalized with E6 and E7 (pLXSN E6/E7 cells) or E6 and E7 F57A (pLXSN E6/E7 F57A
cells) expressed from retroviral vectors. Our successful generation of immortalized cells containing
E7 F57A is in agreement with the findings of Todorovic et al. who showed this mutation does not
affect the ability of E7 to transform primary baby rat kidney (BRK) cells [47], and also with the
ability of F57A-containing genomes to immortalize primary keratinocytes (above). Western blot
showed that the E7 F57A mutation did not negatively affect E7 levels, as there was no difference
in E7 levels between E6/E7 and E6/E7 F57A cells (Figure 1, top panel). Data also suggested that
the structure of E7 is not grossly altered as the antibody detected E7 F57A. As a surrogate for the
activity of E6, we compared total p53 levels between pLXSN cell lines by Western blot. There was
no apparent difference in p53 levels between E6/E7 and E6/E7 F57A cell lines indicating E6 functions
similarly in these cells (Figure 1, middle panel). As a measure of the pRb degradation activity of E7,
we performed Western blot for pRb. There was no consistent difference in pRb levels between E6/E7
and E6/E7 F57A cell lines indicating the E7 F57A mutation did not alter the ability of E7 to promote pRb
degradation, which further supports our data and other’s that the F57A mutation does not decrease
the transformation ability of E7 (Figure 1, bottom panel) [47].
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Figure 1. Characterization of E6/E7 and E6/E7 F57A cell lines. Western blot analysis of protein
levels of E7 (top panel), p53 (middle panel), pRb (bottom panel), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) in human foreskin keratinocytes (HFKs), pLXSN E6/E7, and pLXSN E6/E7
F57A cells grown in monolayer culture. Three HFK donors (A–C) were used.

We next sought to identify genes whose expression may be modified in the presence of the mutant
vs. wild type E7 using RNA-sequencing with total RNA extracted from E6/E7 and E6/E7 F57A cells.
A total of 25 genes were upregulated and 175 genes were downregulated by at least two fold in the
E6/E7 F57A cells as compared to E6/E7 controls (File S1). Genes up- or downregulated in E6/E7 F57A
cells, as compared to E6/E7 cells, were subjected to Reactome pathway analysis [58] (File S2). Analysis
of the set of downregulated genes revealed no pathways as significantly enriched. In contrast, there
were five pathways predicted to be significantly enriched (FDR < 0.05) based on the upregulated genes,
and of these the top three were IFN- or immune-related signaling (Table 2).
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Table 2. Enriched pathways based on upregulated genes in E6/E7 F57A cells (compared to pLXSN
E6/E7 cells).

Pathway Name # Entities Found # Entities Total Entities FDR

Interferon alpha/beta signaling 10 184 <0.0001

Interferon Signaling 10 392 <0.0001

Cytokine Signaling in Immune system 11 1055 <0.001

Transport of fatty acids 2 18 0.01

Transport of vitamins, nucleosides,
and related molecules 3 100 0.02

Examination of the upregulated genes revealed that E6/E7 F57A cells have increased expression of
a subset of type I IFN-induced ISGs (BST2, IFI27, IFI44L, IFI6, MX2, and XAF1) (Table 3, ISGs are bold
font). RNA-seq results were validated by RT-qPCR (Figure 2). BST2 was not consistently regulated by
E7 in different HFK donor backgrounds and was excluded from further analyses. We also measued the
levels of ISGs not identified by the RNA-seq and found that IFIT1 was regulated in a similar manner as
the other ISGs (Figure 2), and therefore was included in subsequent experiments. ISG transcripts were
found to be highest in HFKs. In comparison to HFKs, ISG transcripts were significantly reduced by
wild type E6/E7, consistent with previous results showing that E6 and E7 each can suppress innate
immune signaling [15,65]. However, E6/E7 F57A cells showed a partial defect in this suppression when
compared to E6/E7 cells (note the fold change on graph). These data demonstrate that the C terminus
of E7 contributes to the suppression of a subset of ISGs.

Table 3. RNA-sequencing results showing top 20 genes up- or downregulated in pLXSN E6/E7 F57A
cells, as compared to pLXSN E6/E7.

Upregulated Downregulated

Gene ID Fold Change Gene ID Fold Change

SLC44A5 5713.3 ARL2-SNX15 −4881.7

GPAT2 3410.2 AC013489.1 −4599.3

SLC27A6 170.4 AC139530.2 −4185.4

VAV1 147.7 UGT1A3 −4061.3

IFI27 49.3 AC097658.1 −441.7

KRBOX1 47.7 USP32P2 −102.9

IFI44L 34.3 MTND1P23 −69.8

XAF1 29.8 SHC1P1 −59.0

IFI6 23.7 FOXF2 -49.8

MX2 22.6 MAMLD1 −43.6

FYB1 19.5 FAM103A2P −30.7

FAM26E 19.1 SPINK7 −30.1

BST2 17.7 RAB4B-EGLN2 −30.0

AL163051.1 10.6 SPRR4 −28.9

AC009268.2 8.1 AC008556.1 −26.6

AL136295.5 7.6 VASH2 −21.7

AL450992.2 7.4 SORD2P −18.7

PART1 3.4 LYPD2 −17.7

AC010326.4 3.1 SEPT7P7 −17.2

AC022400.7 2.5 PKNOX2 −14.2



Viruses 2020, 12, 311 9 of 21Viruses 2020, 12, x FOR PEER REVIEW 9 of 21 

 

 
Figure 2. Levels of interferon-stimulated genes (ISG)s. RT-qPCR analysis for ISGs (IFIT1, IFI27, IFI44L, 
XAF1, IFI6, and MX2) in HFKs, pLXSN E6/E7, and pLXSN E6/E7 F57A cells grown in monolayer 
culture. Values were normalized to the cyclophilin A housekeeping gene, with HFK set to 1. 

3.3. E7 May Function Downstream of JAK Activation to Suppress Interferon-Stimulated Gene Expression 

We hypothesized that E7 functions at a regulatory stage of the IFN signaling pathway to block 
expression of ISGs in a manner that is defective in E7 F57A. Thus, we examined key activation events 
of the IFN pathway for differences between E6/E7 and E6/E7 F57A cells. We first sought to determine 
if differences in ISG levels between E6/E7 and E6/E7 F57A were dependent on JAK-mediated 
phosphorylation and activation of STATs. To this end, HFKs and pLXSN cell lines were treated with 
DMSO or Ruxolitinib (a JAK inhibitor) for 24 h and RT-qPCR was performed for ISG transcripts. For 
all genes in vehicle-treated cells, there were significantly higher transcripts in E6/E7 F57A cells 
compared to E6/E7 cells, confirming RT-qPCR validation of the RNA-sequencing results (Figure 3, 
compare with Figure 2). Two different patterns of response to Ruxolitinib were observed. The first 
pattern included IFIT1 and MX2, in which Ruxolitinib efficiently reduced transcript levels and erased 
the difference between E6/E7 F57A and E6/E7 cells (Figure 3a and Figure S2a). These data suggest 
that the suppression defect in E6/E7 F57A cells may be due to higher activity of the JAK pathway. A 
second pattern was seen in all other tested ISGs (IFI27, IFI44L, IFI6, and XAF1), in which transcript 
levels were reduced significantly by Ruxolitinib but remained significantly higher in Ruxolitinib-
treated E6/E7 F57A cells compared to Ruxolitinib-treated E6/E7 cells (Figure 3b and Figure S2b). As 
the suppression defect of E7 F57A persists upon JAK inhibition, we reason that E7 functions 
downstream of JAK activation. Interestingly, in contrast to all other ISGs tested, Ruxolitinib treatment 
did not reduce IFI6 expression in HFKs, as compared to vehicle-treated HFKs (Figure S2b), indicating 
that JAK activity is not required for IFI6 expression, supporting the hypothesis that E7 does not 
function to block JAK kinases. 

Figure 2. Levels of interferon-stimulated genes (ISG)s. RT-qPCR analysis for ISGs (IFIT1, IFI27, IFI44L,
XAF1, IFI6, and MX2) in HFKs, pLXSN E6/E7, and pLXSN E6/E7 F57A cells grown in monolayer culture.
Values were normalized to the cyclophilin A housekeeping gene, with HFK set to 1.

3.3. E7 May Function Downstream of JAK Activation to Suppress Interferon-Stimulated Gene Expression

We hypothesized that E7 functions at a regulatory stage of the IFN signaling pathway to block
expression of ISGs in a manner that is defective in E7 F57A. Thus, we examined key activation
events of the IFN pathway for differences between E6/E7 and E6/E7 F57A cells. We first sought to
determine if differences in ISG levels between E6/E7 and E6/E7 F57A were dependent on JAK-mediated
phosphorylation and activation of STATs. To this end, HFKs and pLXSN cell lines were treated with
DMSO or Ruxolitinib (a JAK inhibitor) for 24 h and RT-qPCR was performed for ISG transcripts. For all
genes in vehicle-treated cells, there were significantly higher transcripts in E6/E7 F57A cells compared
to E6/E7 cells, confirming RT-qPCR validation of the RNA-sequencing results (Figure 3, compare with
Figure 2). Two different patterns of response to Ruxolitinib were observed. The first pattern included
IFIT1 and MX2, in which Ruxolitinib efficiently reduced transcript levels and erased the difference
between E6/E7 F57A and E6/E7 cells (Figure 3a and Figure S2a). These data suggest that the suppression
defect in E6/E7 F57A cells may be due to higher activity of the JAK pathway. A second pattern was
seen in all other tested ISGs (IFI27, IFI44L, IFI6, and XAF1), in which transcript levels were reduced
significantly by Ruxolitinib but remained significantly higher in Ruxolitinib-treated E6/E7 F57A cells
compared to Ruxolitinib-treated E6/E7 cells (Figure 3b and Figure S2b). As the suppression defect of
E7 F57A persists upon JAK inhibition, we reason that E7 functions downstream of JAK activation.
Interestingly, in contrast to all other ISGs tested, Ruxolitinib treatment did not reduce IFI6 expression
in HFKs, as compared to vehicle-treated HFKs (Figure S2b), indicating that JAK activity is not required
for IFI6 expression, supporting the hypothesis that E7 does not function to block JAK kinases.
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panel), demonstrating that the canonical STAT1 activation can occur in keratinocyte cell lines, 
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Figure 3. Effect of Ruxolitinib on ISG levels. RT-qPCR analysis of IFIT1 (a) or IFI27 (b) transcript levels
in HFKs, pLXSN E6/E7, and pLXSN E6/E7 F57A cells treated with DMSO (control) or 10 µM Ruxolitinib
(Rux) for 24 h under monolayer culture conditions. Transcripts were normalized to cyclophilin A
housekeeping gene, with DMSO-treated pLXSN E6/E7 samples set to 1.

3.4. E7 Does not Regulate STAT Activation

During canonical type I IFN signaling, STAT1 becomes activated through phosphorylation at
Y701 and S727 [33]. To determine whether E7 inhibits STAT1 activation to suppress ISGs, we first
measured pY701 levels in HFK, E6/E7 and E6/E7 F57A cells. Lysate from human foreskin fibroblasts
(HFF) treated with IFN-β was used as a positive control. Interestingly, we usually failed to detect
pY701 in untreated cell lines; occasionally a faint band was detected in HFK or E6/E7 F57A cells
(Figure 4a, top panel). We were surprised by the absence of pY701 in HFKs and E6/E7 F57A cells as
they both have robust ISG expression (Figure 2). As these results were unexpected, we tested whether
stimulation by an exogenous IFN could induce pY701 by treating HFK and pLXSN cell lines with
IFN-β1 for 2 h. Indeed, treatment with IFN-β1 induced phosphorylation of Y701 (Figure 4a, top panel),
demonstrating that the canonical STAT1 activation can occur in keratinocyte cell lines, regardless of
E7 expression. Previous reports have described that loss of pY701 can occur under the condition of
chronic treatment with exogenous IFN and this results in the prolonged expression of a subset of
ISGs [66]. We reason that the lack of pY701 in keratinocytes could be due to the constitutive production
of IFN-κ by keratinocytes, leading to chronic IFN signaling. As pY701 was not present in HFKs, these
findings indicate that the phosphorylation of Y701 is not a likely point of regulation by E7.
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Figure 4. STAT1 levels and modification. (a) Western blot analysis of protein levels of pY701 (top
panel), pS727 (middle panel), total STAT1 (bottom panel), and GAPDH in HFKs, pLXSN E6/E7, and
pLXSN E6/E7 F57A cells that were treated with vehicle (IFNβ−) or 50 U/mL IFNβ (IFNβ+) for 2 h
under monolayer culture conditions. Protein from uninfected human foreskin fibroblasts (HFF) treated
with IFNβ was a positive control for STAT1 activation. (b) RT-qPCR analysis of STAT1 transcripts
in untreated HFKs, pLXSN E6/E7, and pLXSN E6/E7 F57A cells. Transcripts were normalized to
cyclophilin A housekeeping gene with pLXSN E6/E7 values set to 1.

Though Y701 is only weakly present or absent, we reasoned that nuclear STAT1 could still be
regulated by S727 phosphorylation. Despite the lack of significant pY701 phosphorylation, pS727 was
readily detected in all cell lines (Figure 4a, middle panel). In comparison to HFKs, E6/E7 cells had
reduced levels of pS727. There was more pS727 in E6/E7 F57A cells when compared to E6/E7 cells
(Figure 4a, middle panel), suggesting that E7 may suppress levels of pS727. However, evaluation of
total STAT1 levels showed a pattern similar to pS727 (Figure 4a, bottom panel), indicating that the
higher pS727 levels in the F57A mutant reflected overall higher levels of total STAT1. STAT1 itself is
an ISG, thus higher levels of STAT1 in HFK and E6/E7 F57A cells might be expected. RT-qPCR showed
that in comparison to E6/E7 cells, HFKs and E6/E7 F57A cells had significantly higher expression of
STAT1 transcripts (Figure 4b), further demonstrating that E7 F57A is defective in the suppression of
ISGs. Altogether, we interpret these data to suggest that STAT activation is not a point of regulation of
ISGs by E7.

3.5. CDK8 Associates with E7 and Contributes to ISG Suppression

Once nuclear, STAT1 is phosphorylated at serine 727, which is required for full induction of target
genes [32,33,36]. Growing evidence suggests that Mediator kinase CDK8 is critical for IFN-induced
gene expression by mediating S727 phosphorylation [31,34,67]. Previous work in our lab showed E7
and CDK8 are both critical factors in the regulation of late viral gene expression [55,68]. In follow-up
studies, we investigated whether E7 associates with CDK8. U2OS cells were transfected with
expression plasmids for HA-tagged HPV16E7. CDK8 was immunoprecipitated and Western blot was
performed for HA-tagged HPV16E7 using anti-HA antibody. E7 was detected in the immunoprecipitate,
indicating that E7 and CDK8 can associate in cells (Figure 5a). The E7s from HPV18 and HPV11
also associated with CDK8, although 11E7 associated much less efficiently. E7/CDK8 association
was confirmed using lysates from keratinocytes containing episomal HPV16, from which E7-specific
antibody could precipitate CDK8, and vice versa (Figure 5b). These findings indicate that endogenous
E7 and endogenous CDK8 associate with each other in keratinocytes under physiological expression
conditions. When expression plasmids for various E7 mutants were transfected into U2OS cells,
we found that E7 F57A showed little-to-no association with CDK8 (Figure 5a) indicating that the F57
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residue is required for proper association with CDK8. We found that the LYCYE deletion mutant
also had reduced association with CDK8, suggesting that the N terminus of E7 participates in the
association. The L67R mutation, which disrupts the overall structure of the C terminus, also disrupted
association of CDK8 with E7, confirming that the C terminus is important. The R66E mutation in the
CR3 domain did not disrupt E7/CDK8 association, indicating certain CR3 residues are not required for
E7/CDK8 association (Figure 5a).
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Figure 5. Interaction of E7 and CDK8. (a) Expression vectors encoding HA-tagged E7s from human
papillomavirus (HPV) types 16, 11, 18, and the indicated mutants (16E7) were transfected into U2OS
cells. Thirty-six hours later, total cell lysates were harvested. CDK8-containing complexes were
immunoprecipitated with anti-CDK8 antibodies. Anti-HA antibody was used to detect HA-E7 by
Western blotting (IB) of the immunoprecipitates (top panel). Immunoblot of total HA-E7, CDK8,
and GAPDH present in the transfected U2OS cell lysates (middle panels and bottom panel) are also
shown. (b) Immunoprecipitation was performed using total lysates from HPV16+ cells from two
HFK donors with either anti-E7 antibodies (top panel), anti-CDK8 antibodies (bottom panel) or IgG
(negative control). CDK8 was detected in both the anti-E7 immunoprecipitate and in the input by
immunoblotting (top panel). E7 was detected in both the anti-CDK8 immunoprecipitate and in the
input by immunoblotting (bottom panel).

As CDK8 regulates the expression of numerous host genes, we reasoned that interaction between
E7 and CDK8 may be a novel mechanism by which E7 regulates host gene expression. Therefore,
we choose to investigate whether CDK8 contributes to the ability of E7 to suppress ISG expression.
To test the contribution of CDK8 to ISG expression we transfected HFK or pLXSN cell lines with siRNA
to knockdown CDK8. Similar KD efficiency occurred in all cell lines (Figure S3a,b). RT-qPCR was
performed to measure ISG levels upon CDK8 knockdown. ISG transcripts were significantly increased
in CDK8 KD E6/E7 cells as compared to NT controls, demonstrating that CDK8 negatively regulates
ISG expression in the presence of wild type E7 (Figure 6a and Figure S3c). In contrast, loss of CDK8
in HFK and pLXSN E6/E7 F57A cells did not cause an increase in ISG expression when compared
to their respective NT controls (Figure 6a and Figure S3c). In support of the idea that E7/CDK8
association is important for E7-mediated regulation of host gene expression, Western blot analysis
revealed significantly higher CDK8 levels in E6/E7 cells when compared to HFKs and E6/E7 F57A cells,
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indicating that E7 may increase CDK8 protein levels (Figure 6b). Together, these findings suggest that
E7 may co-opt the transcriptional suppression ability of CDK8 to reduce the transcription of ISGs.
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the ISRE region of the IFI27 and XAF1 promoters [73] in HFK and pLXSN cell lines were analyzed 
for CDK8 occupancy using chromatin immunoprecipitation (ChIP) coupled with quantitative PCR 
(qPCR). CDK8 occupies the promoters of both ISGs in the pLXSN cell lines, but CDK8 association 
with these promoters was not observed in HFKs (Figure 7). There was a significant loss of CDK8 

Figure 6. Effect of CDK8 knockdown on ISG levels. (a) RT-qPCR analysis of IFI44L and XAF1 transcript
levels in non-target (NT) or CDK8 knockdown (KD) HFK, pLXSN E6/E7, and pLXSN E6/E7 F57A cells.
Transcripts were normalized to cyclophilin A housekeeping gene with NTC values for each cell line set
to 1. (b) Western blot analysis of CDK8 and GAPDH protein levels in HFK, pLXSN E6/E7, and pLXSN
E6/E7 F57A cells from three HFK donor backgrounds.

3.6. CDK8 Occupies the Promoters of Interferon-Stimulated Genes

We used the CDK8 KD samples to determine whether CDK8 mediates S727 phosphorylation
in our cell lines. Western blot was performed for pS727 and showed no change in pS727 levels in
HFKs, E6/E7 or E6/E7 F57A cell lines with KD of CDK8, as compared to their respective NT controls
(Figure S4a,b) demonstrating that CDK8 is not the kinase responsible for S727 phosphorylation in
keratinocytes under these conditions. Additionally, if E7 requires the kinase activity of CDK8 to
suppress ISGs, then inhibition of CDK8 kinase activity with Senexin A (CDK8/19 kinase inhibitor)
would result in increased ISGs. We found that in E6/E7 cells treated with Senexin A ISG suppression
was not relieved as compared to vehicle-treated E6/E7 cells (Figure S4c). These data indicate that E7
does not require CDK8’s kinase activity to suppress ISGs.

CDK8 often functions in a kinase-independent manner as a component of transcriptional complexes
at the promoters of target genes and during different stages of transcription, such as transcript
elongation [50,69–72]. Importantly, CDK8 can either activate or inhibit gene expression depending on
the specific context [50,71,72]. To begin to determine how E7 may alter CDK8 function, the ISRE region
of the IFI27 and XAF1 promoters [73] in HFK and pLXSN cell lines were analyzed for CDK8 occupancy
using chromatin immunoprecipitation (ChIP) coupled with quantitative PCR (qPCR). CDK8 occupies
the promoters of both ISGs in the pLXSN cell lines, but CDK8 association with these promoters was not
observed in HFKs (Figure 7). There was a significant loss of CDK8 enrichment at the XAF1 promoter
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in E6/E7 F57A cells, as compared to E6/E7 cells. Similarly, there was a reduction in CDK8 enrichment
at the IFI27 promoter that approaches significance (p = 0.065), when compared to the CDK8 signal in
E6/E7 cells. Enrichment of CDK8 at ISG promoters in E6/E7 F57A cells, as compared to HFKs may be
due to residual association between E7 and CDK8. These data suggest that E7 promotes the association
of CDK8 with ISG promoters, which may direct the transcriptional suppression activity of CDK8
toward these promoters. In contrast, loss of full interaction between E7 and CDK8 due to the F57A
mutation disrupts the ability of E7 to promote CDK8 occupancy at these promoters, resulting in higher
gene expression.
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Figure 7. Chromatin immunoprecipitation of CDK8 from ISG promoters. ChIP was performed with
IgG (control) or CDK8-specific antibodies using chromatin from HFK, pLXSN E6/E7, and pLXSN E6/E7
F57A cells. Eluted DNA from ChIP was used in a qPCR reaction with primers specific for the IFI27 and
XAF1 promoters. Relative enrichment of CDK8 was determined by normalizing the CDK8 signal to
IgG, with IgG samples set to 1.

4. Discussion

Our findings suggest a novel mechanism by which E7 transcriptionally suppresses a subset
of IFN-stimulated genes by binding to and regulating the function of host Mediator kinase CDK8.
The outcome of binding is the transcriptional suppression of a subset of ISGs. Our model proposes ISGs
are constitutively expressed in keratinocytes, thus the transcriptional machinery for ISG expression
is already present at ISG promoters (Figure 8). In HPV-containing cells, E7 can block expression of
these activated genes through the recruitment of CDK8 to the ISG promoter. Once localized at the
promoter, CDK8 is poised to suppress transcription. As E7 F57A has reduced binding capacity with
CDK8, there is less CDK8 present at ISG promoters and greater gene expression.

A critical aspect of the HPV life cycle is the maintenance of the viral episome, and integration of
the viral genome into host DNA is a dead end for the virus. Chronic activation of IFN signaling is
one form of stress that can induce integration of the viral episome [56,62–64]. We found that in the
presence of certain CR3 mutations, genome integration occurs at higher frequency than that of wild
type HPV16 genomes (Table 1), leading us to the hypothesis that certain CR3 mutations abrogate E7’s
ability to suppress immune-related genes. To test this, we performed transcriptome analysis of cells
containing the E7 F57A mutant compared to cells with wild type E7. We found that certain ISGs were
more highly expressed in cells containing the E7 F57A mutant as compared to cells containing wild
type E7 (Table 3 and Figure 2). Notably, it was a small subset of ISGs as opposed to the potentially
hundreds of ISGs that can be induced by type I IFN signaling. ISGs have a variety of anti-viral activities,
some of which have negative consequences for host cell survival, such as by promoting apoptosis [74].
As keratinocytes have a basal level of ISG expression in the absence of infection, we speculate that the
ISGs chronically expressed by HFKs (and thus targeted by E7) must be ones that are well-tolerated by
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keratinocytes long-term. Future studies are needed to know whether E7 specifically targets these ISGs
or suppresses all activated ISGs in HFKs.
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Figure 8. Model for the transcriptional suppression of ISGs by E7. (a) Factors necessary for transcription,
such as Mediator and Pol II, are present at the promoters of ISGs in HFKs, and transcription occurs.
(b) Wild type E7 associates with and recruits CDK8 to ISG promoters and this results in gene suppression,
possibly due to loss of Pol II recruitment. (c) In cells containing F57A mutant E7, CDK8 is not efficiently
recruited to ISG promoters due to reduced association between E7 F57A and CDK8. ISGs remain
activated and expressed.

As we measured robust ISG levels in HFK and E6/E7 F57A cells, and these genes are typically
induced in response to the JAK/STAT pathway downstream of type I IFN signaling, we expected
to find differences in STAT1 activation when compared to E6/E7 cells. Instead we found that
Y701 phosphorylation was usually absent in keratinocytes (Figure 4a). These data support the
findings of others that expression of ISGs is possible despite the absence of STAT1 tyrosine
phosphorylation [66,73,75]. Studies from the Stark lab have shown that chronic IFN signaling
increases levels of unphosphorylated STATs (U-STAT1 and U-STAT2) that form an unphosphorylated
ISGF3 complex in conjunction with IRF9 (U-ISGF3) that activates transcription of a subset of the
ISGs [66,73]. We reason that the constitutive production of IFN-κ by keratinocytes may induce U-ISGF3
complexes, and investigation into this possibility may serve as the basis of future studies. While pS727
levels were seemingly higher in HFK and E6/E7 F57A cells than E6/E7 cells, analysis of total STAT1
followed a similar trend, leading us to the interpretation that E7 does not regulate STAT1 activation
to suppress ISG expression, but rather that STAT1 transcript levels are regulated similarly to those
of other ISGs (Figure 4). STAT1 S727 phosphorylation occurs following re-localization of the ISGF3
complex to the nucleus [33]. As pS727 was detected in cells containing E7, the ability of E7 to interact
with IRF9 to prevent nuclear localization [39] may not play a major role in IFN suppression in these
cell lines, though more studies are needed to determine whether E7 F57A retains the ability to interact
with IRF9. Despite the absence of pY701 STAT1 in these cells, ISGs (except IFI6) required JAK activity
for full expression, as predicted by canonical IFN signaling (Figure 3 and Figure S2). More research
is required to understand the importance of JAK activity to ISG induction in the absence of pY701.
A larger point, however, is that ISGs, which are often thought of as a homogenously regulated block of
genes, can actually be subject to different regulatory controls. The significance of these differences in
regulation are poorly understood at best. These data highlight that the regulation of IFN signaling is
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poorly understood in keratinocytes and suggest there might be unique regulatory mechanisms that
exist for certain ISG subsets.

Different candidate kinases have been proposed to mediate S727 phosphorylation. In response
to various cellular stresses, p38 mitogen-activated protein kinase (MAPK) phosphorylates S727 [76].
Protein kinase C delta (PCK-δ) was reported to mediate phosphorylation of S727 in response to type I
IFN, however its contribution to S727 phosphorylation in vivo has not been researched [35]. Mediator
kinase CDK8 is required for the expression of genes induced by IFN-γ stimulation through the
phosphorylation of S727 [31,34,67]. We found that in keratinocytes CDK8 does not contribute to STAT1
activation through S727 phosphorylation (Figure S4a,b). It was also notable that S727 phosphorylation
was readily detectible, even in the absence of pY701 (Figure 4). Determining which kinase mediates
S727 phosphorylation in keratinocytes will require additional studies.

CDK8 is well known to have dual regulatory roles as an activator or repressor of transcription,
depending on promoter context [71,72]. These activities can either be independent or dependent on its
kinase activity [71,72,77,78]. For example, CDK8 is a co-activator of the p21 gene and is recruited to
the promoter upon p53 activation [52]. CDK8 directly activates specific transcription factors through
phosphorylation, such as STAT1 [31]. CDK8-mediated phosphorylation of Smad transcription factors
activates their transcriptional activity but concomitantly increases protein turnover [79]. For other
transcription factors, such as SREBP-1c (sterol regulatory element-binding protein 1c), phosphorylation
by CDK8 only enhances protein turn over, thus making CDK8 a negative regulator [80]. At the
promoter, CDK8 can also repress transcription through association with Mediator, as binding of CDK8
to Mediator causes a structural shift in Mediator that prevents the ability of Pol II to associate with the
complex [51]. Beyond the promoter, CDK8 positively regulates the expression of HIF1α-regulated genes
and serum response genes by promoting productive transcriptional elongation [53,70]. These various
activities of CDK8 make it difficult to predict ahead of time what effect it could have on a given gene.

We found that E7 requires CDK8 to suppress ISGs, so that knockdown of CDK8 in E6/E7
cells resulted in increased ISG transcripts, when compared to NT controls (Figure 6 and Figure S3).
Suppression of transcription was correlated with recruitment of CDK8 to promoters, and this recruitment
was disrupted by the F57A mutation (Figure 7). The nature of CDK8’s suppressive mechanism is
not yet clear. Our data suggest that CDK8 kinase activity does not contribute to ISG suppression
by E7 (Figure S4c), which indicates phosphorylation of transcriptional regulators by CDK8 is not
a point of ISG regulation by E7. The CDK8 submodule through its MED12 subunit associates with
G9a, a histone methyltransferase, to direct H3K9 methylation to suppress transcription [54]. However,
preliminary data indicate that methylation of ISG promoters is not different between E6/E7 and E6/E7
F57A cell lines. It is possible that the presence of CDK8 simply prevents the proper association of
Pol II with the Mediator complex [51]. Future studies are required to validate this model and should
include further characterization of which factors occupy ISG promoters, the molecular mechanism of
CDK8 recruitment to ISG promoters by E7, and investigation into how CDK8 occupancy contributes to
transcriptional suppression.

The ability to interact with host proteins is critical to E7’s biological functions due to the lack of
intrinsic enzymatic activity of E7 [14]. E7 often functions by recruiting or displacing transcriptional
regulators to alter host gene expression [16]. We are the first to show that CDK8 is an interacting partner
of E7 (Figure 5), adding to the repertoire of interacting partners that are transcriptional regulators. E7
may interact with other components of Mediator, possibly indirectly through CDK8. Supporting this
idea, E1A encoded by Adenovirus shows homology to E7 [14] and has been shown to associate with
subunits of Mediator [81–84], enhancing the transcription potential of E1A [83,84]. We speculate that
CDK8 is an advantageous interacting partner due to the ability of CDK8 to reversibly associate with
Mediator, which in part contributes to CDK8’s dual functionality as a transcriptional activator and
repressor. Perhaps E7 can exploit this feature by making CDK8 associate or disassociate as needed
in response to various cellular conditions to favor gene expression patterns that support the viral
life cycle.
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