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Abstract: Our agriculture is threatened by climate change and the depletion of resources and bio-
diversity. A new agriculture revolution is needed in order to increase the production of crops and
ensure the quality and safety of food, in a sustainable way. Nanotechnology can contribute to the sus-
tainability of agriculture. Seed nano-priming is an efficient process that can change seed metabolism
and signaling pathways, affecting not only germination and seedling establishment but also the
entire plant lifecycle. Studies have shown various benefits of using seed nano-priming, such as
improved plant growth and development, increased productivity, and a better nutritional quality
of food. Nano-priming modulates biochemical pathways and the balance between reactive oxygen
species and plant growth hormones, resulting in the promotion of stress and diseases resistance
outcoming in the reduction of pesticides and fertilizers. The present review provides an overview of
advances in the field, showing the challenges and possibilities concerning the use of nanotechnology
in seed nano-priming, as a contribution to sustainable agricultural practices.
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1. Introduction

Agriculture is currently facing many challenges, including production losses due to
pests, the effects of global climate change, and the depletion of natural resources [1–3].
An additional difficulty is that traditional agricultural practices have been relying on
continuous application of pesticides and fertilizers, resulting in environmental contamina-
tion [3,4].

The world population is expected to increase to 9–10 billion by 2050, implying that food
production will need to rise by 25–70% compared to current levels [5]. Therefore, new tech-
nologies need to be deployed in agriculture to ensure sustainability and increase produc-
tivity [2,3,6,7].

Nanotechnology has the potential to contribute to a new technology-based agricultural
revolution [3,8,9]. Many nanomaterials have been developed for agricultural applications,
including new solutions for soil and water remediation, as well as nanofertilizers and
nanopesticides, designed to reduce the applied amounts of fertilizers and pesticides,
while increasing food production and quality [2,4,8,10]. Besides, the use of nanoenabled
products for crop protection can reduce significantly the impact caused by the agriculture
on the environment, in this way being an ecofriendly alternative [1].

Nanomaterials, especially nanoparticles, have a range of applications for crop protec-
tion [2,3,6]. This is a major field of research that has attracted the interest of companies
in the agricultural sector, resulting in the inclusion of nanoparticles in formulations [11].
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The use of nanopesticides and nanofertilizers can contribute to pest control, plant nutrition,
and environmentally-friendly production methods [1,3,6,12].

Recent studies have shown that nanoparticles have effects on seeds and plants [3,12–14].
Some nanoparticles have side effects, including the inhibition of germination or phytotoxic-
ity in seedlings [15–17]. However, others can act as stimulants, improving seed metabolism,
seedling vigor, and plant growth by acting in cellular signaling pathways [12,14,18].
These effects depend on nanoparticle physical-chemical properties, such as size, zeta poten-
tial, and concentration, which are factors that determine the biological responses [13,19].

These characteristics have key roles in nanoparticle uptake and translocation in plants.
As example, small-sized nanoparticles cross biological barriers more efficiently [20–23].
The surface charge of the nanoparticles is also decisive. Positively or negatively charged nano-
particles can be taken up by the leaves and translocated to the roots. However, only negatively
charged nanos are taken up by the roots. Positive charges induce the production of
mucilage, which prevents their uptake by plants [24–26].

Nano-priming can be applied to seeds in order to provide protection for seeds dur-
ing storage, improve germination, germination synchronization, and plant growth, as well
as to increase the resistance of crops to abiotic or biotic stress conditions, which can help
to reduce the required quantities of pesticides and fertilizers [10]. New studies showed
that seed nano-priming is able to activate different genes during the germination, espe-
cially those related to plant stress resistance [14,27–29]. The use of nanotechnology for
seed priming is a new area of research, although studies have already shown promising
results [14,18,29–31]. Seed nano-priming also can be used for seed protection, as many
nanoparticles have antimicrobial activities and also can load antimicrobial agents [18,32].
In addition, nano-priming can be used aiming biofortification of seeds to promote an
increase in food quality and production [1,10,18]. A summary of the main topics that will
be covered in this review is shown in Figure 1, as well as the potential applications of seed
nano-priming in agriculture.

The aim of this review is to provide an update concerning the potential applications of
seed nano-priming techniques in agriculture. Many different types of nanoparticles can be
used, with effects on seed metabolism and on the subsequent plant growth and development.
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Figure 1. Seed nano-priming topics covered in this review and its potential benefits for sustainable agriculture. In addition 
to providing protection for seeds during storage, the use of seed nano-priming can result in improved establishment of 
plants in the soil with a reduced need for fertilizers. By growing faster, plants have an increased ability to compete with 
weeds for resources, consequently increasing productivity and food quality. The plants may also become more resistant 
to abiotic and biotic stresses, resulting in reduced use of pesticides. 
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2.1. Germination and Principles of Seed Priming 

Germination is one of the most important steps for the establishment of plants in 
agriculture and is fundamental for crop quality [12,18,33]. The rapid development of seed-
lings ensures fast expansion of the leaves and elongation of the roots, which favor the 
uptake of nutrients, their translocation through the transpiration flow, and biomass pro-
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Figure 1. Seed nano-priming topics covered in this review and its potential benefits for sustainable agriculture. In addition
to providing protection for seeds during storage, the use of seed nano-priming can result in improved establishment of
plants in the soil with a reduced need for fertilizers. By growing faster, plants have an increased ability to compete with
weeds for resources, consequently increasing productivity and food quality. The plants may also become more resistant to
abiotic and biotic stresses, resulting in reduced use of pesticides.

2. Seed Priming and Nanoparticles: Definition and Potential Applications
2.1. Germination and Principles of Seed Priming

Germination is one of the most important steps for the establishment of plants in
agriculture and is fundamental for crop quality [12,18,33]. The rapid development of
seedlings ensures fast expansion of the leaves and elongation of the roots, which favor
the uptake of nutrients, their translocation through the transpiration flow, and biomass
production [12,34,35]. Slow germination can expose the young seedling, which is one of
the most vulnerable stages of plant life cycle, to many environmental stress conditions
or pathogens, resulting in decreases in vigor and crop productivity, leading to economic
losses for farmers [19].

The process of seed germination is usually divided into three phases, as summa-
rized in Figure 2a [36,37]. It begins with imbibition (phase I), when the fast water uptake
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triggers seed basal metabolism, as transcription, protein synthesis, and mitochondrial ac-
tivity. In phase II (activation or lag phase), water uptake is limited, but the metabolism
becomes hyperactive with the production of enzymes required for reserve mobilization
and embryo development, including amylases, endoxylanase, and phytase. In phase
III, the seeds exhibit again fast water uptake, and embryo growth culminates in radicle
protrusion [36,38].
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Figure 2. Germination phases and reactive oxygen species (ROS) effects. (a) The germination process
is subdivided into three phases: phase I (water uptake), phase II (metabolic activity, with initiation
of degradation of starch reserves and preparation for embryo development), and phase III (embryo
development and emergence of the radicle). (b) The ROS act by destabilizing cell wall, allowing water
uptake and cell elongation; (c) ROS level in seeds and hormones production.

The seed germination process is finely regulated by signaling molecules that include
reactive oxygens species (ROS) and phytohormones [39–41] (Figure 2b,c). Apoplastic ROS
generation is directly related to cell wall loosening, which allows water uptake and cell
extension [39,41]. The abscisic acid and gibberellins work antagonistically to determine
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seed germination or dormancy, and auxins could also act in the maintenance of seed
dormancy [42]. The ROS produced regulate gene expression and phytohormone signaling
and the homeostasis of abscisic acid, gibberellins, auxins, and ethylene to control cellular
events related to seed germination [40,41,43]. However, when ROS levels are too high,
extensive oxidative damages occur, hampering seed germination [41]. ROS content must be,
therefore, spatio-temporally controlled to be enclosed in the so-called oxidative window,
which ensures proper germination completion [41].

Seed priming is a traditional technique used in agriculture to promote seed germi-
nation and plant establishment, based on a preliminary preparation of seeds prior to
sowing [18,38,44–47] It is usually a water-based methodology, whereby seeds are hydrated
followed by drying, or some physical methods are applied as ultraviolet light (UV) prim-
ing [48]. The absorption of water must be adequate to trigger the metabolic pathways for
pre-germination (phases I and II), without resulting in radicle emergence (Figure 2).

This process affects the seed metabolism at molecular and cellular levels (e.g., tran-
scriptomic reprogramming, enhanced capacity for reserve mobilization, cell wall loosening,
increased potential for protein synthesis and post-translational modifications), inducing a
particular physiological state, which speeds up or even improves the germination and
vigor of the primed seeds on a novel imbibition [38,44–47]. The moderate stress imposed by
both soaking and subsequent drying may also induce stress-related responses (e.g., antioxi-
dant mechanisms, heat-shock proteins), resulting in cross-resistance to other stress factors.
Moreover, a faster germination shortens per se the exposition of the germinating seeds
to adverse soil conditions. Thus, seed priming has been successfully used to accelerate
and synchronize germination, improve seedling vigor, and make the plants more resis-
tant to abiotic and biotic stresses, resulting in improvements of productivity and food
quality [19,34,47].

Different types of seed priming can be used, such as hydro-priming or hydro-thermo-
priming, where the seeds are hydrated using water treatment (usually limited to period
of 7–14 h), which allows the occurrence of germination phase II [48]. The technique
may be applied with temperature alternation (cold and hot) [49]. In the case of osmo-
priming, solutions of low water potential are used to control hydration (around 10–20%),
altering seed metabolism through an additional abiotic stress factor [48]. Other methodolo-
gies, such as halopriming, hormo-priming, and bio-priming, can be used as pre-sowing
treatments, using solutions containing salts [50], plant growth regulators [51], and microor-
ganisms [48], respectively.

2.2. Nanoparticles for Seed Priming

Seed nano-priming is a new technology that uses nanomaterials, mainly nanoparticles,
for seed priming [14,31,52]. There is an important difference between seed priming and
seed nano-priming, since conventional seed priming mainly employs water (hydropriming)
or solutions containing substances (nutrients, hormones, or biopolymers) that adsorb on
the seed and can result in seed coating (or dressing). In seed nano-priming, the media used
are suspensions or nanoformulations, where the nanoparticles may or may not be taken up
by the seeds [19]. Even when nanoparticle uptake occurs, the greatest fraction is retained
on the seed surface as coating [33,53–55]. Such seed coating can be used with fungicides or
bactericides in order to protect against pathogens in the field or during storage [56].

One of the first studies showing the potential of nanomaterials to affect seed germi-
nation was reported by Khodakovskaya et al. [57]. Although seed priming was not used,
these authors demonstrated that carbon nanotubes could be taken up by tomato seeds.
The carbon nanotubes increased water uptake, resulting in tomato plants with a 2-fold
higher number of flowers [58]. Other studies have similarly demonstrated that carbon nan-
otubes can modulate seed metabolism in plants, such as tomato, barley, soybean, and maize,
increasing the gene expression of several types of water channel proteins [59,60].

Different nanomaterials, including metallic, biogenic metallic, and polymeric nanopar-
ticles, have also shown potential for seed nano-priming [14,54,61], resulting in the stimula-
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tion of plant growth and improvement in morphological and metabolic traits. This process
can promote fast root and shoot development, with changes in the expression of genes
that modulate metabolic processes, such as phytohormone production. Seed nano-priming
changes the activity of the defense system, increasing the antioxidant levels and enzyme
activities, so that the plants become more resistant to pests and other biotic and abiotic
stresses under field conditions [12,31,53,62–64].

2.3. Active Nanoparticles and Nanocarriers Systems

The potential applications of nanoparticles will be considered in two groups: (i) active
nanoparticles and (ii) sustained release nanocarrier systems (Figure 3). Table 1 shows
systems that have been employed for seed priming/coating, together with their potential
effects as stimulants or against biotic and abiotic stress.
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Table 1. Nanoparticles employed for seed priming and coating, showing the nanoparticle systems, their characteristics,
and the main effects on the species evaluated. Each article is classified according its application: A1 (seed priming),
A2 (effects in the field), A3 (effects against pathogens), and A4 (relieving abiotic stresses). The arrows up and down
indicated an increase and decrease in activity, respectively.

Nanoparticle
System Characteristics Main Effects Applications Reference

Biogenic silver
nanoparticles
produced using
kaffir lime
leaf extracts

Spherical
nanoparticles with
particle size of
6–26 nm

Concentrations: 10 and 20 mg/mL
Species: Rice seeds (Oriza sativa L. cv.
KDML 105). Effects: Water uptake ↑,
Aquaporin gene expression ↑, Enzyme activity ↑,
Seed and seedlings vigor ↑ Plant morphology ↑,
and biomass ↑
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Table 1. Cont.

Nanoparticle
System Characteristics Main Effects Applications Reference

Iron oxide
nanoparticles

Particle size <50
nm, with surface
area of 180 m/g2

Concentrations: 10, 50, 100, and 500 mg/L.
Species: Sorghum (Sorghum bicolor (L.) Moench)
KDML 105. Effects: Seed and seedlings vigor ↑,
Biochemical activity ↑, Biomass ↑, and water
content in leaves ↑
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(Capsicum annuum L.). Effects: Seed and
seedlings vigor ↑, Plant morphology ↑,
Antimicrobial activity ↑

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 29 
 

Plant morphology ↑, and bi-
omass ↑ 

Iron oxide nanoparticles Particle size <50 nm, with surface 
area of 180 m/g2 

Concentrations: 10, 50, 100, 
and 500 mg/L. Species: Sor-
ghum (Sorghum bicolor (L.) 
Moench) KDML 105. Ef-
fects: Seed and seedlings 
vigor ↑, Biochemical activity 
↑, Biomass ↑, and water con-
tent in leaves ↑ 

 

 

[65] 

Biogenic iron nanoparti-
cles produced using onion 
extracts 

Particle size of 19–30 nm, with low-
crystalline or amorphous Fe2O3 

Concentrations: 20, 40, 80, 
and 160 mg/L. Species: Wa-
termelon (Citrullus lanatus 
(Thunb.) Matsum and Na-
kay varieties). Effects: Seed 
and seedlings vigor ↑, Plant 
morphology ↑, Phytotoxic 
effects ↓. Enzyme activity ↑, 
and Plant growth regulator 
(jasmonate) ↑ 

 

 
 

[31] 

Zinc oxide and iron oxide 
nanoparticles 

Zinc oxide nanoparticles with sizes 
of 20–30 cm; iron oxide nanoparti-
cles (Fe3O4) with sizes of 50–100 nm 

Concentrations: Zinc nano-
particles at 25, 50, 75, and 
100 mg/L; iron nanoparticles 
at 5, 10, 15, and 20 mg/L. 
Species: Wheat (Triticum 
aestivum L.). Effects: Plant 
morphology ↑, Biomass ↑, 
Biochemical activity ↑, Cad-
mium uptake ↓, and Biofor-
tification ↑ 

 
 
 

[66] 

Silicon nanoparticles Spherical nanoparticles with size 
around 90 nm 

Concentrations: The nano-
particles were evaluated at 
concentrations of 300, 600, 
900, and 1200 mg/L. Species: 
Wheat (Triticum aestivum L.). 
Effects: Biomass ↑, Biochem-
ical activity ↑, ROS levels ↑, 
and Cadmium uptake ↓ 

 
 

[30] 

Biogenic zinc nanoparti-
cles produced using 
brown seaweed (Turbi-
naria ornata) extracts 

Spherical and hexagonal nanoparti-
cles with average size of 15–52 nm 

Concentrations: Nanoparti-
cles at concentrations of 5, 
10, 25, 50, 100, and 200 
mg/L. Species: Rice (Oryza 
sativa L.). Effects: Seed and 
seedlings vigor ↑, Antioxi-
dant enzymes ↑, and Biofor-
tification ↑ 

 
 

[64] 

Nanoparticles of zinc, tita-
nium, and silver 

Zinc oxide nanoparticles (35–40 
nm), titanium oxide nanoparticles 
(100 nm), and silver nanoparticles 
(85 nm), with spherical, cylindrical, 
and needle-like morphologies, re-
spectively 

Concentrations: Nanoparti-
cles at concentrations of 750, 
1000, and 1250 mg/kg. Spe-
cies: Chilli (Capsicum an-
nuum L.). Effects: Seed and 
seedlings vigor ↑, Plant mor-
phology ↑, Antimicrobial ac-
tivity ↑ 

 
 

[67] [67]



Nanomaterials 2021, 11, 267 8 of 28

Table 1. Cont.

Nanoparticle
System Characteristics Main Effects Applications Reference

Chitosan/
tripolyphos-
phate
nanoparticles

Nanoparticles with
size of
259.4 ± 4.7 nm, PDI
(polydispersity
index) of
0.28 ± 0.0016,
and zeta potential
of 40.0 ± 2.9 mV

Concentrations: Nanoparticles at concentrations
of 1–100 µg/mL. Species: Wheat
(Triticum aestivum L.). Effects:
Plant morphology ↑, Biochemical activity ↑,
and Plant growth regulator (auxin) ↑
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nanoparticles

Spherical
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Species: Common bean (Phaseolus vulgaris L.).
Effects: Plant morphology ↓, ROS levels ↑,
and Biochemical activity ↓
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Nanoparticles with sizes of 25, 40, 
and 80 nm, and zeta potentials of 
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Concentrations: 1, 10, 100, 
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vulgaris L.). Effects: Seed 
and seedlings vigor ↑↓ 
(High concentrations inhib-
ited seed germination, inde-
pendent of nanoparticle 
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[53] 

Chitosan nanoparticles of 
and carbon nanotubes 
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95 ± 2 nm and zeta potential of 
+123.5 mV; carbon nanotubes with 
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Concentrations: 10% of both 
nanomaterials were used, 
with a concentration of 20 
µg/L−. Species: Common 
bean (Phaseolus vulgaris L.). 
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ROS levels ↑, and Biochemi-
cal activity ↓ 

 
 
 
 
 

[69] 

[69]
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Table 1. Cont.

Nanoparticle
System Characteristics Main Effects Applications Reference

Zinc
nanoparticles

Zinc nanoparticles
with size of 20 nm
and spherical shape,
and sizes of 40 and
60 nm with
elongated shapes

Concentrations: 1, 10, 100, 1000, and 5000 mg/L.
Species: Common bean (Phaseolus vulgaris L.).
Effects: Biomass ↑
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[71] 

Biogenic silver nanoparti-
cles produced using Phyl-
lanthus emblica 

Nanoparticles with size of 10–35 
nm, irregular shape, and zeta po-
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 [73] 
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Chitosan
nanoparticles

Chitosan
nanoparticles with
sizes of 20–170 nm
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Species: Rice (Oryza sativa L.).
Effects: Plant morphology ↓, and Biomass ↑
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nanoparticles

Mean size of
21.3 nm
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Effects: Salinity resistance ↑,
Biochemical activity ↑, ROS levels ↓
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[63]

Biogenic silver
and gold
nanoparticles
produced using
onion extract

Silver nanoparticles
with size of
11.6 ± 2.40 nm and
zeta potential of
−2.20 ± 0.29 mV,
with spherical and
ellipsoidal morphol-
ogy;
gold nanoparticles
with size of
93.68 ± 2.06 nm,
and zeta
potential of
−8.51 ± 1.26 mV,
with anisotropic
morphology

Concentrations: Silver nanoparticles at
31.3 µg/mL and gold nanoparticles at 31.3
µg/mL. Species: Onion (Allium cepa L.)
Effects: Seed and seedlings vigor ↑ Plant
morphology ↑, Biochemical activity ↑
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 [73] 

[19]

Platinum
nanoparticles
stabilized with
poly(vinylpyrro-
lidone)

Nanoparticles with
size of 3.2 ± 0.8 nm
and spherical
morphology

Concentrations: Concentrated solution at
1.0 mM. Species: Pea (Pisum sativum L.).
Effects: Seed and seedlings vigor ↑ Plant
morphology ↑, and microorganisms colonization
(arbuscular mycorrhizal fungi and rhizobia) ↓
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Table 1. Cont.

Nanoparticle
System Characteristics Main Effects Applications Reference

Biogenic silver
nanoparticles
produced using
Phyllanthus em-
blica

Nanoparticles with
size of 10–35 nm,
irregular shape, and
zeta potential of
−23.8 mV

Concentrations: 0, 5, 10, 25, and 50 mg/L.
Species: Wheat seeds (Triticum aestivum L.).
Effects: ROS levels ↓, Seed and seedlings vigor
(non-biogenic silver nanoparticles) ↓, Seed and
seedlings vigor (biogenic nanoparticles) ↑
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 [73] 

[72]

Chitosan guar
nanoparticles

Nanoparticles with
size of 122 nm, PDI
of 0.358, and zeta
potential of
−30 mV

Concentrations: 0.05, 0.1, and 0.2%. Species:
Rice (Oryza sativa L.). Effects: Seed and seedlings
vigor ↑↓ (0.05% and 0.1%, the nanoparticles
promoted seed germination, while the use of 0.2%
reduced seed germination), Plant morphology ↑,
Biomass ↑, Biochemical activity ↑ and
Antimicrobial activity ↑

[73]

Iron
nanoparticles

Nanoparticles with
size of ~80 nm, and
zeta potential of
−44 mV

Concentrations: 25, 50, 100, 200, 300, 400, 500,
and 1000 µg/mL. Species: Wheat
(Triticum aestivum L.), types WL711 (low-iron
genotype) and IITR26 (high-iron genotype).
Effects: Seed and seedlings vigor ↑↓
(dose dependent), Plant morphology ↑↓
(High concentrations caused inhibition of
plant growth), and Harvest ↑
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[12] 

Multi-walled carbon 
nanotubes 

Nanotubes with diameter of 13–14 
nm 

Concentrations: 70, 80, and 
90 µg/mL. Species: Wheat 
(Triticum aestivum L.). Ef-
fects: Seed and seedlings 
vigor ↑, Plant morphology ↑, 
and Harvest ↑ 

 
 
 
 
 
 
 
 
 
 
 

[76] 

[74]

Zero-valent iron
nanoparticles
(priming of
aged seeds)

Nanoparticles with
size of
33.8 ± 3.59 nm, and
zeta potential of
−39 mV

Concentrations: 10, 20, 40, 80, and 160 mg/L.
Species: Rice (Oryza sativa L.). Effects: Seed and
seedlings vigor ↑↓, Water uptake ↑↓,
Plant morphology ↑, Biochemical activity ↑,
Enzymatic activity ↑, ROS levels ↓.
Dose dependent effects
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Table 1. Cont.

Nanoparticle
System Characteristics Main Effects Applications Reference

Nano-pyrite
(FeS2)

Nanoparticles with
sizes in the range
25–100 nm,
with spherical mor-
phology

Concentrations: 50 µg/mL. Species: Rice
(Oryza sativa L.). Effects: Enzymatic activity ↑,
Seed and seedlings vigor ↑, and Fertilizer ↓
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Table 1. Cont.

Nanoparticle
System Characteristics Main Effects Applications Reference

Lignin
nanoparticles
loaded with
gibberellic acid

Nanoparticles with
sizes around
200–250 nm,
polydispersity of
0.17–0.38,
and spherical
morphology

Concentrations: 0.5, 1, and 1.5 mg/mL.
Species: Arugula (Eruca visicaria (L.) Cav. subsp.
sativa), tomato (Solanum lycopersicum L. cv.
Ciliegino), and chickpea (Cicer arietinum L.).
Effects: Seed and seedlings vigor ↑ (The effects
varied according to the time of sowing after
the treatment.)
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Table 1. Cont.

Nanoparticle
System Characteristics Main Effects Applications Reference

Chitosan
nanoparticles
containing zinc

Nanoparticles with
size of
387.7 ± 4 nm,
spherical
morphology,
polydispersity of
0.22, and zeta
potential of +34 mV

Concentrations: 0.01, 0.04, 0.08, 0.12,
and 0.16% w/v. Species: Maize seeds
(Zea mays L.). Effects: Seed and seedlings vigor ↑,
Enzymatic activity ↑, Anti-oxidant enzymes ↑,
Biotic resistance ↑, and Harvest ↑
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[87]

Active nanoparticles are nanoparticles that themselves can cause a biological effect,
acting as a stimulant, an anti-pathogen, or both [14,61,66]. Nanocarriers with sustained
release features are systems where the nanoparticle (being itself active or not) is loaded
with an active ingredient (biological or synthetic) and provides extended release of this
compound over time [8,9,54,88].

Metallic nanoparticles are an example of active nanoparticles that can be prepared
employing either chemical or biological synthesis [14,31,65]. Polymeric nanoparticles are
other potentially active systems, since many of the polymers used for their preparation
present biological activity [62,70,73]. These systems can be used for sustained release
after being loaded with substances, including pesticides, fertilizers, biological compounds,
or even other nanoparticles. The sustained release of these substances can result in higher
biological activity and reduced toxic effects [54,78,89]. Many products that are used for seed
priming can be loaded into nanocarrier systems, consequently improving their biological
activities [54,78,82].

2.3.1. Active Nanoparticles

Metallic nanoparticles, including those produced using biogenic processes, are systems
that are normally smaller than 100 nm. These systems have received special attention for
seed nano-priming, since many of them are prepared with metals that play important roles
in plant metabolism and plants biofortification [1,77].

Some examples of these metals are iron, zinc, and manganese. Iron is a co-factor
for enzymes, such as cytochrome P450s and Fe(II)/2-oxoglutarate-dependent oxygenase,
which makes it an essential nutrient in various metabolic pathways, including respira-
tion and photosynthesis [31,75]. Zinc is another metal essential for plant metabolism.
Around 30% of the global lands is deficient in this micronutrient, leading to problems in
sugar production and the synthesis of cell membranes, hormones, and proteins, affecting
seedling vigor, photosynthesis, and plant defense systems [33,64]. Manganese acts as a
co-factor for enzymes as superoxide dismutase (involved in antioxidant response) and the
oxygen-evolving complex of photosystem II [29].

Seed nano-priming using nanoparticles based on these metals has shown considerable
potential for agricultural applications. For example, Dileep Kumar et al. [67] primed
Chilli seeds with metal oxide nanoparticles (zinc, titanium, and silver) and found that
zinc oxide nanoparticles improve germination and seedling development (shoot and root
length), while these effects are not observed for the other tested metal-based nanoparticles
(titanium and silver). According to Rizwan et al. [66], seed priming with zinc oxide and
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iron oxide nanoparticles improved plant development at high concentrations, increasing
spike length, plant biomass, chlorophyll contents, and photosynthetic parameters in leaves.
Moreover, the plants presented high concentrations of Zn and Fe after seed priming.
Maswada et al. [65] reported an increase in seed germination and plant growth in sorghum
treated with iron oxide nanoparticles. Treatment at 500 mg/mL increased photosynthetic
pigments and biomass. Treatments at 100 and 500 mg/mL increased the relative water
content in leaves.

Duran et al. [53] showed that copper nanoparticles had different effects in bean plants
according the nanoparticle size and concentration, with low concentrations and larger
nanoparticles resulting in a higher biomass, while high concentrations inhibited seed
germination, independently of nanoparticle size.

Biogenic nanoparticles prepared using biological extracts from plants, fungi, or bac-
teria can have high contents of phytochemicals compounds, including phytomolecules
rich in hydroxyl and carbonyl functional groups, such as phenolics, flavonoids, terpenoids,
sugars, and proteins. These compounds are natural reducing agents for metals and can act
as capping that stabilizes the nanoparticles in colloidal solutions [34].

As an alternative methodology for the synthesis of metallic nanoparticles, green
synthesis is more economical compared to chemical methods and has the advantages of
increasing biocompatibility and avoiding the use of toxic chemicals [19]. Many biogenic
metallic nanoparticles have been shown to present improved biological effects, as well as
lower (or no) phytotoxicity, compared to metallic nanoparticles synthesized using chemical
methods [64,72].

Some metallic nanoparticles can become toxic to seeds or plants due to the re-oxidation
process. For example, silver nanoparticles can be re-oxidized (from Ag0 to Ag+ ions)
within seeds and plants, and the ionic form can inactivate proteins and enzymes, result-
ing in toxic effects [72]. However, bioactive compounds present as coatings on biogenic
nanoparticles can act as stabilization agents, avoiding the re-oxidation reaction and con-
sequently increasing the biocompatibility of metallic nanoparticles [72,83]. Different bio-
genic metallic nanoparticles have been shown to be able to enhance seed germination,
improve plant growth and development, and increase the levels of chlorophyll and antioxi-
dants [12,31,34,77].

Itroutwar et al. [64] found that biogenic zinc nanoparticles produced from brown sea-
weed (Turbinaria ornata) extracts increased seed germination, vigor index, and seedling de-
velopment. In addition, the plants showed high contents of antioxidant enzymes, and there
was a dose-response accumulation of zinc in the seedlings, according to the concentration
used for seed priming. Mahakham et al. [34] primed aged maize seeds with biogenic
gold nanoparticles synthesized using galangal rhizome extracts. They showed that the
treatment at 10 ppm improved the emergence from aged seeds by 83% and seed vigor index
by 3-fold, compared to the control, and increased chlorophyll content. Mahakham et al. [14]
found that priming rice seeds with biogenic silver nanoparticles produced using kaffir
lime leaf extract increased the α-amylase activity and water uptake of the seeds, improving
both germination and plant biomass [15]. Kasote et al. [31] primed watermelon seeds
with biogenic iron nanoparticles produced using onion extracts, which resulted in the
increase of germination and growth of shoots and roots. The nanoparticles did not cause
adverse antioxidant and chlorophyll effects, compared to the effects of the bulk counter-
parts (FeCl3 and Fe2O3). The nanoparticles were taken up and translocated into the seed
endosperm, leading to increased non-enzymatic antioxidant levels and the induction of
jasmonates-linked defense responses in the seeds.

Acharya et al. [19] performed, for 2 years, priming onion seeds with biogenic silver
and gold nanoparticles produced using onion extract. The treatments resulted in increase
of seedling emergence, number of leaves, plant weight, and productivity, compared to
unprimed and hydro-primed seeds. The results also showed metabolic effects, with in-
creases of chlorophylls a and b. The gold nanoparticles provided better results than the
silver nanoparticles.
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Biogenic metallic nanoparticles can act as delivery systems, since many secondary
metabolites may adhere on the nanoparticle surface. These metabolites can have different
biological actions that improve plant metabolism and growth [64,90]. In addition, many bi-
ological extracts have fungicidal or bactericidal properties and can be used in the protection
against pathogens [91,92]. Furthermore, metallic or biogenic metallic nanoparticles can
be taken up by seeds more easily due their small sizes and trigger secondary metabolites
more efficiently, providing stronger action in development of the embryo [14,31,35].

2.3.2. Sustained Release Nanocarrier Systems

Biopolymeric nanoparticles are systems that can be made from polysaccharides, lipids,
and proteins, resulting in nanoparticles that are biodegradable and biocompatible, be-
sides being able to be designed to respond to different environmental stimuli [6,8,9].
These systems can be loaded with various substances, including fungicides [93,94], essen-
tial oils [89,95,96], plant growth regulators [54,97,98], and fertilizers [99].

Polymeric nanoparticles used for seed coatings are normally larger than 100 nm [54],
providing slow release of active compounds used to modify plant metabolism or to combat
pathogens [9,54,81,88]. Numerous nanocarrier systems based on biopolymers have the
potential to be used for seed treatment, including alginate [100,101], zein [89,102], cellu-
lose [103,104], synthetic biopolymers (poly-epsilon-caprolactone, poly(lactic-co-glycolic acid),
poly(lactic acid)) [9], and lipid nanoparticles [105,106].

Chitosan is another biopolymer that has been used to prepare nanocarrier systems
for agricultural applications. This polymer has fungicidal properties and also acts in
plant metabolism, activating defense mechanisms [94,107,108]. The concentration of this
biopolymer is a key consideration, since high concentrations block seed germination [73].
This effect is because oligosaccharides and polysaccharides can elicit physiological re-
sponses in plants, high concentrations causing cell apoptosis, while low concentrations
have stimulant effects [62].

Biopolymeric nanoparticles can be used as carrier systems for metal micronutrients,
allowing a slow release of these compounds. Saharan et al. [85] showed that the priming
of maize seeds with chitosan nanoparticles containing copper induced α-amylase and
protease activities and promoted reserve mobilization, thus favoring seedling growth.
In contrast, the treatment with bulk copper led to inhibitory effects. Similarly the priming
with zinc-loaded chitosan nanoparticles induced the activity of hydrolytic enzymes in
maize seeds, favoring germination.

Nanocarrier systems for plant growth regulators have shown potential for seed priming,
providing improvements from seed germination up to production [54,82]. Falsini et al. [54]
used lignin nanoparticles containing gibberellic acid to coat arugula and tomato seeds.
The effects varied according to the time of sowing after the treatment. In arugula seeds,
the formulations improved germination and increased the stem and root lengths and the
plant biomass. Similar effects were observed for tomato seeds, varying according to the
parameter and the concentration used. The ability of active nanoparticles or nanocarrier
systems to increase seed germination can be explained by the fact that, at optimal concen-
trations, nanoparticles are able to penetrate the seed coat, increasing the number of holes
in the coat and, consequently, increasing water uptake and oxygen transfer [58,75,76].

In another work with tomato seed priming, Pereira et al. [82] reported that chitosan-
based nanocarrier systems of gibberellic acid were able to improve not only initial seedling
growth but also fruit production under field conditions. In this study, the seed nano-priming
was able to increase the production in 225.5% and 178.8% for chitosan/tripolyphosphate
and alginate/chitosan nanoparticles containing gibberellic acid, respectively. The methods
used to prepare these nanoparticles do not involve organic solvents, being interesting
method aiming a sustainable agriculture [97,109].

Muthuhrishnan et al. [81] used chitosan nanoparticles loaded with thiamine to prime
chickpea seeds. This procedure improved seed germination, induced a 10-fold increase of
auxin level in seedlings, and boosted the quantity of secondary roots.
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The improvement of the biological efficacy of active compounds by nanocarrier sys-
tems is associated to the enhancement of physical-chemical proprieties. Effects, such as
increased solubility, protection against degradation, and greater bioavailability, can reduce
the required concentration of the active compound and minimize toxic effects [6,110]. Sev-
eral studies have shown that seed-nano priming can be more efficient than conventional
methods and can contribute to improved agricultural practices [14,19,78]. Many systems
defined as nanopesticides or nanofertilizers, used in the control of pests or for plant
development, have the potential for use in seed nano-priming [3,8,111].

2.4. Seed Nano-Priming and Effects on Plant Metabolism under Abiotic and Biotic Stresses

Abiotic and biotic stresses lead to reduced production and economic losses. Abi-
otic stresses are environmental factors, such as drought, flood, heat or cold, salinity,
or nutrient-deficient soils. Biotic stresses are caused by microbial pathogens (bacteria
or fungi), insects, or weeds that compete for nutrients [4,8].

The use of seed nano-priming in agriculture can improve the quality of seeds and in-
crease resistance against stress conditions. Nanoparticles can act directly against pathogens,
as well as alter the metabolism of seeds and plants, consequently enhancing the innate
immune system, altering hormone production, and making the plants more resistant to
diseases or abiotic stress [112].

The nanoparticles uptake under seed coating can promote the ROS production, acting
in different metabolic pathways, increase the level of active gibberellins, and the mobiliza-
tion of storage proteins [35]. In addition, the effect of nanoparticles in increasing water
uptake by the seeds can cause sufficient stress to activate germination, increasing the
activities of enzymes in phases I and II of the process [76] (Figure 4a). Seed nano-priming
has been shown to increase germination, since these systems are able to keep ROS levels in
the optimum range comprised by the oxidative window that promotes seed germination
(Figure 4b) [31,75].

Under stress conditions, nanoparticles can act to reduce seed ROS levels, due to
increased activity of enzymes, such as superoxidase dismutase, catalases, and guaiacol-
peroxidase, hence reducing seed cell damage [75].

The storage of seeds for long periods at low temperatures results in aging, which can
heavily decrease the germination rate [34]. After long periods, the seed cells initiate
processes that increase ROS generation and reduce antioxidant levels, causing metabolic
side effects that result in a reduction of the germination index [75].

The use of biogenic metallic nanoparticles has been shown to be able to ROS at opti-
mum levels, resulting in improved germination of aged seeds. The biogenic nanoparticles
can be coated with many compounds that are natural reducing agents and act to decrease
ROS levels in seeds [14,75].
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2.4.1. Biotic Stress

Seed protection is required at different times during agricultural practices. In the field,
the seeds and seedlings need to be protected against insects, fungi, and bacteria that
can damage the seed and reduce germination or seedling growth. During harvesting
and storage, seeds carry microorganisms from the field. These may shorten the shelf-life of
the product or lead to the accumulation of microbial metabolites that make the products
dangerous for consumption [113].

In the field, the use of fungicides and neonicotinoids for seed coating can reduce
the damage caused by these organisms during plant establishment [56]. This method
has shown excellent potential compared to foliar applications [114,115]. Relative to foliar
treatment, the use of pesticides for seed treatment can reduce the amounts of the chemicals
applied in the field, as well as decrease the number of runs of agricultural machines on
the land (avoiding soil compaction); so, the technique can be considered economically
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and environmentally advantageous [114]. The technology of seed treatment in developing
countries is expected to reach a gain of US$ 1.63 billion [32].

Seed coating techniques employ fungicides that may be released in the field during
the sowing process, resulting in environmental contamination. For example, pesticides,
such as carbofuran and thiran, are highly toxic and persistent in the environment [11],
so the consumption of treated seeds by animals, such as granivorous birds, can lead to
poisoning or death [56].

Because nanoparticles are reactive and physiochemically dynamic materials, they tend
to heteroaggregate in environmental media [116]. This can result in an effective seed coating,
limiting the release of these compounds in the environment [116].

Nonetheless, the use of nanoparticles for seed priming and coating can provide eco-
friendly solutions. Many of these systems are nontoxic, biodegradable, and can increase
the bioefficacy of active ingredients used at low concentrations [14,73,78].

Several systems have been shown to be effective against pathogens. Ahuja et al. [68]
demonstrated that iron(II) sulfide nanoparticles were more effective than the fungicide
carbendazim to control the fungus Fusarium verticillioides in rice seeds. Silver nanopar-
ticles are active against plant pathogens, including Aspergillus flavus, Aspergillus niger,
Aspergillus fumigatus, and Colletrotrichum capsica, showing great potential for seed protec-
tion. Metallic nanoparticle systems can be used for both seed priming and seed protection,
as demonstrated for nanoparticles composed of iron [68], copper [117], silver [14], and
silica [78]. Sathiyabama and Muthukumar [73] primed rice seeds with chitosan/guar
nanoparticles, which resulted in increased plant development and higher levels of chloro-
phyll and carotenoids, the nanoparticles showing anti-fungal activity (71%) against the
rice pathogen Pyricularia grisea. For pearl millet, Nandhini et al. [113] showed that seed
nano-priming and foliar application of zinc nanoparticles reduced downy mildew caused
by Sclerospora graminicola. Dileep Kumar et al. [67] showed that nanoparticles of zinc,
titanium, and silver could reduce pathogen infection as Aspergillus flavus, Aspergillus niger,
Aspergillus fumigatus, and Colletrotrichum capsica in Chilli seeds.

Siddaiah et al. [61] showed that the treatment of millet seeds with chitosan nanopar-
ticles resulted in alteration of the innate immune system of the plants and increased
resistance against pathogens. The treatment improved the levels of antioxidant enzymes
and increased expression of proteins involved in the salicylic acid pathway, which is related
to plant resistance responses against biotrophic pathogens. The field studies of Choud-
hary et al. [86] showed that the treatment of maize seeds with zinc-containing chitosan
nanoparticles resulted in plants with higher activity of antioxidant enzymes and lignin
concentrations, making the plants more resistant to pathogens. Bravo Cadena et al. [78]
showed that silica nanoparticles loaded with cinnamon essential oil and applied to pea
seeds acted as seed primers and provided bactericidal activity against Pseudomonas syringae
pv. pisi, even at low concentrations. The seeds showed fast germination, and the cinna-
mon essential oil provided a 90,000-fold increase in bactericidal activity in comparison to
the non-encapsulated oil. The use of essential oils with fungicidal or bactericidal prop-
erties for seed priming is a promising eco-friendly alternative to chemical fungicides or
bactericides [78,86,89].

Techniques employed during the storage of cereals include the control of humidity
and temperature to minimize the growth of microorganisms, as well as the use of chem-
ical products, although the latter may be viewed negatively by consumers, who prefer
natural products [113]. For this purpose, the use of biopolymers or essential oils with activ-
ities against pests can provide a greener alternative to agrochemicals, avoiding problems
associated with residual contamination.

2.4.2. Abiotic Stress

Harvest yields can be drastically decreased by soil salinity and contamination [65].
Salinity represses plant growth due to water and nutritional deficits and direct ionic effects
on plant metabolism [63]. Contamination with heavy metals may be both anthropogenic
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(due to fertilizer applications, industrial processes, atmospheric deposition following
waste incineration, and discharges of sewage and sludge) and geogenic (due to natural
atmospheric deposition or regional geological processes) [30,118,119].

Ye et al. [29] showed that jalapeño pepper seeds (Capsicum annuum L.) primed with
manganese nanoparticles presented improved germination and root elongation under
saline conditions, as well as alleviated salt stress by modulating successfully the distribution
of sodium between roots and shoots, through control of the oxidative stress.

Abdel-Latef et al. [63] demonstrated that lupin seeds primed with zinc nanoparticles
mitigated the salinity stress condition, avoiding reductions of growth parameters (root and
shoot lengths; fresh and dry weights) and photosynthetic pigments.

Maswada et al. [65] reported that sorghum seeds treated with nano-iron(III) showed
improved germination, with the plants showing increased chlorophyll contents and im-
proved growth under saline conditions. These results indicate that this system could be
used not only to improve seed germination but also to avoid stress conditions. In an-
other study, priming lupin seeds with zinc nanoparticles improved plant development
under saline conditions, due to increased levels of photosynthetic pigments, phenols,
organic molecules, and antioxidant enzymes.

In a case of heavy metal contamination, Rizwan et al. [66] showed that priming of
wheat seeds with iron and zinc nanoparticles reduced the absorption of cadmium, result-
ing in low cadmium concentrations in the grains. Zinc nanoparticles reduced cadmium
levels in shoots, roots, and grains by 38%, 55%, and 83%, respectively. The iron nanoparticles
reduced cadmium levels in the shoots, roots, and grains by 54%, 56%, and 84%, respectively.
The plants presented high concentrations of zinc and iron after seed priming [68]. Hus-
sain et al. [30] demonstrated that, when germinated in soil contaminated with cadmium,
seed priming with silicon nanoparticles was able to reduce cadmium uptake, to increase
plant biomass, photosynthetic rate, and levels of carotenoids and chlorophylls a and b,
and to decrease the formation of reactive oxygen species and antioxidant enzymes activity.

Soil deficiency of nutrients, such as iron and zinc, can affect the production of phy-
tohormones involved in plant defense responses, including jasmonic acid and salicylic
acid [31,86]. Kasote et al. [31] primed watermelon seeds with biogenic iron nanoparticles
prepared using onion extract. The plants showed increased levels of jasmonic acid and of
its precursor cis-(+)-12-oxo-phytodienoic acid during the early seedling stage, which could
increase the resistance to stress.

Nguyen et al. [117] showed that maize seed priming with cooper nanoparticles can
enhance drought resistance in plants. The leaves kept high water content, increased the
levels of anthocyanin, chlorophyll, and carotenoids, and reduced the oxidative stress.

These results showed the potential of seed-nano priming to relieve plant stress caused
by saline conditions, drought, the presence of heavy metals, or nutrient deficiency, with the
modulation of metabolism to resist stress conditions and improve plant growth (Figure 4c).
The use of seed nano-priming to trigger plant resistance to abiotic stress is a strong alter-
native to avoid side effects of global climatic crisis or anthropogenic and geogenic effects,
in order to reduce losses in the field production.

2.5. Molecular Responses Induced by Seed Priming During Germination, Abiotic and Biotic Stress

Nanoparticles are able to interact with plant cells and to be internalized in different
cell compartments. Seed nano-priming can initiate or alter many genes expression profiles
and biochemical pathways [28,35] during the germination step and even over time [14,27].

Water exchange during the imbibition phase is the first step of seed germination. Dur-
ing this germination process, seed priming with nanoparticles can induce the expression of
aquaporin genes, increasing water uptake in seeds [14,59]. Multiwalled carbon nanotubes
air-sprayed on seeds of crops (barley, corn, and soybean) activated the expression of seed-
located water channel genes (aquaporins) from different subfamilies [59]. According to
Mahakham et al. [14], aquaporin genes were overexpressed in rice seeds (Oriza sativa L.
cv. KDML 105) primed with silver nanoparticles. Aquaporins allow the diffusion of water
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across biological membranes and facilitate the transport of gases (CO2, NH3), nutrients,
and ROS (especially H2O2). Thus, together with the induction of aquaporin genes triggered
by seed nano-priming, the authors reported a faster germination than in controls.

An et al. [27] used transcriptomic analyses of cotton seeds primed with cerium oxide
nanoparticles coated with the antioxidant poly(acrylic acid) and exposed or not to a saline
stress. Seeds treated with nanoparticles, under no saline stress, resulted in the expression
of 7799 different genes in comparison to the control. In salinity conditions, the authors
described that the nano-primed seeds expressed 13 genes related to ROS pathways and
10 genes related to ion homeostasis.

In another example, Ye et al. [29] showed that manganese nanoparticles used for seed
priming of Capsicum annuum L. also promoted the seedling growth under saline conditions.
In this study, the primed seeds up-regulated MnSOD gene (Mn superoxide dismutase),
increasing SOD enzyme levels, which defends plant cells against ROS damage, avoiding the
phytotoxic effects.

The seeds’ nano-priming treatment also demonstrated to regulate resistance genes
against biotic stress. Siddaiah et al. [61], showed that seeds treated with chitosan nanopar-
ticles increased the resistance against downy mildew disease caused by the biotrophic
oomycete Sclerospora graminicola. The seed priming improved the innate immune system.
The plants increased the expression of genes of phenylalanine ammonia lyase, peroxidase,
and polyphenoloxidase. Moreover, the plants overexpressed pathogenesis-related (PR)
genes (PR1 and PR5), that are involved in the salicylic acid pathways.

Plaksenkova et al. [120] reported that barley seeds exposed to zinc oxide nanoparticles
increased the expression of the microRNAs miR156 and miR159, that are involved in the
plant mechanisms against abiotic and biotic stress.

In summary, the effects of seed nano-priming at molecular level and how nanopar-
ticles modulate gene expression are not totally elucidated, and research in this field is
extremely important. The different kinds of nanoparticles, treatments, and concentrations
can result in different responses in plant metabolism. In addition, nanoparticles can act
as a signal or co-factors improving the regulation of transcription of genes related to
phytohormones and response to biotic and abiotic stress conditions [29,35].

2.6. Effects on Microbiota

The effect of seed nano-priming on plant microbiota is a fairly new area requiring
further studies. The interaction between plants and microorganisms is essential for agri-
culture, since these symbiotic relations are important for the absorption of nutrients,
defense against pathogens, plant quality, and productivity [87].

The foliar application of nanoparticles can modulate the root microbial community.
Raliya et al. [121], showed that foliar application of zinc nanoparticles to mung beans led to
an extension of the rhizosphere zone, with root volume increasing by 58.9%. They also re-
ported increases in the activity of rhizosphere enzymes, such as acid phosphatase (98.07%),
alkaline phosphatase (93.02%), and phytase (108%). These factors are extremely important
for the uptake of nitrogen and phosphorus by plants.

Dai et al. [122] found that roots exposed to cerium oxide nanoparticles decreased
the rhizosphere bacterial community but enhanced the growth of microorganisms that
promote plant growth.

Other studies have reported side effects in the soil microbiota following amendments
with nanoparticles. Zhang et al. [123] found that silver nanoparticles (at 100 mg/kg)
altered the soil pH and negatively affected microorganisms involved in nitrogen, carbon,
and phosphorus cycles. In another study, Li et al. [124] showed that the amendment of
soils with silver nanoparticles (10.4 mg/kg) reduced plant development and resulted in
silver bioaccumulation.

Other metallic nanoparticles, such as titanium and zinc nanoparticles, have been
found to affect the soil microbiota, depending on the concentration and the duration of
exposure [125,126]. Apart from the intrinsic properties (chemical nature, size, coating) and
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concentration, the impact of nanoparticles on plant root and rhizosphere microbiota are
largely dependent on soil texture, pH, organic matter content, and fertilization [127–129].

Few studies have investigated how seed nano-priming might affect the interactions of
microorganisms with roots. Rahman et al. [71] showed that seed priming using platinum
nanoparticles stabilized with poly(vinylpyrrolidone) resulted in side effects on the root
microbiota of pea plants, with a decrease in mycorrhizal fungi and rhizobial colonization,
while these effects were not observed for the same system with gold or silver nanoparticles.

More studies in this field must be encouraged in order to elucidate the mechanisms by
which seed-nano priming can affect seed metabolism and alter the microbiome selected by
the roots during development of the plant. Many nanoparticle systems have shown great
potential for use in agriculture but could be toxic towards soil microbiota. The treatment of
seeds may offer a safer way to improve the establishment of plants and avoid side effects
in the soil, since the treatment is performed on the seeds, avoiding applications in soils.

2.7. Improving Crop Quality and Production

Seed nano-priming can increase the productivity of different crop species, due to the
positive effects on plant metabolism and development. Fast root development increases
the potential of the plant to access nutrients and water, accompanied by faster expansion
of the leaf area, consequently increasing the use of light energy for plant growth.

The effects on the innate immune system can improve the resistance against pathogens,
so that smaller quantities of pesticides need to be applied. Consequently, the concentrations
of residual agrochemicals in food are lower, making the products safer for consumption.
These effects have been demonstrated in studies evaluating the effects of seed priming, up
to harvest, in species with agronomical value.

Yasmeen et al. [79] showed that, in wheat plants, seed priming with iron and copper
nanoparticles led to improvements of spike length, number of grains per spike, and grain
weight. Rahman et al. [71] reported that priming of pea seeds with platinum nanoparticles
stabilized with poly(vinylpyrrolidone) increased production by 163.5%, although the seed
weight was reduced by 66.7%.

Acharya et al. [12]) demonstrated the potential benefits of priming watermelon seeds
with biogenic silver nanoparticles produced using onion extracts. The results revealed a
burst in plant development and increased metabolic activity throughout the life of the plant,
resulting in production increases between 31.6% and 35.6%.

Pereira et al. [82] reported that the priming of tomato seeds with alginate/chitosan
nanoparticles containing gibberellic acid greatly improved fruit production, increasing
productivity by almost 4-fold.

Joshi et al. [76] showed that wheat seeds treated with multi-walled carbon nan-
otubes resulted in the increases of seed germination, root length, number of root hairs,
shoot length, plant weight, number of stomata, and size of average length of vascular
systems (xylem and phloem). At 90 µg/mL, there were increases of 21% and 27% for spike
length and weight, respectively, 20% for the number of spikelets, and 32% for grain pro-
duction.

Another issue concerns biofortification. For example, the treatment of seeds with
iron, zinc, and manganese nanoparticles resulted in plants and grains with higher contents
of these minerals [74]. Other studies have also reported that increased concentrations of
these elements in roots, shoots, leaves, or grains can result in vegetables richer in essential
minerals [66,74].

Seed nano-priming can be an effective way to reduce the amounts of fertilizers applied
to crops. A major problem in agriculture is that only 30–50% of the nitrogen and 45% of
the phosphorus applied in the field are absorbed by the crops [77]. These losses can be
harmful to the environment, since they can lead to the eutrophication of aquatic systems
and contamination of native terrestrial ecosystems.
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Das et al. [77] in fields studies showed that rice seeds primed with nano-pyrite (FeS2)
promote the same productivity found for untreated seeds, with seedlings grown in the
presence of fertilizers.

The use of seed nano-priming has been shown to improve root development and
increase the production of enzymes required for nutrient uptake, which would enable
reductions of the amounts of fertilizer used in the field [75].

3. Concerns

Although nanoparticles have potential for use in seed priming or seed coating, cau-
tion must be exercised in the application of nanomaterials. The safe use of these systems
demands the development of appropriate regulations based on sound research, not only
in agriculture, but also in many other industrial sectors [5,130]. Legal frameworks are
required for industrial production of nanomaterials, treatment of industrial waste, and agri-
cultural applications, together with evaluation of the fates of these nanoparticles in the
environment, considering their possible ecotoxicity.

Agricultural activities are connected with many ecosystems that may be directly
impacted by nanomaterials [3]. Therefore, it is crucial to understand the mechanisms of
action of these materials and to develop nanoparticles that are safe in both the field and the
wider environment.

Before seed treatment, it is necessary to evaluate the conditions employed for prim-
ing, considering the nanoparticle size and concentration, and the duration of exposure,
since these factors can cause side effects, such as germination inhibition, reduced plant
development, detrimental alterations of metabolism and cell structure, and modification of
root-microbiota interactions [56,66,71].

It is essential to understand how the physical-chemical properties of nanoparticles
affect seeds and other associated organisms, in order to be able to design nanoparticles that
are both effective and present minimal toxic effects [8].

The different kinds of nanoparticles cited in this article (metallic, biogenic metallic,
and polymeric nanoparticles) not only differ in their physical chemical characteristics,
but also in their biological activity. The design of these nanoparticles for seed priming can
be used for different strategies, as example seed protection, biofortification, plant resistance
against pests and abiotic stresses, or even the mix of these effects.

However, the use of nanoparticles for seed priming can provide great advantages.
The treatments in seeds reduce the exposition of nanomaterials compared with foliar and
soil applications. Another positive point is the low concentrations of nanoparticles used for
seed priming, that can be a through a controlled form by factories, avoiding high release of
this materials in the environment. Probably, the residual of nanoparticles in plants will be
very small or even none, but studies are necessary to elucidate how different nanoparticles
as metallics, metallics biogenic, and polymerics interact with the plant development.

4. Conclusions

Nanotechnology is a promising area for exploitation in agriculture, and seed-nano
priming is one of the tools that can be employed to promote sustainability.

The use of nano-based technology for seed treatment has potential to move the tra-
ditional agriculture based on the use of agrochemicals to a more sustainable agriculture,
once these systems can promote the establishment of plants, as well as provide protec-
tion against biotic and abiotic stresses, resulting in improvements of productivity and
food quality. All these factors together can result in a system safer for farmers and con-
sumers, with respect to the environment avoiding the continuous damage caused by the
conventional agriculture.

There are many issues that need to be addressed concerning the industrial produc-
tion of these technological systems and their application in the field, including scale-up,
seed priming conditions, and toxic effects in plants and other organisms. However, it is
clear that the adoption of nanoparticle systems can alter crop management, with reduction
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of the applied quantities of pesticides and contamination risks, resulting in agricultural
practices that are safer for farmers, consumers, and the environment.
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