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Abstract 

Background:  Predicting which pathogens might exhibit antimicrobial resistance 
(AMR) based on genomics data is one of the promising ways to swiftly and precisely 
identify AMR pathogens. Currently, the most widely used genomics approach is 
through identifying known AMR genes from genomic information in order to predict 
whether a pathogen might be resistant to certain antibiotic drugs. The list of known 
AMR genes, however, is still far from comprehensive and may result in inaccurate AMR 
pathogen predictions. We thus felt the need to expand the AMR gene set and pro‑
posed a pan-genome-based feature selection method to identify potential gene sets 
for AMR prediction purposes.

Results:  By building pan-genome datasets and extracting gene presence/absence 
patterns from four bacterial species, each with more than 2000 strains, we showed 
that machine learning models built from pan-genome data can be very promising for 
predicting AMR pathogens. The gene set selected by the eXtreme Gradient Boosting 
(XGBoost) feature selection approach further improved prediction outcomes, and an 
incremental approach selecting subsets of XGBoost-selected features brought the 
machine learning model performance to the next level. Investigating selected gene 
sets revealed that on average about 50% of genes had no known function and very 
few of them were known AMR genes, indicating the potential of the selected gene sets 
to expand resistance gene repertoires.

Conclusions:  We demonstrated that a pan-genome-based feature selection approach 
is suitable for building machine learning models for predicting AMR pathogens. The 
extracted gene sets may provide future clues to expand our knowledge of known AMR 
genes and provide novel hypotheses for inferring bacterial AMR mechanisms.
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Background
The discovery and development of antibiotic drugs allowed people to explore the world 
more safely. Wound healing, joint replacement, and any type of open wounds/bacterial 
infections can be controlled very effectively with antibiotic drugs. However, the preva-
lence and misuse/abuse of antibiotics have also resulted in the emergence of drug resist-
ance [termed antimicrobial resistance (AMR)] possessed by certain bacterial strains. 
As of today, resistance has been observed with virtually every antibiotic drug that has 
ever been developed [1]. It was also estimated that the death rate from hip replacements 
could increase from 0% to up to 30% if this condition continues to worsen [2], and the 
World Bank has warned that the annual financial costs of uncontrolled AMR may run to 
US$3.4 trillion by 2030 [3]. Therefore, controlling the use of antibiotic drugs is essential 
for preventing the worst case from occurring, and it is thus necessary to know or predict 
which antibiotic drugs are most effective for patients in order to prevent drug misuse.

Thanks to the development of mature next-generation sequencing (NGS) technology, 
sequencing and determining bacterial genomes are much easier than ever before. Sev-
eral attempts have been made to predict AMR pathogens using genomic information. 
For example, Clausen et al. identified known genes related to AMR activities and used 
that genetic information to find AMR strains among 74 Escherichia coli and 69 Kleb-
siella pneumoniae isolates [4]. Similar approaches were also adopted to identify AMR 
strains from Staphylococcus aureus [5], Pseudomonas aeruginosa [6], and Salmonella 
enterica [7]. Other approaches, including nucleotide k-mer-based prototyping [8–10], 
amino acid composition [11], a population graph-based approach [12], single-nucleotide 
polymorphisms (SNPs) [13, 14], and Hidden Markov model (HMM)-based methods [15] 
were also developed and implemented for better prediction and identification of AMR 
strains based on their genomic sequences. Several software tools were also developed 
for predicting both AMR genes and strains, including CARD/RGI [16], ResFinder [17], 
ARIBA [18], KmerResistance [17], SRST2 [13], PointFinder [14], etc. The availability of 
such methodologies or tools may facilitate our understanding of AMR activities and 
provide more-accurate predictions of AMR pathogens.

Pan-genome, a concept that comprises different strains of the same microbial species, 
is a very powerful and convenient tool for describing similarities and differences among 
genetic contents of strains. In a nutshell, pan-genome is “made up of the sum of core 
and dispensable genomes,” as previously described [19]. In the beginning, pan-genomes 
were mainly used for describing prokaryotic species [19, 20]; most recently, however, the 
idea of a pan-genome has been extended to eukaryotes, including humans [21, 22], other 
animals [23, 24], and plants [25]. The pan-genome idea was also applied to antimicrobial 
analyses and predictions. For example, Scoary, a tool for the rapid scoring of genes in 
microbial pan-genomes, identified genes responsible for linezolid resistance in S. epider-
midis [26]. Benchmarking on simulated Streptococcus pneumoniae genome datasets, as 
reported by Scoary, indicated that the performance of Scoary is dependent on the sam-
ple size, in which it is capable of reaching an 80% recall rate with a sample size of > 100. 
Another study conducted on E. coli found that the pan-genome gene content was more 
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useful for predicting AMR strains than were SNPs [27]. We also applied a machine 
learning approach to the E. coli pan-genome and found that a subset of AMR genes was 
able to achieve a much-higher prediction accuracy [28], in which the genetic algorithm-
based machine learning approach reached 95% accuracy for the selected AMR gene sub-
set. Those studies clearly demonstrated the wide and plausible adoption of pan-genome 
ideas in AMR classification tasks and the importance in selecting crucial genes for better 
prediction of AMR mechanisms.

In this study, we attempted to uncover genes (including novel ones or even those with-
out functional annotations) that were significantly related to AMR activities. By con-
structing pan-genomes from thousands of genomic sequences, we not only showed that 
a couple of genes selected by machine learning feature selection algorithms achieved 
much better prediction accuracies than known AMR genes, but also demonstrated 
that the majority of identified genes have unknown functions, and only a few of those 
selected genes are known AMR genes. Through this work, we showed the importance of 
continual mining of the functionalities of hypothetical genes and their potential relation-
ships with AMR pathogens.

Results
Bacterial pan‑genomes

Pan-genomes were built to analyze four bacterial species (viz., Acinetobacter baumannii, 
E. coli, K. pneumoniae, and S. aureus) with similar numbers of strains (all between 2000 
and 3000). The numbers of strains, identified gene clusters, and numbers of core genes 
and accessory genes are listed in Table 1. As shown in Fig. 1, one can easily observe that 
the numbers of gene clusters for A. baumannii and S. aureus were significantly lower 
than those for the other two species despite similar strain numbers, indicating that the 
genetic diversities of E. coli and K. pneumoniae may be higher than those of the other 
two species.

Despite differences in gene cluster numbers, the analysis of the pan-genome growth 
curves suggested that all four species belong to open pan-genomes, indicating unlim-
ited gene pools of all four species. By investigating the pan-genome distribution of the 
four species and fitting them to Heaps’ law distribution, we identified that the fitted γ 
values were all > 0 (respective γ values of A. baumannii, E. coli, K. pneumoniae, and S. 
aureus were 0.262, 0.311, 0.325, and 0.172; see Methods for details), suggesting that the 
four pan-genomes are all open pan-genomes. One can also observe that the pan-genome 
curves of the four bacteria were not flattened at all, consistent with the fitting results of 
Heaps’ law. The somewhat lower γ values of A. baumannii and S. aureus also reflected 

Table 1  Pan-genome statistics of the four bacterial species

acc. accessory

Species No. of strains No. of gene 
clusters

No. of core 
genes

No. of acc. genes

Acinetobacter baumannii 2,101 21,876 851 21,876

Escherichia coli 2,247 49,634 1,593 48,041

Klebsiella pneumoniae 2,895 49,104 1,730 47,374

Staphylococcus aureus 2,305 8,228 1,522 6,706
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the aforementioned observation that the gene diversities of these two species were sig-
nificantly lower than those of E. coli and K. pneumoniae.

Predicting AMR phenotypes using gene sets

Gene presence/absence tables for different antibiotic drug resistances were built for 
each bacterial species (see Methods for details). The numbers of drugs enrolled in our 
analysis were 10, 17, 13, and 8 for A. baumannii, E. coli, K. pneumoniae, and S. aureus, 
respectively (complete lists of enrolled drugs of the four species are given in Additional 
file  1: Tables S1–S4). After building different support vector machine (SVM) models 
for each drug resistance table and evaluating their prediction performances, we found 
that selecting relevant genes (features) using eXtreme Gradient Boosting (XGBoost) 
yielded better prediction performances. As shown in Fig.  2, XGBoost-selected genes 
(termed “XGBoost-all” in Fig. 2) clearly outperformed “all genes,” “known AMR genes,” 
and “Scoary-selected gene sets” in terms of prediction accuracy, indicating the ability 
of the XGBoost algorithm to select appropriate features for enhancing prediction per-
formances. We noted that the prediction performances shown in Fig. 2 were estimated 
from distinct SVM classifiers, in which one classifier corresponded to one drug-resist-
ance profile of one of the four species. Different gene sets also corresponded to different 
classifiers. The performances of the classifiers were then estimated using tenfold strati-
fied cross validation (See Methods for details).

To further identify genes more relevant to AMR phenotypes and enhance predic-
tion performances, an incremental approach was designed to select the best feature 
set among XGBoost-selected features. The core idea of the incremental approach is 
to pick genes sorted by feature importance values, one-by-one cumulatively, and then 
calculate the model prediction performances of the selected genes in order to find the 
subset with the best outcome. As shown in Fig.  2, genes picked by the incremental 

Fig. 1  Pan-, core-, and accessory-genome growth curves of the four bacterial species, including A 
Acinetobacter baumannii, B Escherichia coli, C Klebsiella pneumoniae, and D Staphylococcus aureus. The x-axis 
indicates the number of genomes (strains), while the y-axis represents the number of gene clusters
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approach (termed “XGBoost-incremental” in Fig. 2) achieved the overall best perfor-
mance (overall > 95% area under the receiver operating characteristic (AUROC) curve) 
with the most succinct gene sets (mostly < 100). The results indicated that choosing 
the most plausible gene set is indeed capable of significantly enhancing the prediction 
performances of AMR prediction problems. Evaluating gene sets using other predic-
tion performance metrics, including precision, recall, F1-score (the harmonic mean of 
the precision and recall), and Matthews correlation coefficient (MCC), also revealed 
the superiority of XGBoost-incremental gene sets compared to the others, as shown 
in Additional file 1: Figure S1.

Since the gene sets uncovered by the incremental approach did not take into account 
whether or not the genes were known AMR genes, we also checked the prediction out-
comes of the combined gene sets consisting of genes picked by the XGBoost-incre-
mental approach and predicted to be known AMR genes for each of the drug/species 
combinations. As shown in Fig.  2, the combined gene sets (termed “XGBoost-incre-
mental + Known AMR” in Fig.  2) generally did not outperform genes picked by the 
incremental approach. The only exception was E. coli, in which the combined gene sets 
achieved an AUROC curve of almost 1.0; however for the three other species, the com-
bined gene sets slightly underperformed the genes selected by the incremental approach.

Fig. 2  Boxplots indicating prediction accuracies and numbers of genes of different gene sets for 
antimicrobial resistance (AMR) prediction problems. A The AMR prediction accuracies of different gene sets 
were evaluated in terms of the area under the receiver operating characteristic (AUROC) curve. B The number 
of genes used in predicting AMR activities for different gene sets. The gene sets included: (1) all genes; (2) 
known AMR genes selected using CARD/RGI; (3) genes predicted by Scoary; (4) all genes selected using the 
XGBoost feature selection; (5) genes selected by the incremental approach on top of the XGBoost-selected 
genes; and (6) the combined set of genes selected by the incremental method and known AMR genes. The 
y-axis is the prediction accuracies in terms of the AUROC curve
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Functional analysis of selected gene sets

We checked the annotations of genes selected by the incremental approach (termed 
“incremental-genes” or “incremental-gene-set” hereafter) to identify functional roles of 
those genes. Surprisingly, we found that the majority of incremental-genes were anno-
tated as hypothetical proteins, i.e., genes with unknown functions. As shown in Fig. 3, 
proportions of hypothetical proteins among the selected genes were generally > 50% for 
all four species, indicating very high numbers of functionally uncharacterized genes 
associated with AMR activities. Detailed information can be found in Additional file 1: 
Table  S5. We also checked the proportions of genes related to mobile elements and 
found that roughly 15% of genes were annotated as having mobile element-related func-
tions, indicating that horizontal gene transfer events or jumping genetic elements may 
be related to AMR phenotypes.

By cross-comparing incremental-genes and known AMR genes, we found that the 
majority of incremental-genes were not known AMR genes. As shown in Fig.  4, pro-
portions of known AMR genes among the incremental-genes were mostly < 10% 
or even < 5%, indicating that the majority of the genes selected by feature selection 
approaches were not annotated as known AMR genes. In other words, known AMR 
genes only accounted for a very small proportion of the genes selected to be highly rel-
evant to AMR phenotypes.

Fig. 3  Proportions of hypothetical proteins (i.e., genes with unknown function) and genes related to mobile 
elements among genes selected using the incremental approach among XGBoost-selected genes. The y-axis 
is percentages. Reference baselines (50% and 15%) are shown as dashed horizontal lines
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Discussion
In this study, we attempted to exploit pan-genome gene presence/absence patterns 
to classify AMR pathogens. By constructing pan-genomes for four bacterial species 
and building classification models based on those gene presence/absence patterns, 
we showed that such patterns are indeed capable of classifying antibiotic-resistant 
pathogens. As shown in Results, simple SVM models built on all gene sets were able 
to achieve > 80% AUROC levels, indicating that gene presence/absence patterns can be 
signals representing and predicting whether bacterial pathogens can withstand certain 
antibiotic drugs.

In the process of building the pan-genomes for the four species, we found that the 
genetic diversities of E. coli and K. pneumoniae may be higher than the other two spe-
cies due to the higher numbers of accessory genes and the elevated Heaps’ law γ values 
of both E. coli and K. pneumoniae. One may wonder whether the heightened diversi-
ties were caused by a representation bias, in which those two species were studied more 
than the others. We do not think this is the case, as the construction process of pan-
genomes was conducted in a de novo manner, in which genes with higher-than-thresh-
old amino acid identities were clustered together. As a result, genetic diversities were 
only estimated from amino acid sequences without man-made annotations, and whether 
a species was studied more than the others was not related to the estimated number 
of accessory genes (i.e., genetic diversity). We also noted that the genome numbers of 

Fig. 4  Proportions of known antimicrobial resistance (AMR) genes among genes selected using the 
incremental approach on the XGBoost-selected genes. Known AMR genes were predicted using CARD/RGI. 
The y-axis is percentages. A reference baseline (10%) is shown as a dashed horizontal line
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the four species did not greatly differ (all were between 2000 and 3000; see Table 1 for 
statistics). Meanwhile, we still did not fully exclude other possibilities that may have con-
tributed to the higher diversities of E. coli and K. pneumoniae, for example better gene 
prediction models. Future research may be needed to fully decipher the diversity issue of 
different bacterial species.

By applying the XGBoost feature selection and an incremental approach to all gene 
sets, we showed that selecting genes that were more relevant to AMR phenotypes was 
indeed capable of significantly improving classification outcomes. In addition, genes 
needed to build classification models were also greatly reduced from tens of thousands 
to hundreds or even fewer. This result signified the importance of selecting the most rel-
evant genes in probing pathogenic AMR traits.

Comparisons between genes selected by the incremental approach and other gene sets 
revealed that incremental-genes significantly outperformed both known AMR genes 
and genes selected by Scoary, a state-of-the-art feature scoring approach. In addition, we 
also demonstrated that taking into account known AMR genes along with incremental-
genes (i.e., the combined gene set of known AMR genes and incremental-genes) did not 
perform better except in the case of E. coli, indicating that incremental-gene-sets are so 
far the best gene sets that we were able to identify. At the current stage, we do not know 
the reason why the combined gene sets performed better in E. coli but not in others, as 
neither the AMR database (PATRIC [29]) nor the known AMR gene database (CARD 
[16]) is tilted toward E. coli pathogens. We plan to continue investigating this phenom-
enon in our ongoing work.

Since the known AMR genes predicted by CARD consisted of drug class informa-
tion (e.g., penem, cephalosporin, aminoglycoside, etc.), we also checked whether using 
drug class-specific genes for predicting AMR activities can achieve better performances. 
By identifying drug classes (e.g., penem, aminoglycoside, tetracycline, etc.) for known 
AMR genes from the CARD results and specifically picking corresponding genes for 
each of the drug resistance datasets, we found that class-specific genes generally under-
performed compared to all AMR genes (Additional file 1: Figure S2). There may be two 
reasons for this result. First, drug classes predicted by CARD may be too general in that 
a CARD annotation might fit into the category of more than one drug. For example, a 
gene annotated as “beta-lactamase” was annotated as belonging to penem, monobactam, 
and cephalosporin, as these drugs all belong to the beta-lactam class. Second, machine 
learning algorithms themselves also have some capabilities in identifying and selecting 
more-relevant features for model training purposes, thereby avoiding totally unrelated 
features. However, too many unrelated features may also drag down a model’s perfor-
mance due to noise-handling issues of the classifiers, which is the reason we conducted 
feature selection on the datasets. We thus reasoned that at the current stage, using all 
AMR genes instead of drug class-specific genes for prediction purposes could achieve a 
better performance.

Functionally speaking, genes extracted by the incremental approach consisted of 
high proportions of unknown functions. Even though proportions of these function-
ally unknown genes are very high in the bacterial world (can be as high as 98% in the 
most extreme case [30]), the finding that the majority of potential AMR genes selected 
by machine learning models belonged to hypothetical proteins was still unexpected. One 
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explanation is that our knowledge of bacterial AMR mechanisms is still far from com-
prehensive, as also indicated by the low overlapping degree between known AMR genes 
and incremental genes, and hence this allowed us to unearth many genes with unknown 
functions using the machine learning feature selection approach. We, however, do not 
exclude the possibility that some of the incremental-genes selected based on the gene 
presence/absence patterns are only peripherally related to AMR mechanisms. We noted 
that this phenomenon was unanimously observed in all four species, indicating that at 
least some of the hypothetical proteins are worthy of further investigation. We plan to 
continue investigating these hypothetical proteins in the hope that we can find novel 
AMR genes and potentially their mechanisms.

On the other hand, one should not be too surprised to see that 10–20% of genes 
uncovered by the incremental approach were annotated as mobile elements, as previous 
studies also identified that mobile genetic elements were related to AMR [31–33]. This is 
because one of the routes for bacterial pathogens to acquire AMR is through horizontal 
gene transfer, and AMR genes were shown to accumulate on or near mobile elements 
[34, 35]. Thus, it is not unexpected that mobile elements are related to AMR phenotypes 
and thus would be selected for predicting AMR pathogens.

By calculating the proportion of hypothetical genes and mobile genetic elements from 
the bacterial genomes and comparing them against potential AMR genes uncovered by 
the incremental approach, we found that the distributions were very different between 
genomic genes and potential AMR genes. As shown in Additional file 1: Tables S6 and 
S7, the proportions of hypothetical genes and mobile genetic elements identified in 
potential AMR gene sets were significantly higher than those calculated from all bacte-
rial genomes (p values of the Wilcoxon rank sum test were all < 1e−05). This result fur-
ther indicates that genes with uncharacterized functions may be worth further analyzing 
in examining their roles in AMR functionalities.

As described in Results, only about 5–10% of the genes selected by the incremental 
approach were annotated as known AMR genes. We observed that known AMR genes 
with corresponding resistance mechanisms were very often identified among the AMR 
genes discovered from the drug resistance datasets. For example, for aminoglycoside 
resistance [36], genes annotated as “aminoglycoside antibiotic” and “antibiotic inacti-
vation” were found among the extracted AMR genes. Similarly, tetracycline resistance 
always consisted of genes related to “antibiotic efflux pump,” as the efflux pump is one 
of the mechanisms bacteria use to withstand tetracycline [37]. Resistance against beta-
lactam antibiotics (such as amoxicillin, ampicillin, cefalotin, and ceftazidime, to name 
just a few) or fluoroquinolones (such as ciprofloxacin) also respectively harbor genes 
annotated as “beta-lactamase” or “fluoroquinolone resistance”. However, a systematic 
analysis or comparison of known AMR genes is still prohibitive, since very often the fea-
ture selection approach also discovers AMR genes with different resistance mechanisms. 
This “error” may be due to two reasons: (1) genes with different drug resistance mecha-
nisms are selected since these genes are still weakly related to resistance albeit through 
different mechanisms, and (2) multiple resistance genes are located nearby and may be 
carried together by the mobile elements, resulting in statistically significant distinctions. 
In future work, we will continue seeking approaches to pinpoint known and unknown 
resistance genes as precisely as we can.
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One limitation of this study is that in order to train prediction models, the datasets 
cannot be too imbalanced, in which we set the criterion as “less than a tenfold difference 
between the numbers of resistant and susceptible entries”. Even though ensuring more-
balanced label proportions is important in building more effective machine learning 
models, a number of important drugs were also forced to be left out. For example, the 
ciprofloxacin dataset for Acinetobacter baumannii consists of 1035 resistant strains but 
only 98 susceptible strains, hinting that this drug may very easily encounter drug resist-
ance problems in real life. This dataset however cannot be used to build a highly effective 
classification model since the model will be highly skewed toward resistant strains and 
may thus poorly perform compared to more-balanced datasets. In the future we will try 
using under- or over-sampling approaches to deal with such highly imbalanced datasets 
and evaluate to what extent can we extract AMR genes from those datasets.

We note that in this study we were looking for gene sets that could be recruited to 
build highly accurate machine learning models for AMR prediction purposes. Even 
though the Holy Grail would be the identification of AMR biomarker genes for both pre-
diction and explanatory purposes, the number of genes selected by the XGBoost-based 
incremental approach is still too many to serve as biomarkers, and many of them are 
functionally uncharacterized. We however stress that our work not only highlights the 
importance of gene presence/absence patterns for AMR prediction purposes, but we 
also unearthed a promising subset of genes for further analyses. Our goal in tackling the 
AMR prediction problem is to continually shrink gene sets related to AMR mechanisms 
and devise approaches to identify what the functionally unknown genes are, ultimately 
achieving the goal of expanding the biomarker repertoire for better elucidation and pre-
diction of AMR pathogens.

Conclusions
In this study, we showed that the pan-genome-based feature selection approach is 
able to both select genes most relevant to AMR phenotypes and predict AMR patho-
gens with very high accuracy. We hope this study can serve as a supplement to conven-
tional known AMR gene-based or SNP-based approaches for better predictions of AMR 
pathogens.

Methods
The analytical steps were roughly as follows. Bacterial gene sequences were downloaded 
and clustered, and pan-genomes were constructed from the clustering results. After 
extracting presence/absence patterns of gene clusters, machine learning feature selec-
tion algorithms were applied to extract gene clusters that were most relevant to the 
resistance profiles of the antibiotic drugs for these pathogens. The prediction perfor-
mances of the extracted gene clusters were then evaluated to assess the applicability of 
these gene clusters for AMR prediction purposes.

Data collection

Genomic sequences, including genomes (.fna files) and translated proteins (.faa files) 
for each individual genome of four species (A. baumannii, E. coli, K. pneumoniae, and 
S. aureus) were downloaded from the PATRIC database [29]. Antibiotic resistance 
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profiles of the strains (i.e., whether certain strains were resistant or susceptible to cer-
tain antibiotic drugs) were downloaded as well. Genome sequences were searched for 
their completeness and contamination levels using CheckM v1.1.3 [38] in order to fil-
ter out low-quality genomes. 16S ribosomal RNA subunit genes of the NCBI reference 
genomes of the four species (including A. baumannii str. ab736, E. coli str. K-12, K. pneu-
moniae subsp. pneumoniae HS11286, and S. aureus subsp. aureus NCTC 8325) were 
downloaded and searched against the downloaded genomes using NCBI BLASTN [39] 
(with -max_target_seqs = 1 parameter). Only strains with at least 95% completeness, at 
most 5% contamination, and at least 99% 16S BLAST identity were retained for further 
analysis.

Pan‑genome construction

For each species, protein sequences of all strains were collected and clustered using CD-
HIT v4.6 [40] at 70% identity. The presence/absence patterns of the yielded gene clusters 
were constructed for the involved strains in order to build the pan-genome, in which 
the columns indicate gene clusters while the rows represent different strains. The pres-
ence or absence of genes in different strains were checked by looking into the CD-HIT 
gene clustering results. If, say, genes from strain X were found in gene cluster Y, then we 
marked the gene cluster as “present” for strain X in the table, and vice versa. In this work 
we only denoted gene clusters as “present” or “absent” in the tables without considering 
the number of genes that could be found in each of the clusters.

Core- and accessory-genomes were defined as gene clusters present in all (100%) of the 
strains or not, respectively. The pan-genome curves were fitted to a Heaps’ law regres-
sion growth model ( n = kN γ ) according to [41], where n is the size of the pan-genome 
(i.e., the number of gene clusters) and N is the number of genomes (strains). Whether 
the pan-genomes were open- or closed-pan-genomes was based on γ , in which γ > 0 
indicates an open pan-genome and γ ≤ 0 otherwise.

Selecting antibiotic drugs for prediction

Associations between antibiotic drugs and resistance/susceptible phenotypes were 
extracted from the file “PATRIC_genomes_AMR.txt” provided by PATRIC [29]. Only 
strains annotated as “resistant” or “susceptible” were included in our analysis. Infor-
mation on each drug associated with each species was extracted and merged with the 
pan-genome tables to form distinct drug tables, in which rows were gene clusters, col-
umns were individual strains, and the table contents consisted of the presence/absence 
information of gene clusters within the strains along with the drug resistance profiles 
(i.e., “resistant” or “susceptible”) of the specific drug. In this study separate classifiers 
were built for different drugs corresponding to different species. For example, different 
machine learning classifiers were built for predicting “gentamicin resistance of E. coli 
strains,” “gentamicin resistance of K. pneumoniae strains,” and “ciprofloxacin resistance 
of K. pneumoniae strains,” to name just a few. Only drugs with (1) at least 100 entries for 
both resistant or susceptible entries; and (2) less than a tenfold difference between the 
numbers of resistant and susceptible entries were included in the analysis. A complete 
list of enrolled drugs and numbers of resistance and susceptible strains for each of the 
species are provided in Additional file 1: Tables S1–S4. We also note that strains without 
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antibiotic resistance information for specific drugs could not be recruited for prediction 
purpose and were thus excluded from the corresponding tables.

Feature selection

Extreme Gradient Boosting (XGBoost) [42] was utilized via the Python XGBoost 
package (xgboost.XGBClassifier v1.3.0; objective = “binary:logistic”, importantce_
type = “gain”, max_depth = 6, and n_estimators = 500) to extract features (gene clusters) 
relevant to resistant or susceptible phenotypes. All features with > 0 importance values 
were extracted. Known AMR genes were identified by searching the centroid sequences 
of gene clusters against the CARD database using its accompanying Resistance Gene 
Identifier software (RGI v5.0.0) [16]. Scoary was conducted by inputting the gene pres-
ence/absence file and phenotype file of each drug into the Scoary GUI interface with 
default settings [26].

Machine learning prediction and performance evaluation

An incremental approach was adopted to find a subset of genes among XGBoost-
selected genes to achieve even better prediction performances. In general, genes (fea-
tures) with importance scores evaluated by XGBoost were first sorted into descending 
order by feature importance values and input, one-by-one cumulatively, into the support 
vector machine (SVM with a linear kernel) model in an incremental manner. The gene 
set with the best stratified tenfold cross-validation performance, in which the propor-
tion of labels was preserved in the split sub-datasets, was then selected as the final gene 
set for the incremental model. The purpose was to find the best gene set (in terms of pre-
diction performance) among all sets of genes. See Additional file 1: Figure S3 for an illus-
trative example, in which four features with different importance scores were sorted and 
formed different feature sets in order to find the set with the highest cross-validation 
prediction performance.

After the incremental gene sets with the best prediction performance were identi-
fied, the AMR phenotype prediction performances of the incrementally selected gene 
sets for each of the drugs were compared against the following feature sets: (1) all 
gene clusters; (2) known AMR gene clusters predicted by CARD/RGI; (3) gene clus-
ters extracted using Scoary v1.6.16 (with default parameters); and (4) the entire set 
of XGBoost-selected gene clusters. An additional gene set comprised of the com-
bined set of incrementally selected gene sets and known AMR genes was also added 
to the comparison for each drug table. The SVM model was constructed and utilized 
through the Python scikit-learn package [43] with a linear kernel (the regularization 
parameter C was kept as the default). The predictive performances were also evalu-
ated by stratified tenfold cross-validation and were evaluated by the AUROC curve 
along with precision, recall, F1-score (harmonic mean of precision and recall), and 
Matthews correlation coefficient (MCC). We noted that the use of the SVM model 
was selected by comparing the performances against other machine learning algo-
rithms, including a decision tree (with gini impurity for information gain) and 
random forest (with 100 trees), by applying the algorithms on tenfold stratified cross-
validation datasets with the XGBoost-selected feature set. As shown in Additional 
file 1: Figure S4(A), the SVM and random forest models performed very similarly (i.e., 
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did not significantly differ statistically; Wilcoxon rank sum test p values = 0.91, 0.51, 
0.54, and 0.28 respectively) while the decision tree model clearly underperformed 
(p ≪ 0.001). In addition, the SVM algorithm was less prone to random effects com-
pared to the random forest, as shown in Additional file 1: Figure S4(B). By running 
both algorithms repeatedly ten times on the stratified cross-validation dataset and 
estimating standard deviations of the prediction performances (in terms of AUROC), 
we identified that results of the SVM algorithm were less variable than those of the 
random forest model. We therefore selected SVM as the one for incorporation into 
the incremental model.

Gene functional annotation

Functional annotations of genes were extracted from the PATRIC database. Genes with 
“hypothetical protein” annotation were regarded as having unknown functional roles, 
and genes with the terms including “mobile”, “phage”, “transposase”, “integrase”, or “tail 
fiber assembly” were classified into mobile-element-related proteins.
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