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A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a
common factor inmultiple neurological disorders andmight be responsible for some of the shared comorbidities seen among these
diseases. For example,many patients withAutism SpectrumDisorder (ASD) have symptoms associatedwithGI disorders.Maternal
zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring.
Zinc status influences and is influenced bymultiple factors and an interdependence of prenatal and early life stress, immune system
abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events
and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role
of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared
comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how
alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in
life.

1. Introduction

Research from the last decades clearly shows that zinc has
a vital role in neonatal development. Zinc is an essential
trace element in humans and animals and is involved
in countless metabolic and signaling pathways within the
body. However, a particular role of zinc in the immune
system and brain has been reported [1]. Zinc is one of
the most prevalent metal ions in the brain and participates
in the regulation of neurogenesis, neuronal migration, and
differentiation, thereby shaping cognitive development and
maintaining healthy brain function. Zinc deficiency during
pregnancy results in specific impairments in the offspring,
which have been observed in animal models but might also
be present in humans [2]. Intriguingly, among individuals
with Autism Spectrum Disorders (ASD), the incidence rate
of zinc deficiency has been reported to be significantly

increased compared to age matched healthy control subjects
[3].The occurrence of zinc deficiencies in ASD is particularly
pronounced in very young age [4, 5], where a rate of almost
50% was reported in the age group of 0–3 years [5]. These
low levels of zinc often occur along with copper overload
and the Cu/Zn ratio was reported to correlate with the
severity of symptoms associated with autism [6–8].This early
occurrence of zinc deficiency with decline later in life and the
manifestation of some of the core features of ASD, such as
impaired social behavior and language and communication
problems in prenatal zinc deficientmice [9], have recently put
maternal zinc status in the focus as a possible environmental
factor in the etiology of ASD. Thus, maintaining adequate
zinc status during pregnancy might be a promising approach
to prevent cognitive and neurobehavioral deficits later in life.
However, meeting the zinc requirement of the mother can be
challenging.
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Two major pools of zinc can be found within the body:
a slowly zinc exchanging pool that contains about 90% of
the body’s zinc and a pool that rapidly exchanges zinc with
the plasma. The latter, which contains the other 10% of
zinc, is the one that is especially reactive to the amount of
absorbed zinc and is the first to be depleted under conditions
of zinc deficiency. Plasma zinc is also the source of the
embryo’s zinc supply. In order to maintain proper zinc levels
during pregnancy, both endogenous losses and the increased
demand resulting, for example, from synthesis of novel tissue
must be covered by absorption of zinc from dietary sources.
Thus, while the metabolic zinc requirement of 2.5mg/d for
an adult woman is generally met when consuming daily 10
to 15mg zinc, due to the additional need for zinc during
pregnancy, an additional 5–10mg zinc per day must be
consumed to meet the increasing demand of 0.08, 0.24,
0.53, and 0.73mg of metabolic zinc per day for the four
quarters of pregnancy [10]. Similarly, during lactation, the
metabolic daily requirement increases by another 2.5mg per
day. Meeting these requirements is challenged by several
factors. First, it is not uncommon for women of childbearing
age to consume low zinc diets. Second, zinc status of women
may be compromised due to increased intake of dietary
constituents that reduce the availability of zinc.

Impact of low zinc status of the mother can be magnified
depending on time and severity of the deficiency, ranging
from teratogenic effects with severe deficiency to functional
impairments acting, for example, on brain development with
mild deficiency. In particular, teratogenic effects have been
reported in rodent models [11, 12] as well as in humans,
where women with Acrodermatitis enteropathica, a genetic
disorder resulting in impaired zinc absorption, show a high
incidence of birth defects [13]. In general, although the brain
seems most vulnerable, all organ systems are affected by
systemic zinc deficiency in times of active proliferation and
differentiation. Thus, although mild zinc deficiency does not
lead to gross morphological malformations in the offspring,
the reported behavioral impairments might result from a
combination of alterations in brain development and other
organ systems. This novel vista on the role of zinc deficiency
in ASD broadens the focus from the action of zinc within the
brain to other organs such as the GI system.

Proper zinc status is necessary for healthy gut devel-
opment and both pre- and perinatal zinc deficiency might
affect the neonate and potentially trigger downstream events
that contribute to pathological processes [14]. These pro-
cesses may, among others, include inflammation due to
increased intestinal epithelium permeability and immune
system abnormalities including the generation of autoan-
tibodies. Another consequence of impaired or delayed gut
development will be lowered trace metal absorbance, which
might contribute to the slow normalization of biometals in
children with ASD after birth [5]. GI discomfort, changes in
gut microbiome, food aversion, and an increased intestinal
permeability have been shown to correlate with the severity
of behavioral symptoms in individuals with ASD [15–21].

Given that inflammatory cytokines and other immune
signaling molecules originating from the GI tract interact
with the hypothalamic-pituitary-adrenal gland (HPA) stress

axis, prenatal stress itself can be integrated in this pathomech-
anism, targeting the same structures [22]. Thus, some of the
major environmental risk factors for the development of ASD
are linked in this model.

Taken together, maternal zinc deficiency might impair
the gut development of the offspring and thereby increase
the risk for GI problems, inflammatory events, abnormal
immune signaling, trace metal imbalances, and ultimately
altered brain function. Data supporting this hypothesis will
be discussed further in more detail.

2. Zinc and Gut Formation

A well-orchestrated sequence of highly specialized processes
is required for the development of the intestine from the
embryonic gut tube to a complex organ responsible for food
digestion and absorption of essential nutrients. Particularly
the sophisticated intestinal epithelium is strongly dependent
on a proper development in order to fulfill its widespread
functions ranging from defense of antigens to absorption
of important nutrients. These processes are dependent on
the correct sequence of cell proliferation, differentiation,
and apoptosis. Given that these processes require a plethora
of zinc dependent enzymes, it is quite obvious that zinc
deficiency especially during the embryonic development of
the gutmight lead to alterations in intestinalmorphology and
cell composition resulting in possible functional alterations
(Figure 1). Unfortunately, only very limited data is available
on the precise effects of prenatal zinc deficiency during fetal
development and differentiation of the small intestine.

Intriguingly, researchers found that feeding sows an
additional 250 ppm zinc from zinc amino acid complex
during the last trimester of pregnancy resulted in improved
intestinal development of pigs. The offspring of sows fed the
additional zinc had increased villous height and villus/crypt
ratio in the jejunum and higher goblet cell counts in the ileum
[23]. Furthermore, intestinal defenses of these pigs against
pathogens appeared to have been improved as indicated by
an increased number of intraepithelial lymphocytes in the
duodenum and ileum.

However, most of the available data on the role of zinc
in gut development originate from induced zinc deficiency
in immature andmature animals. Several studies have shown
fatal consequences of acute and chronic zinc deficiency on
the structure and function of the small intestinal epithe-
lium. For example, zinc is crucial for the maintenance of
the small mucosal integrity [24–26] and zinc deficiency
accompanied with mucosal necrosis and ulceration as well
as increased mucosal apoptosis, inflammation, oedema, and
structural alterations of villi. Thus, it is not surprising that
zinc supplementation has been shown to have beneficial
effects on mucosal integrity in many pathophysiological and
inflammatory conditions of the small intestine [26, 27].
Further, individuals with Acrodermatitis enteropathica who
suffer from severe zinc deficiency showed villus atrophy and
gut necrosis [28].

Zinc deficiency also results in morphological and func-
tional changes of the intestinal epithelium. When zinc
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Figure 1: Influence of zinc levels on gut formation. Zinc levels mediate villus height and villus/crypt ratio in the jejunum. Zinc deficiency
results in a shortening and narrowing of the villi and thus a reduction in absorptive surface. This may be mediated by a reduction in
mucosal cell proliferation and slower cell migration, as well as an increase in the number of apoptotic cells in villi and crypts. The zinc finger
transcription factors Gata4 andGata6 are involved in intestinal epithelial cell differentiation and promote enteroendocrine cell differentiation.
Moreover, the number of goblet cells increases after zinc supplementation and is dependent on the activity of the zinc binding matrix
metalloproteinase-9 (MMP-9). Goblet cells secrete mucins and an altered composition of intestinal mucin was reported in zinc deficient
animals. Additionally, several alterations in the activities of brush border enzymes result from zinc deficiency. The development of paneth
cells is accelerated by the zinc dependent transcription repressor BLIMP1. Furthermore, zinc deficiency is accompaniedwithmucosal necrosis
and ulceration, inflammation, and oedema.

deficient diet is fed to immature male rats for 28 days, a
significant reduction of small intestinal length and further
morphological changes in the jejunum, including shortening
and narrowing of the villi, reduction in absorptive surface,
and an increased number of villi per unit area of serosa,
were reported that could be restored by zinc supplementation
[29, 30]. Further, a reduction in mucosal cell proliferation
and slower cell migration were shown [29]. Moreover, ultra-
structural changes on a cellular level, such as appearance of
membrane-bound autophagic vacuoles, pyknotic nuclei, and
dilated nuclear periphery can be observed in zinc deficient
rats [31]. Additionally, a study in zinc deficient rats and sheep
revealed an altered composition of intestinal mucin hinting
towards functional alterations inmucin-secreting goblet cells
[32]. Goblet cells reside throughout the GI tract producing

a protective mucus blanket. This mucin-containing mucus
layer has an important role in innate host defense.

Zinc deficiency leads to a reduction in crypt cell pro-
liferation [30]. A factor contributing to this impairment
might be an increase in the number of apoptotic cells in
villi and crypts, especially in the midzone of the crypts that
serves as the zone of renewal of the intestinal epithelium
[33, 34]. This hints towards a reduced renewal capacity
of the intestinal epithelium that is required for its proper
function. A positive effect of zinc supplementation on the
repair capacity of the small intestine, especially the third
segment, has been reported in mice [35]. These mice showed
a higher intestinal epithelium cell production rate and shorter
duration ofmitosis compared to their control littermates [35].
Thus, besides the effects of zinc deficiency on morphology of
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the small intestine, themaintenance and repair capacity of the
epithelium are affected.

During development, small intestine maturation is mea-
sured by indicators like increased cell proliferation and
differentiation as well as an altered activity of brush border
disaccharidases like lactase and sucrase [36] due to changing
nutritional demands. Lactase and sucrase serve as markers
of enterocyte maturity and functional capacity as well as
villus height and crypt depth [36]. Several alterations in
the activities of brush border enzymes have been reported
to result from zinc deficiency. Chronic zinc deficiency,
for example, reduces the activity of disaccharidases like
sucrase, trehalase, lactase, leucine aminopeptidase, alkaline
phosphatase, and maltase by 30–50% at the brush border
of the small intestine [34, 36, 37]. Correct function of
intestinal disaccharidases is inevitable for proper digestion
of carbohydrates and absorption of saccharides. Further, the
zinc dependent metalloenzyme alkaline phosphatase showed
similar reduction in activity. Given that zinc is crucial for
maintenance of membrane structure and function, the loss
of brush border integrity due to zinc deficiency might lead
to the dysfunction of these enzymes [37] and thus altered gut
maturation.

Additionally, many genes regulating the differentiation
into intestinal epithelium in adults as part of a self-renewal
process of the epithelium by intestinal stem cells localized in
the base of crypts also play a crucial role in the regionalization
of the gut during the development [38]. Zinc dependent
transcription factors are highly involved in the regulation of
these genes and their dysfunction has severe consequences
on intestinal development. For example, the transcription
factors Gata4 and Gata6 are involved in the proximal-distal
specification of the intestine as well as epithelial cell differen-
tiation [38]. Gata4 seems to regulate sucrase-isomaltase and
lactase transcription hinting towards a role in maturation of
the enzymatic brush border composition [39, 40] and the loss
of Gata4 leads to decreased absorption of cholesterol and fats
[41]. Furthermore, the conditional knockout of Gata4 and
Gata6 results in reduced promotion of enteroendocrine cell
differentiation [42].

A further zinc dependent transcription repressor, B
lymphocyte-induced maturation protein 1 (BLIMP1), is
required to delay the final maturation of suckling to weaning
intestinal epithelium allowing the dietary transition from
mother’s milk to solid diet and is therefore specifically
expressed in developing and postnatal intestine [43]. BLIMP1
knockout mice are born with features resembling an adult
intestine such as more serrated appearance of villi and
accelerated development of paneth cells [43, 44]. During
suckling period, the expression of disaccharidases, typically
expressed in postweaning periods, is upregulated in BLIMP1
knockout mice whereas the expression of disaccharidases
important for lactose digestion is lost [43, 44].

Additional zinc dependent transcription factors like the
growth factor independent 1 (Gfi-1) and Mtgr1 are involved
in secretory cell differentiation [45, 46]. Although zinc is
bound within zinc finger transcription factors with high
affinity and only potent zinc chelators are able to resolve
zinc binding, it might be possible that, along normal protein

turnover, severe zinc deficiency leads to less stable and/or
functional transcription factors. Further, zinc binds with less
affinity to enzymes like class I histone deacetylases that have
been reported to be involved in the regulation of intestinal
epithelium differentiation [47]. Additionally, activity of the
zinc binding matrix metalloproteinase 9 (MMP-9) seems to
influence the number of goblet cells and by that increases
secretion of the mucin Muc-2 [48]. However, it has to be
mentioned that despite the beneficial effects of zinc supple-
mentation on small intestinal epithelial structure, excessive
amounts of zinc can lead to damage in vitro [49]. Thus, the
appropriate zinc status during development is crucial for a
healthy functional intestine.

Taken together, zinc deficiency in animals and humans
has strong effects on the intestinal epithelium structure and
function (Figure 1). Due to these severe consequences it is
likely that zinc deficiency during embryologic development
might lead to morphological alterations resulting in func-
tional impairment of the small intestine. These impairments
might include malabsorption of essential nutrients leading to
malnutrition, diarrhea, and inflammation in the immature
gut.

3. Gut-Brain Interaction in ASD and Other
Neurological Diseases

A growing amount of research indicates that at least a portion
of the dysfunctions associated with ASD is related to GI
problems [50]. However to date it remains unclear whether
GI problems are comorbidities or a causative pathomech-
anism of ASD [50, 51]. It has been repeatedly reported
that children with ASD frequently suffer from GI problems
such as diarrhea, constipation, bloating, abdominal pain,
and gastroesophageal reflux [52, 53]. GI problems (based on
parents’ reports)were identified in 42%of children and 12%of
controls, with constipation (20%) and chronic diarrhea (19%)
being themost common symptoms [17]. Furthermore, altered
intestinal barrier function has been found in subjects with
ASD [54] alongwith an increased intestinal permeability [55].
Another contributing factor to GI problems in individuals
with ASD might be an abnormal composition of gut micro-
biota. In the GI flora of autistic children, using stool samples,
lower levels of beneficialBifidobacter species andhigher levels
of Lactobacillus species were found compared to controls.
Other studies stated altered Clostridium species numbers
and types in children with ASD [53–58] and differences
concerning the phylum level with an increase in Bacteroides
and a decrease in Firmicutes in the ASD group [59–61]. It has
been stated that GI disturbances correlate with the severity
of ASD. The stronger the GI symptoms are, the more likely
children presented severe autistic symptoms [53].

The GI tract plays an important neurological function
and therefore sometimes is referred to as the “the second
brain.” Via enteric nerves and networks, the GI tract is able
to affect the brain and vice versa [62, 63]. Intriguingly, in
healthy human subjects, modulation of the gut microbiome
was shown to have the potential to alter brain responsiveness
to an emotion recognition task [64].



Neural Plasticity 5

Besides the GI disorders often found in ASD patients,
the gut-brain interaction seems to play a role in other
neurological disorders as well [65]. Investigating the preva-
lence of depression and anxiety disorders as comorbidity in
inflammatory bowel disease (IBD), individuals with Crohn’s
disease and ulcerative colitis, two types of IBD, are more
likely to suffer from psychiatric disorders like depression and
anxiety disorders in comparison to the general population
[66–68]. When comparing the comorbidity of the GI disor-
ders IBD and irritable bowel syndrome (IBS), significantly
more subjects were diagnosed with depression (IBS: 61%;
IBD: 16%), generalized anxiety disorder (IBS: 54%; IBD:
11%), panic disorder (IBS: 61%; IBD: 11%), and agoraphobia
(IBS: 25%; IBD: 25%) [69], with a higher prevalence for a
lifetime diagnosis of the aforementioned comorbidities in
comparison to the general population [68, 69].

Intriguingly, along with the core features of ASD, comor-
bidities occur frequently in ASD patients such as seizures,
depression, and anxiety disorders that have been associated
with zinc deficiency before.

4. Zinc, the GI Tract, Stress, and
the Immune System

Zinc deficiency severely affects almost all components of the
immune system. Even marginal zinc deficiency leads to a
seriously depressed immune system. Thus, the susceptibility
to infections is increasing with a decreasing zinc status
as reported from animal models and human studies. The
vulnerability to infections is associated with an impaired T
and B lymphocyte development and differentiation and their
reduced activity [70–72] whereby T lymphocytes seemed to
be more seriously affected [72] by zinc deficiency. Studies
on prenatal zinc deficient animals have shown that zinc
deficiency, even a marginal one, results in smaller lymphoid
organs and less immunoglobulins [73]. Beneficial effects
of zinc supplementation in diseases include reduced inci-
dence and duration of acute and persistent diarrhea [74–76],
reduced incidence of acute lower respiratory infections [77],
and reduced duration of the common cold [78].

A role of abnormal immune system function in ASD has
long been hypothesized. In postmortem brains of individ-
uals with ASD, similar to some animal models, activation
of astroglia and microglia was reported, indicating some
degree of neuroinflammation [79–82]. Furthermore, a rela-
tionship between familial autoimmune disorders and anti-
inflammatory/immune-modulating drug in ASD has been
reported [83]. Inflammatory events however, can also be
mediated by abnormalities in the GI system. Usually the
organism fight against pathogens is initiated by the activation
of the complement system as well as natural killer cells and
polymorphonuclear leukocytes. All these defending mecha-
nisms are depressed by zinc deficiency [84–87] resulting in a
prolonged inflammation.The disruption of these processes is
also associated with diarrhea or inflammatory bowel disease,
both also consequences of zinc deficiency.

Inflammation in the GI tract can lead to intestinal
permeability, commonly called “leaky gut.” Here, increased

spaces present between cells in the small intestine may result
in incompletely broken down foods and other toxins entering
the blood stream, which may lead to an immune system
response [16] triggering the release of antibodies.This process
may result in chronic inflammation that might influence
microbe proliferation in the GI tract and cause vitamin and
mineral deficiencies, as well as food allergies and autoim-
mune diseases such as celiac disease [88]. Furthermore, a
direct effect on the brain causing behavioral, cognitive, and
psychiatric impairments may occur [89, 90].

Additionally, gut inflammation and zinc deficiency are
also linked to physiological and psychological stress. Animal
studies have shown that psychological stress decreased serum
zinc levels [91]. Reduced zinc levels and psychological stress
both increase the release of glucocorticoids [92, 93]. Increase
levels of glucocorticoids in turn have been associated with
thymic atrophy and reduced B lymphocyte numbers [92, 94,
95]. Furthermore, persistent high levels of glucocorticoids
might lead to resistance of glucocorticoid receptors and in
turn lead to failure of immune system downregulation. This
downregulation is necessary to avoid chronic inflammatory
processes.

Taken together, GI abnormalities, immune system dys-
function, stress, and zinc deficiency are highly linked pro-
cesses (Figure 2). The final result may be an altered signaling
to and within the developing brain, possibly contributing to
the development of ASD.

5. Conclusions

5.1. A Model for Zinc in Gut-Brain Interaction in ASD. Due
to the multifaceted effect of zinc on gut development and
morphology, pre- and perinatal zinc deficiency might affect
gut development of the neonate and potentially mitigate
many of the dysfunctions shared between ASD and other
neurological disorders. Based on this hypothesis, a model
emerges (Figure 3) that might serve as starting point for
future studies.

Zinc is taken up from our dietary sources and/or sup-
plements in the proximal small intestine, either the distal
duodenumor proximal jejunum [96, 97].Within enterocytes,
intracellular transporters and zinc buffering proteins such as
metallothioneins (MTs) influence the transport and release
of zinc in the blood stream. However, various agents can
decrease zinc absorption [98]. For example, it is not uncom-
mon for women of childbearing age to consume calcium
supplements for the prevention of osteoporosis or drinkwater
naturally high in calcium. Similar to copper which has an
antagonistic relationship with zinc [99–102], calcium might
interfere with the absorption of zinc, though this effect is not
as well established [103, 104]. Research has shown decreased
zinc absorption when different forms of calcium have been
ingested following consumption of a zinc dose, suggesting an
antagonist relationship between the minerals [105]. Ingestion
of high concentrations of iron might also affect zinc uptake
[106–108]. Additionally, folic acid is a nutrient commonly
prescribed during pregnancy and supplied at higher levels in
prenatal supplements. Folic acid has been shown to increase
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Figure 2: GI abnormalities, immune system dysfunction, stress, and zinc deficiency may be highly linked processes contributing to the
development of ASD. Zinc deficiency mediates GI system abnormalities, severely affects many components of the immune system, and is
linked to physiological and psychological stress. Although there is good reason to believe that maternal zinc deficiency might be the initial
trigger, once this vicious cycle is activated in the offspring, GI abnormalities, impaired immune system, stress, and zinc deficiency can be
both cause and consequence of each other and influence the development of ASD. This is in line with the often reported symptoms and
comorbidities in ASD associated with problems linked to these four key features.

fecal zinc losses, indicating decreased zinc absorption [109–
111]. Other dietary constituents that influence zinc availability
include phytate and high fructose corn syrup (HFCS). Inosi-
tol hexaphosphates and pentaphosphates, the phytate forms
that bind to zinc and reduce its availability, are present in
staple foods such as wheat, corn, and rice [112, 113]. HFCS
is commonly used in the US to sweeten food and drinks
with estimated yearly per capita consumption in theUS being
12.3 kg in 2012 [114, 115]. Consumption of alcohol leads to
a reduced placental zinc transport and it was hypothesized
that the consequences of “fetal alcohol syndrome”may unfold
not only through the effects of ethanol but also through
zinc deficiency [116]. Some drugs are also known to interact
with zinc. For example, ACE inhibitors used to treat high
blood pressure may decrease blood zinc levels similar to
thiazide diuretics, the anticonvulsant valproic acid (VPA)
that was already reported to increase the risk for autism
upon prenatal exposure [83], tetracycline antibiotics, corti-
costeroids, acid blockers such as histamine-2 receptor antag-
onists (H2-blockers), and many neuropsychiatric drugs such
as Fluoxetine (Prozac), Paroxetine (Paxil), Sertraline (Zoloft),
Citalopram (Celexa), and Venlafaxine (Effexor) [117].

Once absorbed, zinc passes into portal blood and is
transported bound to proteins [118]. Placental transport of
zinc is a fast process and influenced by the number and
size of fetuses present. However, due to low zinc diets or
compromised absorption due to increased intake of dietary
constituents that reduce the availability of zinc, a zinc
deficiency of the embryo may occur. Zinc deficiency might
influence embryonic and fetal development through several
mechanisms including abnormal nucleic acid metabolism,

reduced protein metabolism, reduced rates of tubulin poly-
merization, high rates of cellular oxidative damage, higher
rates of apoptosis, impaired cell migration, and reduced
binding of transcription factors and hormones that, among
others, affect lymphocytes [119]. These factors will very likely
affect GI development.

At least 50 intestinal epithelial differentiation genes have
been implicated in development and differentiation of the
intestinal epithelium [38], and many of them have a direct
relationship with zinc. Among them, adenomatous polyposis
coli (APC) is a crucial determinant of cell fate in the
murine intestinal epithelium. Loss of APC perturbs differ-
entiation along the enterocyte, goblet, and enteroendocrine
lineages and promotes commitment to the Paneth cell lineage
through 𝛽-catenin/Tcf4-mediated transcriptional control of
specific markers of Paneth cells, the cryptdin/defensin genes.
Conditional deletion promotes Paneth cell differentiation at
the expense of enterocyte, goblet, and enteroendocrine cell
differentiation [120]. Zinc stabilizes APC levels and induces
cell cycle arrest in colon cancer cells [121].

Furthermore, PR domain zinc finger protein 1 also known
as BLIMP-1 has an effect on postnatal epithelial maturation,
mediating the transition of neonatal intestinal epithelium to
adult intestinal epithelium [43]. Caudal-related homeobox
(Cdx) regulates intestinal development, differentiation, and
maintenance. Cdx1 is required for the transcriptional induc-
tion of PPAR𝛾 in intestinal cell differentiation [122]. Both
variants, Cdx1 and Cdx2, contain a zinc finger motif at their
N-terminus.

Gata is another family of zinc finger transcription factors
thought to regulate genes involved in embryogenesis. Gata4,
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Figure 3: A model for Zinc in gut-brain interaction in ASD and other neurological disorders. Zinc is taken up from our dietary sources
and/or supplements in the proximal small intestine. However, absorption of zinc can be decreased in response to various agents such as iron
and/or calcium supplements, high copper levels, folic acid, phytate, high fructose corn syrup (HFCS), and/or several drugs. Alternatively,
zinc levels may be low due to genetic variants in zinc homeostasis genes or general low availability of zinc in the diet. As a result of this,
zinc deficiency of the embryo may occur. Zinc deficiency might influence embryonic and fetal development affecting the GI system through
impaired function of several key proteins contributing to many of the reported GI problems associated with ASD such as metallothionein
dysfunction, plasma Cu/Zn inversion, heavy metal overload, Candida and Clostridium overgrowth, constipation and/or diarrhea, leaky gut,
food sensitivities and allergies, inefficient processing of gluten and casein, enzyme deficiency, vitamin and mineral malabsorption, inefficient
fat digestion and metabolism, and esophagitis and GI ulcers. These GI symptoms can give rise to behavioral difficulties.

-5, and -6 are expressed in various mesoderm and endoderm
derived tissues such as heart, liver, lung, gonad, and gut
where they play critical roles in regulating tissue-specific gene
expression. Gata4, -5, and -6 have been implicated in the
regulation of epithelial cell differentiation [123, 124].

Indian hedgehog (IHH) is expressed by mature colono-
cytes and regulates their differentiation in vitro and in
vivo. IHH binds zinc ions stabilizing the protein and
mediating protein-protein interactions [125, 126]. Similarly,
Kruppel-like factor 4 (KLF4, formerly GKLF) is a zinc finger

transcription factor expressed in the epithelia of the GI
tract and several other organs. In vitro and in vivo studies
have suggested that KLF4 plays an important role in cell
proliferation and/or colonic epithelial cell differentiation
[127].

Matrix metalloproteinases (MMPs) are a family of zinc
binding extracellular matrix degrading enzymes. MMP-9 is
a zinc dependent endopeptidase, synthesized and secreted in
monomeric form as zymogen and contributes to gut microbe
homeostasis [128, 129]. Furthermore, MYC-associated zinc
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finger (MAZ) protein has been implicated as a critical
target of the canonical Wnt pathway, which is essential for
formation and maintenance of the intestinal mucosa [130,
131].

The Notch signaling pathway promotes proliferative sig-
naling during neurogenesis and is activated in the progenitor
domain of the gastrointestinal epithelium influencing binary
fate decisions of cells that must choose between the secretory
and absorptive lineages in the gut [132]. Notch signaling
targets four different receptors referred to as Notch1-4. An
important relationship between zinc and theNotch1 signaling
pathway can be found. Zinc inhibits Notch signaling by
modulating the binding between Notch1 and RBP-Jk [133].

It is thus likely that insufficient zinc supply will affect
development of the fetal GI tract contributing to many
of the reported GI problems associated with ASD such as
metallothionein dysfunction, plasma Cu/Zn inversion, heavy
metal overload [4, 83, 134–136], Candida and Clostridium
overgrowth, constipation and/or diarrhea [51, 53], leaky
gut, food sensitivities and allergies, inefficient processing of
gluten and casein [54, 55, 65, 137–139], enzyme deficiency
[51, 140–142], vitamin and mineral malabsorption [51, 143–
145], inefficient fat digestion and metabolism [146], and
esophagitis and GI ulcers [142].

TheseGI symptoms can give rise to behavioral difficulties,
ranging from inattentive or irritable behaviors to self-injury
[59]. Several human disorders with GI problems like includ-
ing inflammatory bowel disease (including Crohn’s Disease),
irritable bowel syndrome, and obesity have a modulatory
influence on social, emotional, and anxiety-like behaviors.
Changes in behavior thereby might be based on both acute
alterations in brain function as well as alterations during
brain development [147–149]. For example, vagal afferent
signaling has been implicated modulating mood and affect,
including distinct forms of anxiety and fear [150]. Moreover,
although the GI symptoms might be transient, long lasting
behavioral changes have been reported. In rats, neonatal
gastric irritation leads to increase in depression- and anxiety-
like behaviors, increased expression of CRF in the hypotha-
lamus, and an increased sensitivity of HPA axis to stress in
adults [151]. Thus, it is possible that shared comorbidities
such as increased anxiety in ADHD, mood disorders, and
ASD correlate with abnormal GI development caused by zinc
deficiency or other factors.

The presented model does not exclude the possibility that
the GI symptoms are the consequence of altered brain to
gut signaling or the consequence of altered gut regulation by
the enteric nervous system, which might occur in parallel.
Synaptic genes affecting excitatory and inhibitory neuro-
transmission might lead to alterations in neural or endocrine
elements of the enteric nervous system. However, given that
a central pathway at synapses related to ASD, Neurexin-
Neuroligin-Shank signaling has also been shown to depend
in part on the availability of zinc [136], a link between zinc
deficiency and brain to gut signaling cannot be excluded.

5.2. Prevention and Treatment Strategies. Supplementing
women of childbearing age with an effective source of

zinc might help mitigate the negative effects of dietary
constituents and nutrients in prenatal supplements on zinc
availability, helpingwomen attain andmaintain adequate zinc
status. Zinc amino acid complexes might be advantageous
to zinc oxide and zinc sulfate based on better absorption. A
combination of the inorganic and amino acid complexed zinc
might also be advantageous due to different absorption path-
ways. Additionally, research has shown that zinc antagonists
such as phytate and fiber reduced the bioavailability of zinc
from zinc sulfate more than that from a zinc amino acid com-
plex [152]. Provided the amino acid remains complexed to
the zinc, interaction of the mineral with dietary components
such as phytate and fiber preabsorption can be minimized
and zinc can be absorbed into the enterocyte via amino acid
transporters versus metal transporters, reducing competition
for absorption between zinc in the zinc amino acid complex
and other dietary metals [153] (Figure 4).

Although measures to prevent maternal zinc deficiency
would be most desired, further treatment strategies emerge
from this concept for young children with ASD. For example,
the use of probiotics in ASD has been suggested [60, 154, 155].
However, probiotics have been used with variable efficacy
and data on the effectiveness of probiotics is currently just
emerging with more studies and meta-analyses needed in
future. Intriguingly, treatment of the offspring of maternal
immune activation (MIA)mice that are known to display fea-
tures of ASD with the human commensal Bacteroides fragilis
corrected gut permeability, altered microbial composition,
and ameliorated defects in communication, stereotypic- as
well as anxiety-like and sensorimotor behaviors [65, 156]
(Figure 4). Additionally, a gluten and milk protein-free diet
(exclusion of the protein compound gluten found in wheat
products and casein contained in dairy) was reported to
potentially be beneficial to improve some behaviors in
individuals with ASD and reduce intestinal permeability [157,
158]. Elimination of cow’s milk protein from the diet of
ASD children via restrictive diet improved autistic behavior,
while the oral challenge with milk protein seemed to have
an opposite effect. When evaluating IgA, IgG, and IgM
specific antibodies, autistic children had significantly higher
serum levels of IgA antibodies, high levels of IgM antibodies
specific for lactalbumin, and IgG and IgM levels for casein
[159, 160]. However in a small sample size study with 15
autistic children investigating the effects of a gluten-casein
free diet, no significant differences between individuals on
the restrictive diet and nontreated controls could be found
although some of the parents claimed to have noticed an
improvement regarding the child’s language, the occurrence
of tantrums, and the level of hyperactivity [161]. Thus,
although some studies show inflammation of the gut or a
leaky gut in ASD and some studies report that gluten and
casein showed beneficial effects, given that other scientific
publications did not indicate significant improvements, more
research is needed to make a recommendation.

In general, the gut microbiome might have great impact
on brain development early in life. In an altered micro-
biome, bacterial metabolites such as 4-ethylphenylsulphate
(4EPS) or the neurotransmitter 𝛾-aminobutyric acid (GABA)
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Zn amino acid complex

Zn amino acid complexes pass the
antagonistic interactions in the GI tract

Increase or maintenance of zinc status during
pregnancy necessary for intact gut and brain development

Decrease of ASD-GI tract associated symptoms

Prenatal Early postnatal

Probiotics

Probiotics normalize/alter gut microbiome

Correction of gut permeability and microbial
composition, decrease of toxic bacterial metabolites

Decrease of stress

5-HT agonists or antagonists

CRF receptor antagonists

Zn amino acid complex

Decrease of immune system activation

Gluten and milk protein-free diet 

and anti-inflammatory,
immune-modulating therapies

Figure 4: Prevention and treatment strategies. Zinc amino acid complexes might be an effective source to overcome the negative effects of
dietary constituents and nutrients in prenatal supplements and help women tomaintain adequate zinc status (prenatal prevention, left panel).
Zinc supplementation might also be useful in young children with ASD helping to overcome some impairments associated with acute zinc
deficiency (diarrhea, impaired immune function, and neurosensory deficits) (postnatal treatment, right panel). Furthermore, young children
with ASD might benefit from probiotic therapy that may correct gut permeability, alter microbial composition, reduce burden of bacterial
waste products and metabolites, and thereby ameliorate ASD symptoms. Additionally, a gluten and milk protein-free diet was proposed to
potentially be beneficial for individuals with ASD. 5-HT signaling may mediate both innate and adaptive responses in the immune system
and 5-HT signaling important in the brain and in the GI tract; 5-HT receptors are expressed. Thus, 5-HT3 antagonists or 5-HT4 agonists
may have a modulatory effect. Moreover, therapeutics used to treat inflammatory events caused by abnormal GI function (anti-inflammatory
and immune-modulating therapies) might be beneficial. Stress is linked to abnormalities in the GI tract and mediated by, among others, the
corticotropin-releasing factor (CRF) system on molecular level. The use of CRF receptor antagonists might therefore provide new treatment
approaches.

produced from intestinal bacteria might affect brain develop-
ment and, ultimately, behavior later in life.

Serotonin (5-HT) signaling is not only important in
the brain, but also in the GI tract. The 5-HT(1A) receptor
plays an important role in the developing brain but is
additionally expressed in the gut [162]. 5-HT is released from
gut enterochromaffin cells and might contribute to 5-HT
signaling in the brain [163]. However, the gut and the brain
are not the only sites of action for 5-HT. Its receptors are
also present in the immune system where 5-HT signaling
may mediate both innate and adaptive responses [164]. It
remains to be established whether 5-HT3 antagonists (e.g.,

Ramosetron) or 5-HT4 agonists can have a modulatory effect
in ASD.

Moreover, the intestinal tract has a very important
immune function [165]. Besides markers for inflammation,
enhanced levels of cytokines and chemokines have been
detected in the brain and in the cerebrospinal fluid of
children with autism [166, 167]. Therefore, therapeutics used
to treat inflammatory events caused by abnormalGI function,
such as in inflammatory bowel disease (anti-inflammatory,
immune-modulating, and microbiome-modulating thera-
pies) [168], might be a potential source for novel treatment
strategies.
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Furthermore, stress was implicated in many neuropsy-
chiatric disorders. In particular, prenatal stresses, such as
depressive illness, anxiety disorders, and posttraumatic stress
disorders, are a risk factor for ASD [83, 169]. Chronic stress
may result in GI disorders and immune dysfunction, among
others. Maternal stress is able to alter microbial populations
and their transmission to the offspring. Thus, stress is also
connected to abnormalities in the GI tract, zinc signaling,
and the immune system [170, 171]. Many studies support the
influence of the corticotropin-releasing factor (CRF) system
in stress response. The use of CRF receptor antagonists sug-
gested a significant effect against stress-related behavior, but
also hyperalgesia, colonic secretion, and motility [172, 173].
Thus, medications acting on CRF1 and CRF2 receptors that
are involved in neuroendocrine, autonomic, behavioral, and
visceral responses to stress, such as NBI 27914 and Astressin-
2B, respectively, might provide new treatment approaches.

Finally, zinc supplementation might also be useful in
young children with ASD. Given that younger individuals
with ASD have an especially high risk of zinc deficiency,
zinc supplementation will help to overcome some impair-
ments associated with acute zinc deficiency. For example,
diarrhea has been linked to zinc deficiency [174, 175] and
zinc supplementationwas reported to significantly reduce the
symptom [176] as well as increase immune function [1, 177]
and ameliorate neurosensory deficits associated with zinc
deficiency [178] (Figure 4).

Given that ASD is a heterogeneous group of disorders
and zinc deficiency or increased intestinal permeability only
present in a subset of patients, unless clinical trials use patient
populations that are enriched based on this particular clinical
history, clinical benefits of any possible treatment will be hard
to demonstrate. Additionally, ASD is a neurodevelopmental
disorder. Thus, the pathomechanisms already act in utero,
leading to alternative modeling of the brain. If therapies are
to prevent or correct such changes, they may have to be
implemented in the perinatal period and may be ineffective
in an individual with ASD later in life.

Taken together, we conclude that due to multifaceted
effect of zinc on gut development andmorphology improving
zinc status of the pregnant mother as well as the offspring has
the potential to improve gut development of the neonate and
potentially mitigate dysfunctions associated with ASD.
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[163] S. Janušonis, “Serotonergic paradoxes of autism replicated in a
simple mathematical model,”Medical Hypotheses, vol. 64, no. 4,
pp. 742–750, 2005.

[164] M. S. Shajib andW. I. Khan, “The role of serotonin and its recep-
tors in activation of immune responses and inflammation,”Acta
Physiologica, vol. 213, no. 3, pp. 561–574, 2015.

[165] A. D. Kraneveld, C. G. M. de Theije, F. van Heesch et al., “The
neuro-immune axis: prospect for novel treatments for mental
disorders,” Basic &Clinical Pharmacology &Toxicology, vol. 114,
no. 1, pp. 128–136, 2014.

[166] D. L. Vargas, C. Nascimbene, C. Krishnan, A. W. Zimmerman,
and C. A. Pardo, “Neuroglial activation and neuroinflammation

in the brain of patients with autism,” Annals of Neurology, vol.
57, no. 1, pp. 67–81, 2005.

[167] X. Li, A. Chauhan, A. M. Sheikh et al., “Elevated immune
response in the brain of autistic patients,” Journal of Neuroim-
munology, vol. 207, no. 1-2, pp. 111–116, 2009.

[168] C. N. Bernstein, “Treatment of IBD: where we are and where we
are going,” The American Journal of Gastroenterology, vol. 110,
no. 1, pp. 114–126, 2014.

[169] D. K. Kinney, K.M.Munir, D. J. Crowley, andA.M.Miller, “Pre-
natal stress and risk for autism,”Neuroscience and Biobehavioral
Reviews, vol. 32, no. 8, pp. 1519–1532, 2008.
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