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ABSTRACT: Fluid losses into formations are a common opera-
tional issue that is frequently encountered when drilling across
naturally or induced fractured formations. This could pose
significant operational risks, such as well control, stuck pipe, and
wellbore instability, which, in turn, lead to an increase in well time
and cost. This research aims to use and evaluate different machine
learning techniques, namely, support vector machine (SVM),
random forest (RF), and K nearest neighbor (K-NN) in predicting
the loss of circulation rate (LCR) while drilling using solely
mechanical surface parameters and interpretation of the active pit
volume readings. Actual field data of seven wells, which had suffered
partial or severe loss of circulation, were used to build predictive
models with an 80:20 training-to-test data ratio, while Well No. 8
was used to compare the performance of the developed models. Different performance metrics were used to evaluate the
performance of the developed models. The root-mean-square error (RMSE) and correlation coefficient (R) were used to evaluate
the performance of the models in predicting the LCR while drilling. The results showed that K-NN outperformed other models in
predicting the LCR in Well No. 8 with an R of 0.90 and an RMSE of 0.17.

1. INTRODUCTION
Loss of circulation can be defined as the partial or complete loss
of the drilling fluid into the formation at any depth during
drilling, circulation, or while running tubular. Loss of circulation
events is a common occurrence during drilling activities and has
subsequent consequences, such as an increase in the overall well
cost and nonproductive time, sticking of the drill string, and well
control incidents.1 Loss of circulation is typically caused by a
pressure imbalance, wherein the bottom-hole pressure is higher
than the formation pore pressure, which results in losing the
drilling fluid into the induced fractures.2

1.1. Traditional Methods of Monitoring Lost of
Circulation while Drilling. A paddle flowmeter, which is
installed in the drilling fluid return line, is the most accustomed
outflow sensor on drilling rigs.3 It provides a qualitative
measurement that needs additional indicator support before
the drilling crew positively confirms loss of circulation
occurrences. It enables the drilling crew to know the position
of the paddle in a relation to the full opening. The paddle
flowmeter has some disadvantages as follows:3

• It does not consider the velocity of the drilling fluid that
passes through, which makes it impossible to measure the
flow rate accurately.

• The constant oscillations of the drilling fluid inside the
return line can induce errors in the reading of the paddle

flowmeter. Hence, its accuracy is very poor compared to
more advanced techniques.

Monitoring the drilling fluid level in the mud pits by a pit
volume totalizer system is another technique used to identify
loss of circulation occurrences while drilling. It is a device that
collects the level of drilling fluid data inside mud pits to alert the
drilling crew if an abnormality has occurred. The fluid level
inside the mud pits is usually measured using different types of
sensors. It can either be measured using a floating sensor or an
acoustic reflector that is located inside the active mud pits.4

Most drilling contractors utilize a float that travels along a pole
that activates a sequence of reed switches, where the drilling fluid
level is related to the electrical signal produced by the status of
these magnetic switches. On the other hand, some drilling
contractors measure the differences in resistance with a
potentiometer that is connected to the buoyant float through
a chain mounted on a wheel.5 The ultrasound sensor is another
type of sensor that is used to measure the drilling fluid level in
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the mud pits. It emits a series of ultrasonic pulses that are
reflected off the fluid surface and received by the same sensor.
The transit time is proportional to the distance, which enables
the system to calculate the drilling fluid levels in the active or
reserve pit tanks. Once the reduction of the drilling fluid level is
identified by the pit volume totalizer system during the loss of
circulation events, the drilling crew can manually calculate the
loss rate by dividing the reduction in volume over the time of
observation. The pit volume totalizer system has some
disadvantages as follows:

• It has a borderline detectable fluid volume below which it
would be difficult for the drilling crew to identify losses.
The alarm is typically set by the drilling crew at 5 bbl in
most rigs.

• It requires manual calculation for estimating the loss rate
if the rig is not equipped with advanced mud-logging
instruments. Thus, it does not provide a continuous
reading of loss rates while drilling activities.

• It is not installed in old drilling rigs, where a measuring
stick is still used to allocate the fluid level inside mud pits
to calculate the loss rate.

The aforementioned limitations of the current methods used
to monitor or calculate the loss of circulation hinder the drilling
crew to have a continuous profile of the loss of circulation that
helps in finding the optimum combined drilling parameters to
reduce the intensity of losses. Thus, we introduced a new
machine learning approach based on surface drilling parameters
to estimate the loss rate while drilling and allow the drilling crew
to alter these parametersif possibleto control the loss rate.
1.2. Application of Artificial Intelligence and Machine

Learning Related to Drilling Applications. Most artificial
intelligence (AI) and machine learning (ML) techniques can
potentially solve practical problems by learning from large
historical data sets, something that conventional analytical
models cannot do.6,7 The applications of AI in drilling operation
activities have evolved over recent years due to their flexibility in
classification, optimization, prediction, and selection.8 These
applications include, but are not limited to, identification of

formation lithology,9 estimation of pore and fracture pressures
during the drilling operation,10,11 real-time prediction of drilling
fluid properties,12 formation identification while drilling using
mechanical surface parameters,13 early warning signs detection
while drilling horizontal wells,14 use of an Internet-of-things
(IoT) environment integrated with cameras and high-
computation edge server to implement a deep learning model
for proper drill string space out when a well control incident
occurs during drilling,15 employing of raw drilling data to
estimate the drilling bit- wear in real time using a bidirectional
long short-term memory-based variational autoencoder,16 and
determination of downhole vibrations while drilling surface hole
sections to mitigate premature drill string failures.17

Table 1 also sheds light on some works on AI applications
related to the loss of circulation problems with their accuracy in
terms of the correlation coefficient (R) and coefficient of
determination (R2).
The aforementioned studies showed that AI and ML were

used to either detect losses events (losses or no losses) or
estimate the volume of the losses. Apart from Shi et al.,29 most of
the previous studies used static historical data, i.e., the volume of
losses or loss rates that were documented in the daily drilling
reports, to build a predictive model. Shi et al.29 used the real-
time readings of the inlet flow rate and the outlet flow rate to
label each data point as losses or gain. It should be mentioned
that the flowmeter is not commonly available at the rig site due
to the high cost in our region. The previous studies also used
some input parameters that are difficult to obtain and require
laboratory or logging measurements such as Young’s modulus,
fracture orientation, tensile strength, unconfined compressive
strength, minimum horizontal stress, pore pressure, formation’s
top angle, Poisson’s ratio, and unconfined compressive strength.
Instead, our approach used data that is always available at the rig
site, i.e., the sensor data readings of the APV, to estimate the loss
of circulation rate (LCR) at each time span, which was linked
later with the drilling surface parameters to develop a predictive
model.
The new approach shows potential for continuous monitoring

of the LCR during the drilling operation, which assists the

Figure 1. Methodology flowchart.
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drilling crews to alter the drilling surface parameters to minimize
losses, detect small amounts of losses, and take corrective actions
before losses are escalated. Furthermore, it will aid drilling
engineers to design a predrill model with the optimum surface
drilling parameters, which are learned from offset wells, before
drilling a specific section to lessen drilling fluid losses into
formations.

2. METHODS

Figure 1 shows a flowchart that displays the technical approach
to reaching our objective.
2.1. Data Collection. This study used field data from an

intermediate open-hole section of seven vertical wells. The
intermediate section consisted of dolomite/limestone forma-
tions that caused partial or severe loss of circulation due to pore
pressure depletion and natural fractures. The initial data set
consisted of operational surface drilling parameters, which
included flow rate (Q), standpipe pressure (SPP), weight on bit
(WOB), rate of penetration (ROP), rotary speed (RS), and
surface torque (T), and raw data of the active pit volume (APV)
during the drilling operation, which correspond to the drilling
parameters. The operational surface parameters were collected
from surface real-time transmitter sensors, while the raw data of
the APV were obtained from the pit volume totalizer system.
2.2. Data Processing. Noise in a data set can significantly

impact the predictability accuracy of any machine learning
model.32 Therefore, it is essential to use an established
technique of the industry, known as smoothing, to reveal the
underlying trend in the original data set. An exponential moving
average technique was applied to the original data set with a
damping factor of 0.9, which is used most often in time-series
data.33−35 The exponential moving average technique was
applied using eq 1.

Y X Y(1 )t t t1 1β β= + −− − (1)

where Yt is the smoothed observation of any variable at time t, β
is a damping factor that varies between 0 and 1, Xt−1 is the
unsmoothed observation of the variable at the previous time t−
1, and Yt−1 is the smoothed observation of the variable at the
previous time t−1.

2.3. Output Processing. Three important quantities were
calculated to be able to estimate the loss of circulation rate
(LCR)while drilling at each time step in the original data set: the
actual reduction of APV, the theoretical reduction of APV,
which is defined as the drilling fluid volume needed to drop from
the active mud pit to fill up the new drilled footage, and the
difference between the actual and theoretical reduction. These
quantities can be calculated using eqs 2, 3, and 4

APV APV APVt ta 1= −− (2)

where APVa is the actual reduction of active pit volume (bbl.),
APVt−1 is the active pit volume reading at the previous time t−1
(bbl.), and APVt is the active pit volume reading at the current
time t (bbl.).

D D
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where APVTH is the theoretical reduction of active pit volume
(bbl.), OH is the open-hole size (in.),Do is the outer diameter of
the bottom-hole assembly (in.), Di is the inner diameter of the
bottom-hole assembly, and ΔD is the difference between the
depth at time t and the depth at time t−1(ft.).

APV APV APVa THΔ = − (4)

whereΔAPV is the difference between the actual and theoretical
reduction (bbl.).
At each time step, the LCR was calculated if the difference

between the actual reduction and theoretical reduction is greater
than zero, and if the difference is equal to zero, the LCR was set
to be equal to zero. On the other hand, if the difference is less
than zero, the data point was removed from the data set, which
indicates the need for either a treatment for the drilling fluid or
the addition of further mud volume by drilling crews. In this
study, a threshold of 0.5 bbl. was used to account for the mud
loss over the surface solids control equipment at the rig site and
for filtrate volume due to being overbalanced. A different
threshold can be selected by the user depending on the efficiency
of the solids control equipment and the condition of the drilling
fluid used to drill with. The LCR was calculated using eq 5.

Table 2. Dummy Example of How to Identify Loss Occurrence at Each Time Step

time
(min.)

depth
(ft.) Q (gal/min)

SPP
(psi)

WOB
(kIbf) ROP (ft/h)

RS
(RPM) T (kIbf-ft)

APV
(bbl.)

APVa
(bbl.)

APVTH
(bbl.)

ΔAPV
(bbl.) LCR (bbl/min)

0 0 ### ### ### ### ### ### 600
1 10 ### ### ### ### ### ### 597 3 3a 0 0
2 20 ### ### ### ### ### ### 592 5 2a 3 3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
100 1000 ### ### ### ### ### ### 420 7 7 0 0

aThese values are assumed, not calculated, in this particular example.

Table 3. Dummy Modified Data Set with the New Continuous Variable

Q (gal/min) SPP (psi) WOB (kIbf) ROP (ft/h) RS (RPM) T (kIbf-ft) LCR (bbl/min)

### ### ### ### ### ###
### ### ### ### ### ### 0
### ### ### ### ### ### 3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
### ### ### ### ### ### 0
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t
LCR

APV= Δ
Δ (5)

where LCR is the loss of circulation rate (bbl/min) andΔt is the
incremental time between two consecutive data points (min.)
Table 2 shows a dummy example of how to determine the

LCR for each observation in a data set. The new continuous
variable (i.e., LCR) was defined to be able to accomplish our
objective, which is building a machine learning model for the
prediction of the LCR based on drilling surface parameters.
Table 3 shows a dummy modified data set with the input and
output variables that were used for building different machine
learning models.
2.4. Statistical Analysis.The prepared data set consisted of

seven wells with 13,894 data points. Statistical analysis was
performed on the prepared data set for each well in the data set.
The descriptive statistics for the seven wells used to build a
predictive model are presented in Appendix A. The LCR in each
well was determined using the approach discussed in Section
2.3.
2.5. Data Set Partition. In this study, the data set was

divided with a ratio of 80:20. Eighty percent of the data was
selected for training to ensure that the models captured most of
the loss of circulation behaviors while drilling. The training set
had 11,022 data points, while the testing set had 2872 data
points. Tables 4 and 5 present the descriptive statistics for the
training and testing sets.
2.6. Relative Importance of Variables. Understanding

the influence of input variables on output variables is imperative
when developing AI and ML models because including more
inputs than required can decrease the learning speed and
efficiency. Mutual information (MI), which is a statistical
quantity that measures the amount of information between two
variables, was used to study the relationship between the input
and output variables. The MI determines how much two
variables are dependent. MI is a dimensionless quantity and it is
always greater than or equal to zero. A high MI value indicates a
large reduction in uncertainty, while a low MI value indicates a
small reduction in uncertainty; zero MI indicates that the
variables are independent.36 The MI of two jointly discrete
variables X and Y can be calculated using eq 6.37

X Y P X x Y y

P X x Y y
P X x P Y y

x y

MI( , ) ,

log
,
.

d d

y x

i
k
jjjjj

y
{
zzzzz

∫ ∫= [ = = ]·

[ = = ]
[ = ] [ = ] (6)

where MI is the mutual information, X is a random variable, Y is
a random variable, P(x) is the marginal probability density
function of variable X, and P(y) is the marginal probability
density function of variable Y.
How all of this can be interpreted? For example, in studying

SPP and WOB, the MI values are 0.82 and 0.31, respectively.
This means that if SPP is removed as an input variable from our
data set, the model will not be able to capture most of the trend
of LCR, compared to if WOB is removed. Similarly, other input
variables can be interpreted. In this study, we used domain
knowledge as well to select the variables needed for modeling
the LCR. The surface drilling parameters are very important in
determining the intensity of the LCR, and therefore, none of
them was removed from the data set. Figure 2 compares the

dependency between the input parameters and the output
variable. Figure 2 shows that Q, RS, and SPP have MI values of
1.0, 0.96, and 0.82, respectively, while ROP and T have MI
values of 0.41 and 0.45, respectively. On the other hand, WOB
has a value of MI of 0.31.

3. MODEL DEVELOPMENT
Three ML models were used to build a model to predict the
LCR using mechanical surface parameters, which included Q,
ROP, RS, SPP, T, and WOB.

3.1. Support Vector Machine (SVM) Model. SVM is
supervised machine learning that arises from the concept of
having the maximum margin of separation. Given a data set DT
= [(x1,y1), (x2,y2),...,(xn,yn)] that is linearly separable (i.e., it is
separable with no error by a decision function in the form of
gw,b(x) = sign(f w,b(x)) with fw,b(x) = ⟨w,x⟩ + b), then the
optimal separating hyperplane is defined as the hyperplane that
separates the data such that the distance, known as margin,
between the hyperplane and the closet point is maximum. The

Table 4. Descriptive Statistics of the Training Set (11,022 Data Points)

statistical parameters Q (gal/min) ROP (ft/h) RS (RPM) SPP (psi) T (kIbf-ft) WOB (klbf) LCR (bbl/min)

min 466.9 4.9 35.7 566.6 3.3 3.5 0.0
max 1105.7 149.9 186.7 3964.2 25.3 65.2 12.9
range 638.8 145.0 151.0 3397.6 22.1 61.6 12.9
mean 832.5 44.1 118.7 2184.3 15.1 39.2 1.0

Table 5. Descriptive Statistics of the Testing Set (2872 Data Points)

statistical parameters Q (gal/min) ROP (ft/h) RS (RPM) SPP (psi) T (kIbf-ft) WOB (klbf) LCR (bbl/min)

min 466.6 5.0 39.4 577.9 3.4 4.6 0.0
max 1104.6 149.6 186.3 3963.5 25.0 65.1 12.7
range 638.0 144.6 146.9 3385.6 22.0 60.5 12.7
mean 832.4 43.4 118.6 2180.3 15.0 39.0 0.9

Figure 2. Comparison of the dependency between the input variables
and the output.
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optimum hyperplane can be obtained as a solution to the
following constraints
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The above equation is quadratic with linear constraints and its
solution is a linear combination of a subset of samples
denominated as support vectors, s.v., which are the closest
points to the hyperplane.

w x f x x x b( ) ,i i w b i i
s.v.

,
s.v.

∑ ∑β β= ⇒ = ⟨ ⟩ +
(8)

The inner product in a large dimension space can be
represented by a positive definite function k (kernel) such that if
the transformation is chosen in ϕ: Ω ⊂ Rd → Rr, then the inner
product is defined as38

x x x x k x x( ), ( ) ( ) ( ) ( , )
i

i i∑ϕ ϕ ϕ ϕ⟨ ′ ⟩ = ′ = ′
(9)

The above expression can now be substituted in eq 7 to
resolve the problem as follows
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There are different kernel functions such as linear, radial basis
function, and polynomial functions39 that give rise to different
feature spaces verifying the condition in eq 9. In practice, it is not
advisable to have a perfect separation, therefore, it is necessary to
have misclassified observations (i.e., soft margin). This can be
achieved by adding a slack variable ξi ≥ 0, i = 1,2,3,...,n

y w x b( , ( ) ) 1i i iϕ ξ⟨ ⟩ + + ≥ (11)

The interest here is to minimize the misclassified observations
and have a robust model. This can be expressed mathematically
as40
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Python’s Scikit-Learn was used to build an SVMmodel for the
prediction of the LCR. Different kernel functions (i.e., linear,
RBF, polynomial) were applied to map the original data set onto
a higher-dimensional space to become separable. The
regularization parameter C is an important parameter in an
SVM model used to control the variance−bias tradeoff, i.e., to
have almost similar accuracy in the training and testing sets, and
to generalize well on unseen data. The performance of the SVM
classifier with different C values using different kernel functions
was evaluated. In the case of a polynomial kernel function,
different degrees from 3 to 10 were assessed.
The γ parameter, which signifies the influence of points either

near or far away from the hyperplane, was also tuned using the
GridSearchCV function. GridSearchCV is a built-in function in
Python that helps to iterate through predefined hyperparameters

and fit a model on a training set. Two options for γ in the SVM
classifier (i.e., scale or auto) were evaluated.

3.2. Random Forest (RF) Model. RF is an ensemble
learning model that can be used to solve classification and
regression problems.41 RF operates by constructing hundreds or
thousands of decision trees and training each one on a different
set of observations. Formally, for a random vector x = (x1, x2,...,
xp)

T representing the independent variables and a random
variable y representing the independent variable, we assume
unknown joint distribution, i.e., Pxy(x,y). The function that
predicts y is determined by a loss function, L(y,f(x)), and
defined to minimize the expected value of the loss function.

E L y f x( ( , ( ))xy (13)

L(y,f(x)) measures how close f(x) is to y, and it penalizes
values of f(x) that are a long way from y. The loss function for
regression is the squared error loss and zero-one loss for
classification.
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Minimizing Exy(L(y,f(x)) for a regression task gives the
conditional expectation

f x E y X x( ) ( )= | = (15)

If we set the possible value of y denoted by y′, minimizing
Exy(L(y,f(x)) for a classification task gives the conditional
expectation

f x P Y y X x( ) argmax ( )
y y

= = | =
∈ (16)

The ensembles construct f in terms of a collection of base
learners h1(x), h2(x),..., hj(x) that are combined to give predictor
f(x). In a regression task, the base learners are averaged

f x
J

h x( )
1

( )
j

J

j
1

∑=
= (17)

For a classification task, the final output of the RF is the most
frequently predicted class

f x I y h x( ) argmax ( ( ))
y y j

J

j
1

∑= =
∈ = (18)

The jth base learner for an RF is a decision tree. RF
outperforms a single decision tree because of its ability to limit
overfitting without substantially increasing the margin of
error.41,42

Python’s Scikit-Learn was used to build an RF model. The
hyperparameters in an RF are either used to enhance the
predictive power or to make the model run quicker. The number
of estimators is a hyperparameter; this is the number of trees that
an RF builds before computing the average of predictions. The
number of estimators was tuned from 1 to 150 using the
GridSearchCV function to find the optimal value. A high
number of estimators enhances the performance of the model
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and makes the prediction more stable, but it slows down the
process of computation.
The maximum features is another hyperparameter; this is the

number of features to be considered to split a node in each
decision tree. If the maximum features is “sqrt”, then the number
of features to be considered is the square root of the number of
input variables in a data set. If the maximum features is “Log2”,
then the number of features to be considered is the base-2
logarithm of the number of input variables in a data set. Both
maximum feature types were tried during the construction of the
RF to find the optimum performance. The maximum depth is
another important hyperparameter; this represents the depth of
each tree in a forest. In practice, deep trees can capture more
information about the data set, but they can cause model
overfitting. Therefore, the maximum depth, in this case, was
tuned from 1 to 19 using the GridSearchCV function to find the
optimum value.
3.3. K Nearest Neighbor Model. K-NN is instance-based

learning that, instead of performing an explicit generalization,
classifies new instances based on a direct comparison and
similarity to known training instances, which have been stored in
a memory. Instance-based methods assume a function for
determining the similarity or the distance between any two
instances. Giving a training setDT = [(x1,y1), (x2,y2),...,(xn,yn)],
K-NN starts by calculating the distance between a test sample
and the training samples. Different distance metrics can be used
to calculate the distance between samples.43 For continuous
feature vectors, the Euclidean or Manhattan distance is the
generic choice that can be calculated using eqs 19 and 20.

d x x a x a x( , ) ( ( ) ( ))e i j
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n

p i p j
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2∑= −
= (19)

d x x x x( , )m i j
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n

i j
1

∑= | − |
= (20)

The output of the test sample in a classification problem is a
label that is the most frequent among the K nearest training
samples or the average of the K nearest training samples.44 The
number of neighbors, i.e., K, is a user-defined hyperparameter
that can be selected using heuristic techniques.
When the class distribution of a data set is highly skewed

(right/left) where training samples of one class dominate the
prediction of a new sample because of their large number, a
downside of the basic majority of voting occurs.45 To resolve this
problem, the distance from the test point to each of its nearest
neighbors is considered, where the class label or the value in
regression problems of each of the K nearest points is multiplied
by a weight proportional to the inverse of the distance from that
point to the test point.
The K-NN algorithm is considered to be one of the simplest

machine learning algorithms, and it is effective when the training
data set is large. However, while there are advantages, K-NN has
some disadvantages such as the need to determine the value ofK,
which can be complex, and the high computational cost because
of calculating the distances between new test samples to all of the
training samples.
Python’s Scikit-Learn was used to build a K-NN model.

Different combinations of numbers of K and distance metrics
(i.e., Euclidean and Manhattan) were used to evaluate the
performance of the model.

4. VALIDATION OF THE DEVELOPED MODELS USING
WELL NO. 8

Well No. 8, with more than 1123 unseen data points, was used to
compare the capability of the developed models in predicting
the LCR. The descriptive statistics for the data set of Well No. 8
is presented in Appendix A.
The evaluation of models is an important component in ML

projects that aims to estimate the ability of a developedmodel to
generalize on future unseen data sets. Model evaluation metrics
are required to quantitively measure the performance of a
developed model. The selection of evaluation metrics depends
on the type of machine learning problems such as classification,
regression, clustering, etc. The models’ performance is evaluated
using the root-mean-square error (RMSE) and R. The RMSE is
one way of quantifying the difference between the values implied
by the predicted and actual values. The RMSE values may
indicate how well the model output values fit the desired output
values, but it is often useful to investigate themodel performance
by calculatingR. The RMSE andR can be calculated using eqs 21
and 21, respectively.
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where n is the number of samples in the data set, Yi is the actual
output, and Ŷi is the predicted output.

5. RESULTS AND DISCUSSION
The SVMmodel performance with different combinations of C,
γ, and kernel function was evaluated. Table 6 shows the results of
the SVM when RBF was used as a kernel function with different
values of C. Table 6 shows that a value of C equal to 1 and a γ
option of “auto” are the best-combined model parameters that
had an RMSE and an R of 0.91 and 0.79, respectively, in the
training set. On the other hand, the RMSE and R were 1.22 and
0.53, respectively, in the case of the testing set. The model with a

Table 6. Performance of the SVMModel with the RBFKernel
Function

model parameters training set testing set

C γ RMSE R RMSE R

0.001 auto 1.62 0.43 1.56 0.42
0.01 1.61 0.42 1.56 0.41
0.1 1.5 0.12 1.49 0.27
a1 0.91 0.79 1.22 0.53
10 0.14 0.97 1.1 0.65
100 0.1 0.98 1.11 0.64
1000 0.1 0.98 1.11 0.63
0.001 scale 1.55 0.29 1.49 0.27
0.01 1.46 0.18 1.42 0.18
0.1 1.45 0.22 1.41 0.21
1 1.44 0.25 1.4 0.23
10 1.42 0.29 1.39 0.26
100 1.41 0.31 1.39 0.27
1000 1.42 0.31 1.39 0.25

aBest results.
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value of C of more than 1 produced a high R in the training set
but a low value of R in the testing set, which indicates model
overfit. The results showed that the SVM model with linear and
polynomial kernel functions did not perform well and therefore
was not presented here. Figure 3a,b shows the cross-plots of the
actual LCR versus the predicted LCR of the optimum SVM
model.
Table 7 shows the performance of the RFmodel with different

maximum depth values in predicting the LCR. The maximum

depth of 13 was selected as an optimum value since there was an
increase in the difference of the error between the training and
testing sets when the maximum depth went beyond it. It is worth
mentioning that different options of maximum features (log2,
sqrt) led to similar model performance. The optimumRFmodel
predicted the LCR with an RMSE of 0.67 and an R of 0.91 in the
training set, while the RMSE and R were 0.82 and 0.84,
respectively, in the testing set. Figure 4a,b shows the cross-plots

of the actual LCR versus the predicted LCR of the optimum RF
model.
Table 8 shows the performance of the K-NN model with

different K values when Manhattan was used as a distance
metric. Table 8 shows that the K-NN model with a K value of 2
achieved its best performance with an RMSE of 0.35 and an R of
0.97 in the training set, while the RMSE and R were 0.69 and
0.94, respectively. Similarly, Table 9 shows the performance of
the K-NN model with different values of K when Euclidian was
used as a distance metric. Table 9 shows that the K-NN model
with a K value of 2 achieved its best performance with an RMSE
of 0.37 and an R of 0.97 in the training set, while the RMSE and
R were 0.73 and 0.88, respectively. The results show that the K-
NN model with the Manhattan distance slightly outperformed
the K-NN model with the Euclidian distance. Figure 5a,b shows
the cross-plots of the actual LCR versus the predicted LCR of
the optimum K-NN model. Table 10 summarizes the optimum
parameters for each model.

5.1. Comparison of the Developed Models Using Well
No. 8. The K-NNmodel outperformed the other models with a
small RMSE of 0.17 and a high R of 0.90. SVM had a relatively
small RMSE of 0.41 but an extremely low value of R of 0.14. RF,
on the other hand, had a slightly better value of R of 0.16
compared to the SVM models, but it is still considered to be a
low value of R. Figure 6 shows a stack plot of the input variables
and the output variable, i.e., LCR, as a function of adjusted well
depth in Well No. 8. The adjusted depth was used to hide the
actual depth of the well. These results show that the K-NN’s
performance was very satisfactory, whereas the RF and SVM
models were not able to accurately predict the LCR.

5.2. Leverage Approach Implementation. The applic-
ability scope of the best-developed model was studied by
applying the Leverage method46 to assess the validity of the
model in the estimation of the LCR. The standard residuals that
calculate the deviation of the model predictions from the actual
values can be computed as follows47

Re
e

H(MSE(1 ))j
j

jj
0.5=

− (23)

where Hjj is the Hat index of the jth data, ej is the difference
between the prediction and actual value of the jth data, andMSE
is the mean square error of the model.
The Hat indices can be determined as below48

H X X X X( )T T1= − (24)

Figure 3. Cross-plots of the actual LCR versus the predicted LCR of the optimum SVM model. (a) Training set. (b) Testing set.

Table 7. Performance of the RF Model with Different
Maximum Depth Values

model parameter training set testing set

maximum depth RMSE R RMSE R

1 1.4 0.39 1.37 0.36
2 1.36 0.44 1.33 0.41
3 1.31 0.49 1.3 0.45
4 1.26 0.55 1.26 0.49
5 1.21 0.6 1.22 0.54
6 1.15 0.65 1.18 0.59
7 1.09 0.7 1.13 0.63
8 1.03 0.74 1.09 0.67
9 0.96 0.78 1.04 0.71
10 0.88 0.83 0.98 0.75
11 0.81 0.86 0.93 0.78
12 0.75 0.88 0.87 0.81
13a 0.67 0.91 0.82 0.84
14 0.58 0.94 0.78 0.86
15 0.54 0.95 0.74 0.87
16 0.46 0.96 0.71 0.88
17 0.42 0.97 0.68 0.89
18 0.37 0.98 0.66 0.9
19 0.34 0.98 0.64 0.9

aBest results.
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where X is a matrix of size nxq, XT is the transpose of matrix X, n
is the count of data points, and q is the number of input
parameters. The warning Leverage isH* is calculated as follows

H
q

n
3 1( )* =

+
(25)

The suspected data for training and validation data sets and
the application area of the best-developed model, i.e., K-NN,
were identified by plotting William’s plot, Figure 7. The data
points that have −3 ≤ Re ≤ 3 and Hjj ≤ H* are within the

application scope of the developed model. Figure 7 shows that
the majority of the data are enclosed inside the area of −3 ≤ Re
≤ 3 and Hjj ≤ H* which is considered crucial for the validity of
the model. There are seven data points that are out of leverage
limit (i.e., 0.002) from the training data set. There are only 182
data points from 11,022 data points of the training data set that
are labeled as suspected, which were identified outside the
acceptable application area of the developed model. These
outcomes of the Leverage method confirm that the developed
model provides the reliability estimation of the LCR.

5.3. General Discussion.The best-developed model can be
only applied in a similar application with the same hole section
and range of input parameters, as discussed in Section 2.1. The
data set of any future well has to be recorded at a similar data
frequency to be able to apply the best-developed model.
Otherwise, interpolation techniques need to be applied at the
required time to estimate the missing channels, i.e., Q, ROP, RS,
SPP, T, and WOB. It is important to mention that if a well is to
be drilled with a different well profile, the models would need to
be retrained.
One use of our developed model is within the drilling

optimization process. Once the drilling data is captured by
drilling one or more stands (1 stand = 93 ft), an ROP model for
drilling optimization is trained based on the acquired data. This
developed model is then used to optimize the ROP ahead of the
drilling bit by adjusting the controllable parameters, mainly RS,
WOB, andQ. These optimal parameters along with the expected
ROP are fed to the developed LCRmodel to ascertain that these
losses are below the desired threshold set by the end-user. The
accepted parameters now are used to drill the next one or two
stands. Once drilling the previous one or two stands is
completed, the ROP model now is updated, i.e., trained, based
on the newly acquired drilling data. The cycle is continued until
the drilling activities are completed. Figure 8 shows a flowchart
that describes how the drilling optimization process can be
linked to our machine learning-based algorithm described in this
paper.
Another use of the best-developed model is within the

planning phase of drilling a similar section that was used in this
study. Using the best-developed model, the drilling crew can
have a predrill model with the optimum operational parameters
to drill a new offset well, that is nearby the wells used in this
study, with minimal losses. This can be achieved by dividing
each well used for training to a small interval of depth (e.g., 5 ft)
and obtaining the drilling surface parameters corresponding to
the minimum LCR. Then, the arithmetic average for each

Figure 4. Cross-plots of the actual LCR versus the predicted LCR of the optimum RF model. (a) Training set. (b) Testing set.

Table 8. Performance of the K-NN Model with the
Manhattan Distance

model parameters training set testing set

K distance RMSE R RMSE R

2a 0.35 0.97 0.69 0.94
3 0.44 0.95 0.73 0.88
4 0.52 0.94 0.75 0.87
5 0.57 0.92 0.78 0.85
6 0.62 0.91 0.83 0.83
7 0.66 0.9 0.86 0.82
8 Manhattan 0.7 0.88 0.89 0.8
9 0.74 0.87 0.92 0.79
10 0.77 0.86 0.95 0.77
11 0.8 0.84 0.97 0.76
12 0.82 0.83 1 0.75

aBest results.

Table 9. Performance of the K-NN Model with the Euclidian
Distance

model parameters training set testing set

K distance RMSE R RMSE R

2 0.37 0.97 0.73 0.88
3 0.47 0.95 0.75 0.87
4 0.54 0.93 0.78 0.86
5 0.61 0.91 0.81 0.84
6 0.65 0.9 0.85 0.82
7 0.69 0.89 0.89 0.8
8 0.73 0.87 0.91 0.79
9 0.77 0.86 0.94 0.78
10 Euclidian 0.8 0.84 0.97 0.76
11 0.83 0.83 0.99 0.75
12 0.85 0.82 1.01 0.74
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drilling parameter can be computed to generate a road map for
every 5 ft while drilling the open-hole section in the subject well.
The weighted average can be used if the user prefers to givemore
importance to the nearest wells.

6. CONCLUSIONS
The conventional methods used to monitor the loss of
circulation have some limitations as discussed above; hence, a
data-driven model to predict the LCR was established. This
paper introduced an ML application to continuously predict the

LCR based on surface drilling parameters including Q, SPP,
WOB, ROP, RS, and T. The main findings of the study are listed
below:

• Using the best-developed model of those compared, the
drilling crew can have a predrill model with optimization
to drill a new offset well, that is nearby the wells used in
this study, with minimal losses.

• The best-developedmodel of those compared can be used
to predict the LCR based on the current drilling
parameters applied by the drilling crew and hence advise
the drilling crew to alter the operational drilling
parameters if the LCR was predicted to be high.

• The good accuracy of the best-developed model, i.e., K-
NN, indicates that it would be possible to use a data-
driven model to predict the LCR while drilling activities.
This will be most beneficial in the old drilling rigs where a
measuring stick is still used to know the fluid level inside
the mud pits to calculate the LCR.

Figure 5. Cross-plots of the actual LCR versus the predicted LCR of the optimum K-NN model. (a) Training set. (b) Testing set.

Table 10. Optimum Design Parameters of the Developed
Models

SVM RF K-NN

Kernel
function

RBF number of
estimators

100 K 2

C 1 maximum
depth

13 distance Manhattan

γ auto maximum
features

sqrt or
Log2

Figure 6. Stack plot of the dependent variables and the output variable (i.e., LCR) versus the adjusted well depth. The SVM-based model (dashed
purple curve), the RF-based model (dashed green curve), and the K-NN-based model (dashed orange curve) are superimposed onto the actual LCR
(blue curve) for Well No. 8 (1123 unseen data points).
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6.1. Limitations and Future Plans. There are some
limitations associated with the data-driven models used in this
study that can be summarized as follows:

• The data set was collected from a specific hole section and
a range of input parameters, as discussed in Section 2.1.
Therefore, the models would need to be retrained if a well
is to be drilled with different well profiles and mechanical
drilling parameters.

• Data-driven models are extremely dependent on data
quality. Most sensors are exposed to harsh environmental
conditions at the rig site, such as mechanical shocks,
temperature changes, humidity, etc. Therefore, it is
essential to establish a recalibration cycle as inaccurate
data can mislead the drilling crew.

• It is imperative to mention that the data sets used in this
study were collected from different rigs with different
acquisition systems that transmit data at a different
frequency, which is defined as the number of data points
recorded per second. The data set of any future well has to
be recorded at a similar frequency to be able to apply the
best-developed model. Otherwise, interpolation techni-
ques need to be applied at the required time span to
estimate the missing channels, i.e., Q, ROP, RS, SPP, T,
and WOB.

■ APPENDIX ADESCRIPTIVES STATISTICS OF ALL
WELLS

Tables 11, 12, 13, 14, 15, 16, 17, 18

Figure 7. William’s plot for identifying the application area of the K-NN model and doubtful data.

Figure 8. Flowchart that describes how the developed LCR model can be used for the drilling optimization process.

Table 11. Descriptive Statistics of Well No. 1 (2379 Data Points)

statistical parameters Q (gal/min) ROP (fph) RS (RPM) SPP (psi) T (KIbf-ft) WOB (klbf) LCR (bbl/min)

min 609.1 4.9 60.3 682.8 7.3 7.1 0.0
max 1105.7 135.2 186.7 3045.7 23.0 63.1 8.1
range 496.5 130.3 126.4 2362.9 15.8 56.1 8.1
mean 814.5 39.9 144.0 2260.4 16.1 42.2 0.5
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range 333.9 81.7 100.8 2182.6 9.6 42.0 12.9
mean 758.0 35.0 102.8 2068.9 14.5 30.1 0.7

Table 16. Descriptive Statistics of Well No. 6 (996 Data Points)
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Table 17. Descriptive Statistics of Well No. 7 (2084 Data Points)

statistical parameters Q (gal/min) ROP (fph) RS (RPM) SPP (psi) T (KIbf-ft) WOB (klbf) LCR (bbl/min)

min 662.3 13.8 55.6 998.9 3.9 3.5 0.0
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Table 18. Descriptive Statistics of Well No. 8 (1123 Data Points)

statistical parameters Q (gal/min) ROP (fph) RS (RPM) SPP (psi) T (KIbf-ft) WOB (klbf) LCR (bbl/min)

min 584.9 9.7 68.7 1345.4 3.4 20.4 0.00
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■ NOMENCLATURE
AIartificial intelligence
ANNartificial neural network
APVactive pit volume, bbl.
APVaactual reduction of APV, bbl.
APVTHtheoretical reduction of active pit volume, bbl.
βdamping factor, unitless
Cregularization parameter, unitless
Diinner diameter of the bottom-hole assembly, in.
ΔDthe difference between two consecutive depths, ft.
ΔAPVdifference between the actual and theoretical reduction
of APV, bbl.
Doouter diameter of the bottom-hole assembly, in.
Knumber of neighbors, unitless
K-NNK nearest neighbors
LCRloss of circulation rate, bbl/min
MLmachine learning
OHhole size, in.
Qflow rate, gal/min
Rcorrelation coefficient, unitless
R2coefficient of determination, unitless
RBFradial basis function
RFrandom forests
RMSEroot-mean-square error
ROPrate of penetration, ft/h
RPMrevolution per minute
RSrotary speed, RPM
SPPstandpipe pressure, psi
SVMsupport vector machines
Tsurface drilling torque, kIbf-ft
WOBweight on bit, kIbf
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