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Abstract
Both external and internal exposure to ionizing radiation are strong risk factors for the development
of thyroid tumors. Until now, the diagnosis of radiation-induced thyroid tumors has been deduced
from a network of arguments taken together with the individual history of radiation exposure. Neither
the histological features nor the genetic alterations observed in these tumors have been shown to be
specific fingerprints of an exposure to radiation. The aim of our work is to define ionizing radiation-
related molecular specificities in a series of secondary thyroid tumors developed in the radiation field
of patients treated by radiotherapy. To identify molecular markers that could represent a radiation-
induction signature, we compared 25K microarray transcriptome profiles of a learning set of 28
thyroid tumors, which comprised 14 follicular thyroid adenomas (FTA) and 14 papillary thyroid
carcinomas (PTC), either sporadic or consecutive to external radiotherapy in childhood. We identified
a signature composed of 322 genes which discriminates radiation-induced tumors (FTA and PTC)
from their sporadic counterparts. The robustness of this signature was further confirmed by blind
case-by-case classification of an independent set of 29 tumors (16 FTA and 13 PTC). After the
histology code break by the clinicians, 26/29 tumors were well classified regarding tumor etiology, 1
was undetermined, and 2 were misclassified. Our results help shed light on radiation-induced thyroid
carcinogenesis, since specific molecular pathways are deregulated in radiation-induced tumors.
Endocrine-Related Cancer (2011) 18 193–206
Introduction

The link between external radiation during childhood

and thyroid cancer has been known since 1950 (Duffy

& Fitzgerald 1950); until recently this was the only
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demonstrated etiological risk factor for thyroid cancers

(Ron et al. 1995). A higher incidence of thyroid cancer

has been reported in epidemiological studies after

either internal or external exposure to radiation
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(Ron et al. 1995, Cardis et al. 2005). A pooled analysis

of seven studies established that the excess relative risk

of thyroid cancer in subjects irradiated at a young age

was very high – 7.7 per Gray (Gy) – the risk being

significant for radiation doses as low as 0.1 Gy and

increasing linearly with increasing doses (Ron et al.

1995). It has been estimated that 88% of thyroid

carcinomas occurring in subjects exposed to radiation

doses equal to 1 Gy during childhood are radiation-

induced. The risk of developing a thyroid carcinoma is

the highest 15–30 years after exposure, but is still

present after more than 40 years (Ron et al. 1995). If

exposure occurred in adulthood, the risk is much lower

(Richardson 2009).

In parallel, a worldwide increase in thyroid tumors,

mainly PTC, has been observed over the last 30 years

(Enewold et al. 2009). This has led to debate concerning a

potential link with changes in environmental exposure

linked to nuclear tests, the nuclear industry, and, in

Western Europe, Chernobyl disaster fallout. Some data

suggest that this increase is at least partly related to the

routine screening of thyroid nodules using neck

ultrasound and fine needle biopsy, which permit the

detection of small papillary carcinomas that would

otherwise have gone undetected (Leenhardt et al. 2004,

Colonna et al. 2007). This high prevalence of such small

cancers had already been reported in autopsy studies

(Harach et al. 1985, Yamamoto et al. 1990). However, it

is not possible to exclude the possibility that some of

these thyroid tumors could have been radiation-induced.

Radiation-induced thyroid tumors have no specific

histological characteristics (Rubino et al. 2002,

Williams et al. 2008). They are either follicular thyroid

adenomas (FTA) or papillary thyroid carcinomas (PTC).

These histological subtypes are also the most frequent

sporadic thyroid tumors. For these reasons, it is of

major interest to identify specific fingerprints of thyroid

cancer developing after thyroid radiation exposure that

would indicate, with a high probability, the etiology of

any tumor. Molecular differences between sporadic and

radiation-induced thyroid tumors were sought using

microarray transcriptome analysis. The first study,

including sporadic and post-Chernobyl PTC, did not

show any specific radiation-induced gene expression

signature (Detours et al. 2005). However, the authors

were able to classify their series of tumors by using a

signature that was previously found to discriminate

between irradiated- and hydrogen-peroxide-treated

lymphocytes (Detours et al. 2007). Others studies

found radiation-induced signatures in post-Chernobyl

PTC (Port et al. 2007, Stein et al. 2010), but without

blind validation of the signature. A recent study

compared cell cycle protein expression in sporadic and
194
post-radiotherapy PTC, but none of the tested markers

could be associated with the etiology (Achille et al.

2009), while combinations of protein markers such as

matrix metalloproteinases, cathepsins, and neurotrophic

tyrosine kinase receptor 1 allowed discrimination of

post-Chernobyl PTC as a function of etiology by

immunostaining (Boltze et al. 2009). Together, these

studies must be considered as preliminary and others

should be analyzed to establish a robust characterization

of the gene expression differences between sporadic

and radiation-induced PTC (rPTC).

The aim of this study is to define the ionizing radiation-

related molecular specificities of human thyroid

tumors developing in the radiation field of patients

treated with radiotherapy. We compared the transcrip-

tome profiles of sporadic and radiation-induced FTA

(rFTA) and rPTC (nZ28) obtained after hybrization

on 25K oligonucleotide microarrays and identified a

signature of 322 genes that discriminated between

radiation-induced tumors (FTA and PTC) and their

sporadic counterparts. The blind classification of an

independent set of 29 tumors using this signature led to

the correct classification of 26/29 tumors regarding tumor

etiology, 1 was undetermined, and 2 were misclassified.
Materials and methods

Tumor samples

Fifty-seven frozen tumors were obtained from the Institut

Gustave Roussy and the Nice Human Biobank (Cancéro-

pole PACA and CRB INSERM, CHU Nice, France;

Tables1 and 2). Histopathologic diagnosis was performed

according to the WHO guidelines. The series comprised

12 rPTCs, 15 rFTAs, 15 sporadic PTCs (sPTCs), and 15

sporadic FTAs (sFTAs). Sporadic tumors were matched

by histology, age at diagnosis, and tumor, nodes,

metastasis (TNM) classification. Radiation exposure

was specifically investigated in each patient by examining

their medical records and/or by postal contact. All patients

were Caucasian except one who was African black.

Tumors from patients who were exposed to external

radiation were considered as radiation-induced accor-

ding to Cahan’s criteria (Cahan et al. 1948): 1) after

radiotherapy, the second neoplasm must arise in the

irradiated field and be proved histologically; 2) a latent

period of several years must have elapsed between

radiation exposure and development of the second

neoplasm; and 3) the second tumor must be histologically

different from the first tumor. Several patients also

received chemotherapy for the treatment of their

primary tumors as shown in Tables 1 and 2. Patients

hospitalized at the Pasteur Hospital (Department of
www.endocrinology-journals.org
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Table 2 Clinical data for sporadic tumors

Patient Histology Sex

Age at

tumor

diagnosis

(years)

Genic

alterations Ethnicity

Tumor

size (mm) Chemotherapy Detected by

Learning/training set

SA1 FTA F 59 C 26 K Screening

SA2 FTA M 63 C 30 K Screening

SA3 FTA M 48 C 20 K Screening

SA4 FTA F 22 C 40 K Screening

SA5 FTA M 44 HRAS Q61R C 33 K Incidental finding

SA6 FTA M 24 C 55 K Screening

SA7 FTA M 21 NRAS Q61R C 45 K Incidental finding

SP1 PTCFV F 54 BRAF V600E C 50 K Screening

SP2 PTC F 27 BRAF V600E C 10 K Screening

SP3 PTC F 25 C 20 K Screening

SP4 PTCFV F 44 RET/PTC3 C 32 K Screening

SP5 PTC F 39 BRAF V600E C 18 K Screening

SP6 PTC F 34 RET/PTC1 C 13 K Incidental finding

SP7 PTC F 23 BRAF V600E C 23 K Incidental finding

MeanZ37 MeanZ29

Testing set

XA1 FTA M 58 C 35 K Incidental finding

XA2 FTA F 31 C 20 K Screening

XA3 FTA F 29 C 13 K Screening

XA4 FTA F 29 C 15 K Screening

XA5 FTA F 27 C 30 K Screening

XA6 FTA F 59 C 26 K Screening

XA7 FTA F 22 NRAS Q61K C Unavailable K Screening

XA8 FTA F 48 C 38 K Screening

XP1 PTC F 17 BRAF V600E C 30 K Screening

XP2 PTC F 25 C 25 K Screening

XP3 PTC F 39 C 20 K Screening

XP4 PTC F 17 RET/PTC1 C 10 K Screening

XP5 PTC M 74 BRAF V600E C 25 K Screening

XP6 PTCFV F 73 BRAF 3 bp Del C 17 K Screening

XP7 PTCFV M 41 C 55 K Screening

XP8 PTC F 40 BRAF V600E C 20 K Screening

MeanZ39 MeanZ25

FTA, follicular thyroid adenoma; PTC, papillary thyroid carcinoma; PTCFV, papillary thyroid carcinoma, follicular variant; C, Caucasian.

C Ory, N Ugolin et al.: Gene signature of radiation-induced thyroid tumors
Otorhinolaryngology, Nice, France) gave their signed

agreement to participate in the study. The protocol was

approved by the local ethics committee of the University

of Nice (‘Comité de Protection des Personnes’ and the

DRCVI of the CHU of Nice) and by the French Ministry

of Research (N8DC-2008-391 and N8AC-2008-83).

Written informed consent was obtained from all patients

at the Institut Gustave Roussy and the study was

performed in accordance with protocols previously

approved by the ethics committee of Bicêtre and by the

Institutional Review Board of Institut Gustave Roussy.

Calculation of the dose received by the

thyroid gland

The approach and software used for retrospective

dose evaluations has been previously detailed in
196
Diallo et al. (1996, 2009). Technical data concerning

the radiotherapy procedure were obtained from radio-

therapy records. Direct individual radiotherapy dose

calculations were performed using the homemade

Dos_EG software package (Diallo et al. 1996).

For each patient, a simple mathematical phantom

anatomy was generated according to patient dimen-

sions. The shape of external contours and lungs were

modeled by means of basic geometric forms. One

hundred and eighty-eight sites of interest were

specified as points within the phantom. Among these,

three were localized at the thyroid. One of these points

represents the isthmus and the two others represent the

left and right lobes respectively. To calculate the dose

to an anatomic site, beams were positioned on the

phantom according to details from the patient’s record,
www.endocrinology-journals.org
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as well as information on equipment, common

treatment techniques, and guidelines used at the time

of the treatment. Radiotherapy parameters included

beam size, shape and inclination, location, radiation

energy, and delivered treatment dose. The dose

calculation algorithm accounted for primary radiation

from the treatment machine and scattered radiation

from the patient and from beam collimation, leakage

radiation, and lung heterogeneity. The local radiation

dose at a site was defined as the cumulative absorbed

dose resulting from the contribution of all beams

involved in the radiotherapy regimen. For all patients

who received radiotherapy for a primary cancer, the

doses received by the thyroid gland were calculated

and are presented in Table 1.
Mutation analysis

RET/PTC1 and RET/PTC3 rearrangements were

detected by RT-PCR as described in Smida et al.

(1999). Mutations of BRAF and HRAS, KRAS, and

NRAS genes were analyzed by cDNA sequencing

(Beckman Coulter Genomics (Cogenics), Grenoble,

France) after PCR amplification. Primer sequences are

listed in Supplementary Table 1, see section on

supplementary data given at the end of this article.
RNA extraction, labeling, and hybridization

The protocol for RNA extraction, RNA amplification, and

labeling was as described in Daino et al. (2009). Quality

of RNA was assessed using the RNA 6000 Nano Lab-

On-Chip as developed on the Agilent 2100 Bioanalyzer

device (Agilent Technologies, Palo Alto, CA, USA).

All specimens included in this study displayed an RNA

integrity number over 7.7. Each tumor sample was

co-hybridized with a common pool of amplified normal

thyroid RNA used as a reference, and all hybridizations

were duplicated in dye-swap. Samples were hybridized in

500 ml of 2! SSC (Gibco), 0.1% SDS (Gibco),

5 mg salmon sperm DNA (Invitrogen) on human 25K

50–52mer oligo-microarrays from a national genomic

platform (Resogen Program, RNG/MCR, Evry). Spotted

slides were prepared as recommended by the manu-

facturer. The arrays were incubated overnight at 50 8C

in an Agilent hybridization oven. After hybridization, the

slides were successively washed for 5 min with agitation

in 2! SSC plus 0.1% SDS, 1! SSC, 0.2! SSC, and

0.05! SSC, then dried by centrifugation.
Preprocessing of microarrays

The procedure for array scanning, calculation of fluo-

rescence intensities, data normalization, and statistical
www.endocrinology-journals.org
analysis were performed as described previously

(Chevillard et al. 2004) with modifications (Bastide

et al. 2009, Daino et al. 2009). All data is deposited in

Array Express database (http://www.ebi.ac.uk/arrayex-

press/, E-MEXP-2739).
Search for molecular signature of tumor etiology

The thyroid tumors were split into 2 sets: a

learning/training set, used to search for the molecular

signature, this comprised of 7 rFTAs, 7 sFTAs, 7 rPTCs,

and 7 sPTCs, and a testing set, which comprised of

the remaining 29 tumors (16 FTAs and 13 PTCs as

testing tumors), used for blind classification. At the

time of the blind classification the tumor histology,

but no radiation exposure history, was known.

The method for classifying the etiology comprised

the following four steps:

1) A learning step, based on a classification

expectation–maximization algorithm, to select

sets of candidate genes whose expression

discriminates between the two subgroups

(Daino et al. 2009);

2) a training step to select from the sets of candidate

genes those with the highest potential to classify

training tumors correctly (Dudoit et al. 2002);

3) the compilation of a unique discriminating set of

genes and standardization of their expressions

according to gene expression variability in the

subgroups; and

4) the blind classification, case-by-case, of testing tumors.
Learning step

Combinatorial matrices of 8 tumors (4 sFTAs or sPTCs

out of the 14 sporadic cases versus 4 rFTAs or rPTCs

out of the 14 radiation-induced cases) were built from

the learning/training set of tumors, the 20 remaining

tumors of each combinational matrix being used as

training tumors. To avoid bias due to histology, each

half matrix (four sporadic or radiation-induced tumors)

should include at least one tumor of each histology,

either FTA or PTC. In the same way, to avoid bias due

to tumor size and specifically to microcarcinomas, we

split the tumors of the learning group into three

categories: group 1 size %25th percentile (12 mm);

group 2 size O25th percentile and !75th percentile

(30 mm); and group 3 size R75th percentile. The

tumor size distribution in group 2 was similar for

sporadic and radiation-induced tumors, whatever the

histology, PTC or FTA. Each half matrix should also

contain at least one tumor of group 2 size and should
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differ from the others by at least 50% in tumor

composition. With these rules, we excluded any impact

of size or tumor histology in the signature. Finally,

81 8-tumor training matrices were considered.

Training step

Each training matrix was used to classify, by a

two-step principal component analysis (PCA) method

(see ‘Blind classification by a two-step PCA

method’), the 20 remaining tumors from the

respective combinatorial matrix (training tumors).

Then, the rules to select a matrix were applied so

that at least one of the training tumors was well

classified and none were misclassified, otherwise the

matrix was discarded. This was performed for each

training matrix. The process continued if at least 90%

of the training tumor classifications were validated by

at least one of the training matrices. In these

conditions, 10% of the tumors may not be validated,

but none must be rejected by the retained training

matrices. The training step selected 26 matrices that

were able to classify at least one training tumor,

without false classification.

Compilation of a unique discriminating set of genes

The 26 selected training matrices (e) were compiled

in a unique x matrix. Among the 974 genes

belonging to the x matrix, we finally retained, for

the final gene signature, in a x 0 matrix, 322 genes as

function of a threshold (PZ0.001) on the frequencies

of relevance, which is defined as the frequency at

which a given gene and a given tumor are found

together in a selected training matrix, weighted by

the number of training tumors well classified by this

training matrix. Then, the relevance of the 322 genes

of the final signature was proved by blind classi-

fication of the 29 testing tumors by a two-step PCA

method. All the method is detailed in Supplementary

Table 2, see section on supplementary data given at

the end of this article.

Blind classification by a two-step PCA method

Let us define g and T as x 0 matrix and a given validation

tumor respectively or a given training matrix and a

corresponding given training tumor respectively. The

eigenvectors and eigenvalues were calculated for the

considered g matrix. These vectors defined a new space

maximizing specifically the asymmetry between the

two groups of tumors (sporadic or radiation-induced)

of the matrix (classification space). The classification

of a T tumor was then realized by its location in the
198
classification space, compared with the location of the

two subgroups of tumors of the g matrix.

When taking into account more than three eigen-

vectors, to assess more precisely the distances between

the vectors, we used a decision-making tool based on

calculation of the root mean square (Supplementary

Table 2, see section on supplementary data given at the

end of this article).
Results

To search for a signature of thyroid tumor etiology,

we have conducted a 25K microarray transcriptome

analysis on a series of sporadic and radiation-induced

benign and malignant thyroid tumors. For blind

classification of new tumors, we developed a unique

strategy based on an expectation-maximisation algo-

rithm that identifies a gene expression signature with

the greatest potential to discriminate between the two

subgroups of tumors in a learning/training set, and on a

two-step PCA analysis, which defines an N dimensional

classification space that presents the greatest asymmetry

between the two subgroups.

Identification of the discriminating signature

between radiation-induced and sporadic tumors

To increase the likelihood that the tumors used to search

the signature are radiation-induced and not sporadic,

we paid special attention to the choice of patients and

tumors included in the learning group. Only patients

treated before 15 years of age, which is considered

the period of high thyroid radiation sensitivity, were

included in the learning/training set of tumors (Table 1).

Moreover, to prevent any bias due to multiple

comparison failure, patients with sporadic tumors were

selected to match, as far as possible, sex, ethnicity, and

age at tumor diagnosis of patients with radiation-induced

tumors (Tables 1 and 2). Mean age at tumor diagnosis

was 38 vs 40 years old for rFTA and sFTA and 32 vs 35

years old for rPTC and sPTC respectively. In the learning

set, the female to male ratio was 1.8 (9/5 females/males)

in sporadic tumors and 2.5 (10/4 females/males) in

radiation-induced tumors (Tables 1 and 2).

A four-step method (learning, training, compilation

of a unique discriminating set of genes, and blind

classification of new tumors) was applied to a

learning/training set of 28 tumors (FTA or PTC) of

known etiology, sporadic, or radiation-induced, which

included 7 rFTA, 7 sFTA, 7 rPTC, and 7 sPTC. When

considering sporadic and radiation-induced tumors as

the two subgroups in the search for a signature,

whatever the histological subtypes (FTA or PTC),
www.endocrinology-journals.org
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a final discriminating signature of 322 genes was found

to be differentially expressed when comparing the two

groups. This set included 137 overexpressed and 185

underexpressed radiation-induced tumors as compared

with sporadic tumors (Supplementary Table 3, see
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section on supplementary data given at the end of this

article). The Cartesian coordinate system, defined by

the two-step PCA method, determined the testing–

classification space, which was found to be organized

as three subspaces, corresponding to the sFTA, the

sPTC, and all radiation-induced tumors of the learning

set (Fig. 1).

In order to check that this molecular signature of

tumor etiology was not specific to some DNA

mutations, we searched for RAS, RET/PTC, and

BRAF genetic alterations in the learning/training set

of tumors (Tables 1 and 2). Mutations at codon 61 of

NRAS, HRAS, or KRAS were found in one rFTA and

two sFTA. RET/PTC rearrangements were identified in

two sPTC and BRAF mutations were detected in four

sPTC and one rPTC (with no overlap with RET

rearrangements). Thus, it is unlikely that the signature

could be specific to any type of mutation.

To understand the molecular specificities of radi-

ation-induced thyroid tumorigenesis, we searched for

the biological function and relationship between the

322 genes of the discriminating signature (Supple-

mentary Table 3, see section on supplementary data

given at the end of this article). However, to be more

exhaustive in the overview of the radiation-induced

deregulated pathways, we also included the 651

preselected genes found during the training step to be

deregulated (Supplementary Table 4, see section on

supplementary data given at the end of this article).

While not included in the final signature, these genes

were able to classify tumors in several combinations of

tumors of the learning/training set without misclassifi-

cation (see Materials and methods section).
Figure 1 Blind validation of the radiation-induced signature by
PCA analysis in the classification space defined by the tumors
of the learning/training set. By the two-step PCA method, the
tumors of the learning set, being FTA (red triangle) and PTC
(green circle), either sporadic (empty symbols) or radiation-
induced (full symbols), defined a validation space in which each
tumor of the testing set is projected to identify its etiology. The
figure represents examples of the relative positioning of four
testing tumors (blue square) in this validation space. (A) A well-
classified rPTC (XP11), (B) a well-classified sFTA (XA6), (C)
the outlier rPTC tumors (XP9), positioned in the validation
space between the rPTC and sPTC subgroups.
(D) A misclassified sFTA (XA1). Values of tumors used for
hypothesis finding in (A–D) seem to differ slightly. This is an
artifact due to data representation in two dimensions.
The validation space is defined in ten dimensions, according to
the tumors of the learning/training set, and each tumor of the
validation set is projected in this space to be classified.
To visualize the results of tumor classification, the space is
restrained to three dimensions and projected in two dimensions.
During this reduction, the relative localization of the tumors
could appear slightly modified.
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Validation of the radiation-induced tumor

signature

Using this signature, a two-step PCA analysis was used

for blind classification of the 29 tumors of the testing

set. Patient and tumor characteristics are given in

Tables 1 and 2. For blind validation of the molecular

signature, each testing tumor was projected into the

classification space, allowing us to propose an etiology

depending on the relative positioning of the testing

tumors compared with the learning/training tumors

(Fig. 1). This signature was robust, since it correctly

predicted the etiology of 26 of the 29 tumors. Six of the

eight sFTA, the eight rFTA, the eight sPTC, and four of

the five rPTC were well classified. One rPTC (XP9)

was clusterized between the group of sPTC and the

group of radiation-induced tumors, so it was not

possible to propose an etiology for this tumor (Fig. 1C),

and two sFTA (XA1, Fig. 1A and XA8) were classified

among the radiation-induced tumors. Since these

tumors developed in patients without known history

of radiation exposure, these may be false results but,

alternatively, these patients may have high thyroid

sensitivity and may have been exposed to ionizing

radiation in the past. In any case, the present signature

of thyroid tumor etiology has a very good negative

predictive value, as all testing tumors diagnosed as

sporadic were indeed sporadic tumors and the signature

has a rather good positive predictive value, as 12 of

the 14 radiation-induced testing tumors were well

diagnosed (1 and 0.85 respectively).

It should be mentioned that using a similar approach

we also searched for a signature of tumor etiology in

each histological subtype. We found two distinct gene

expression signatures discriminating sFTA and rFTA,

and sPTC and rPTC but, due to the small number of

tumors, we did not have enough samples to check the

validity of these signatures by blind classification of

an independent series of tumors (data not shown).
Discussion

Most methods used to analyze microarray data wish to

identify groups of genes that have coherent patterns of

expression with large variance across groups of

samples. Unfortunately, using these methods, we did

not find any signature of etiology. Gene shaving is a

useful alternative method, which uses PCA to find the

space direction which captures the majority of variance

in the whole data set and thus permits the identification

of those genes which are able to separate the two

groups of tumors, whatever the variance of individual

gene expression. Unfortunately, gene shaving is not
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suitable for a small series of samples, such as our series

of tumors. For this reason, we have developed a

method based on a similar strategy to that of gene

shaving, which is adapted to a small number of

samples. It allows us to find the space direction, which

maximizes, if they exist, the criteria discriminating the

two groups of tumors.
Post-radiotherapy tumors (R-tumors)

The choice of R-tumors, specifically those used for

the learning/testing step, was crucial for the veracity

of the results. Due to the high frequency of sporadic

thyroid tumors in the general population, we followed

very stringent criteria to minimize the risk of

including a sporadic tumor (S-tumor) in the group of

R-tumors: we strictly followed Cahan’s criteria for

R-tumor selection. Moreover, these tumors should

have developed in children who were exposed to

radiotherapy while younger than 15, since this

corresponds to the period of highest thyroid radiation

sensitivity (Steliarova-Foucher et al. 2006). Regarding

the risk as a function of the dose received at the

thyroid gland, it was shown that, in this age range, the

relative risk at 1 Gy was estimated at 8.7 and

the attributable risk at 1 Gy was estimated to be

88% (Ron et al. 1995). At 1–15 Gy to the thyroid, the

relative risk was found to be 3.5 if radiotherapy

occurred before 10 years, and 0.9 if it occurred later,

the risk then decreases following a symmetrical curve,

consistent with a cell killing effect (Sigurdson et al.

2005). The relative risk for doses of about 40 Gy is 5

and the attributable risk 80% (Sigurdson et al. 2005).

It should be estimated that after thyroid radiation

exposure during childhood or adolescence, at doses

from 20 to 40Gy, the expected frequency of radiation-

induced tumors ranged from 80 to 90%. Therefore, 1

of 14 tumors of the R-learning group may be sporadic.

Therefore, to evaluate the consequence, if an S-tumor

was unfortunately included in the R-group, we have

mimicked the situation by searching a signature using a

learning set composed of 13 R-tumors plus 1 S-tumor

(‘false R’-tumor) versus 14 S-tumors (data not shown).

Overall, due to the very stringent method applied for gene

selection, most often we did not find a signature and when

it was found the ‘false R’-tumor systematically localized

between the two groups of R- and S-tumors. This

situation could have consequences if tumors of the

validation set were classified only as a function of this

‘false R’-tumor. In fact, we could have raised the

question regarding RA7 (learning tumor), since XA1 and

XA8 (validation tumors) are considered misclassified
www.endocrinology-journals.org
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only as function of RA7, which was localized at the

border of the R-group (Fig. 1D).

Regarding the thyroid radiosensitivity in adulthood,

it should be mentioned that four tumors of the validation

group, which are classified as R-tumors, developed

in patients who received radiotherapy at 30, 35, 36,

and 37 years old. These data are in agreement with the

fact that although the risk of radiation-induced thyroid

cancer decreases as age increases, the excess of relative

risk per gray is still positive up to 40 years old (Ron

et al. 1995). It should be mentioned that in a cohort

of patients developing secondary radiation-induced

thyroid tumors, 11 of 27 patients received chemo-

therapy for their primary tumor (Table 1). Importantly,

for the validity of the data, it was shown that

chemotherapy for the first cancer was not associated

with thyroid cancer risk and it did not modify the effect

of radiotherapy (Sigurdson et al. 2005).

Our study is the first transcriptome analysis of

post-radiotherapy radiation-induced thyroid tumors.

We found a robust molecular signature of thyroid

tumor etiology – demonstrated by the correct blind

classification of 26 of 29 tumors. Few studies on

transcriptome analysis of post-Chernobyl thyroid

tumors have been published. In this study, most of

the patients were externally exposed to radiation to treat

Hodgkin’s disease or non-Hodgkin lymphoma. The

estimated mean dose received by the thyroid gland

varies between 0.1 and 43 Gy in repeated exposure at

high-dose rates (Table 1). In contrast, after the

Chernobyl accident, victims’ thyroids were mainly

chronically contaminated by 131I ingestion. In the

exposed population, the cumulative thyroid radiation

doses ranged from 0.02 Gy to more than 10 Gy, but

most people received doses less than 1 Gy. A low-iodine

diet in the exposed population was reported to be an

important parameter in the development of these tumors

(Williams et al. 2008). The relevance of extrapolation

of conclusions from data on tumors occurring after

exposure to external radiation to post-Chernobyl tumors

that occurred after internal 131I contamination is unclear.

An overlap was found between post-radiotherapy

deregulated genes, identified in this study, and post-

Chernobyl deregulated genes. EPB41L3, a tumor

suppressor included in the 322-gene signature, and

RERG, C13ORF33, GZMH, MST150, RARRES1,

RIPK4, and SFRP1, found in the enlarged set, were

reported in a set of deregulated genes in post-

Chernobyl PTC (Port et al. 2007). Genes such as

ABI2, COL4A5, FAT3, IGFBP3, KRTAP3-2, and

SPOCK1 and several immunoglobulin chains were

deregulated in post-radiotherapy tumors, while genes
www.endocrinology-journals.org
of the same family and/or function, such as ABI3,

COL4A6, FAT2, IGFBP1, KRTAP2-1, KRTAP2-4,

SPOCK2 and other immunoglobulin chains, were

also deregulated in the study of Port et al. (2007),

suggesting common deregulated pathways in post-

radiotherapy and post-Chernobyl tumors. Since we

also observed genes in common with another pre-

viously published post-Chernobyl series of thyroid

tumors (Detours et al. 2007), (genes from the sig-

nature: C4A, CLU; DCI, DHCR24, EGFR, EGR3,

GTF2H2, ICAM3, NRIP1, PLA2R1, and RPS19. From

the enlarged set: EFNA1, EIF2AK2, FAM38A, MED1,

MGEF8, PPL, SCARA3, SMO, and ZFHX4), several of

these genes could be potential markers of radiation-

induced thyroid tumors, independently of the histology

and the internal–external type of radiation exposure.

It should be mentioned that KLK10, underexpressed

in post-radiotherapy-induced thyroid tumors, was

also specifically identified as a downregulated gene in

radiation-transformed human mammary epithelial cells

(Liu et al. 1996).
Molecular specificities of

post-radiotherapy-induced tumors

Deregulated genes in radiation-induced tumors are

mostly involved in molecular mechanisms such as

cellular response to oxidative stress and irradiation,

response to hypoxia, regulation of p53 function,

immune response, and signal transduction pathways

including mitogen-activated protein kinase (MAPK),

epidermal growth factor receptor (EGFR), RAC/

CDC42, hedgehog, transforming growth factor

(TGF)/bone morphogenetic protein (BMP), calcium

signaling, and WNT canonical and noncanonical

pathways (Fig. 2). The WNT/b-catenin pathway has

already been implicated in normal thyroid function and

in thyroid carcinogenesis (Garcia-Rostan et al. 2001,

Castellone et al. 2009). Interestingly, genes known to

connect the WNT pathway with cellular response to

hypoxia (ARD1A; Lim et al. 2008), to the EGFR, TGF,

and NOCHT (TLE2) pathways (Buscarlet & Stifani

2007) were also found to be deregulated.

As described by Detours et al. (2007), we found that

radiation-induced tumors are imprinted by an oxidative

stress hallmark since deregulated genes such as CFL1,

CLU, DHCR24, FMOD, GSTM1-2, and PRNP are

involved in sensitivity to H2O2 or ionizing radiation

exposure. Interestingly, chronic oxidative stress is

known to provoke increasing chromosomal instability

(Abdel-Rahman 2008) and we observed that genes

regulating the G2/M phase and/or checkpoints (PTTG1,

SPAG5, DNAH9, C13orf3, NUP153, CENPE, CDCA8,
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C Ory, N Ugolin et al.: Gene signature of radiation-induced thyroid tumors
STK10, or NDC80) were differentially expressed in

radiation-induced tumors.

One of the central players in the cellular response to

DNA damage and in the maintenance of genome

integrity following cell exposure to oxidative stress is

the tumor suppressor p53. In thyroid cancer, a very low

frequency of TP53 mutations was observed in sporadic

and in post-Chernobyl tumors (Hillebrandt et al. 1996,

Nikiforov et al. 1996). However, p53 protein over-

expression was described, in PTC and anaplastic

thyroid carcinomas, not associated with gene mutation,
202
suggesting that other mechanisms may regulate p53 in

thyroid tumors (Soares et al. 1994, Malaguarnera et al.

2007). In radiation-induced tumors, a decrease in TP53

gene expression was observed, but it was not selected

in the highly discriminating signature (Fig. 3). Inter-

estingly, several genes involved in the regulation of

p53 turnover, p53 phosphorylation, and/or p53 tran-

scriptional activity were differentially expressed

depending on the etiology. This included some highly

discriminating genes of the signature, such as

MAPKAPK2, PARP1, IFI16, PTTG1, RAD32B, and
www.endocrinology-journals.org
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dark or light rectangles respectively. Orange circles show genes found to be deregulated in post-Chernobyl tumors, while green
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BHLHE40, which participate in cellular response to

stress, DNA damage, DNA repair, and genetic

stability. DHCR24, which protects p53 against

MDM2-dependent degradation following oxidative

stress (Kuehnle et al. 2008), has already been found

to be deregulated in Chernobyl tumors (Detours et al.

2007). The MDM2 gene is overexpressed in radiation-

induced tumors along with genes regulating its

function or stabilization, such as KAT5, TWIST2,

TSPYL2, MAPKAPK2, and HSPB1. Recent data have

pointed to a link between cancer, DNA damage

response, and circadian clock regulation (Sahar &

Sassone-Corsi 2009). Three genes involved in the

regulation of this pathway were found to be deregu-

lated (BHLHE40, ARNTL/BMAL1, and MYBBP1A),

suggesting that the circadian clock, which is physio-

logically regulated by, and regulates, the endocrine

functions of thyroid tissue, may be also be implicated

in radiation-induced tumorigenesis.

Finally, another feature of exposure of the thyroid

gland to radiation is the increased frequency of

autoimmune dysfunctions. In this respect, an
www.endocrinology-journals.org
immunoglobulin kappa light chain variable region

(accession number L12079) was identified in patients

with Graves’ disease (Chazenbalk et al. 1993), as well as

genes involved in T lymphocyte function (POU2AF1,

CLECL1, IL2RG, CCL22, MADCAM1, LY75, and

TRAT1) were deregulated and thus could also be related

to the immune thyroid status of radiation-induced

tumors. In parallel, genes associated with thyroid

dysfunction or susceptibility to thyroid disease, such

as IGFBP3, DUOX2, NKX2 1/TTF1, GNA11, and

SLC26A4/pendrin (Moreno et al. 2002, Moya et al.

2006, Kero et al. 2007, Kopp et al. 2008, Kursunluoglu

et al. 2009), or with other autoimmune diseases, such as

IL17B, IRF4,LAIR2, andRC3H1, were also deregulated.

In conclusion, we found a highly specific post-

radiotherapy gene signature to diagnose thyroid tumor

etiology independently of histological subtype. Several

genes of this signature were also deregulated in post-

Chernobyl PTC, although the type of exposure, range of

dose, and other parameters such as iodine consumption

are different. It could be interesting, using our

methodology, to search for a signature in post-Chernobyl
203
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thyroid tumors and indeed to assess the relevance of

our signature in classifying post-Chernobyl tumors

compared with sporadic tumors.
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