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MTDH associates with m6A RNA
methylation and predicts cancer response
for immune checkpoint treatment

Fen Zhang,1 Huimei Huang,2 Yuexiang Qin,3 Changhan Chen,4 Li She,4 Juncheng Wang,4 Donghai Huang,4

Qinglai Tang,2 Yong Liu,4 Gangcai Zhu,2,5,* and Xin Zhang4

SUMMARY

Immune checkpoint blockade (ICB) persistently provides a prognosis improve-
ment but only in a small fraction of patients with cancer due to immunotherapy
resistance induced by the consecutive activated oncogenic pathways, including
MAPK, Akt, andWNT pathway partially driven byMetadherin (MTDH). However,
there is no study to investigate the potential role and mechanisms of MTDH in
ICB-treated cancers. Here, we systematically explored the cohorts from The Can-
cer Genome Atlas (TCGA) and independent cancer cohorts. Elevated MTDH
expression was founded to associate with a worse overall survival and poorer im-
mune response in patients with cancer. Dysregulated tumor-infiltrating immune
cells and inhibitory immune checkpoint expression were correlated with MTDH
expression. Furthermore, the mutual interactions between epithelial-to-mesen-
chymal-transition, m6A-RNA-methylation, and MTDHmay illustrate the potential
mechanisms ofMTDH resistant to ICB treatment. Althoughmore designed exper-
iments and trials are needed in the future, targetingMTDHmay help to overcome
immunotherapy resistance in a wide range of cancers.

INTRODUCTION

Cancer ranks as a leading cause of death and a massive barrier to increasing life expectancy globally in de-

cades (Sung et al., 2021). According to World Health Organization statistics, cancer has accounted for

nearly 10 million deaths in 2020, which results in countless economic costs and social burdens. Surgery

and chemoradiotherapy have been considerably prolonged life of patients with cancer for many decades.

However, the improvement of overall outcome for patients with cancer hit a plateau until immune check-

point blockade (ICB) developed in recent years. ICB, represented by anti-PD1/PD-L1 and anti-CTLA4, has

been undoubtedly revolutionized the remedy for various types of cancer by the unprecedented extent of

clinical responses. Reports of patients with cancer achieving complete remissions are accumulating, be

that as it may, the proportion of non-responders to ICB treatment remains in major. Efforts on the mech-

anism of immunotherapy resistance are increasing to assist physicians with the responder-candidate

selection before treatment. Except for immunosuppressive microenvironment (such as Tregs and MDSCs)

and insufficient tumor immunogenicity (such as impaired dendritic cell and MHC dysfunction), activations

of oncogenic pathways, including MAPK, PI3K, andWNT/b-catenin pathway, are reported to drive carcino-

genesis and ICB resistance (Lei et al., 2020). Therefore, tumor-intrinsic oncogenic pathways for PD1/PD-L1

blockade resistance should not be undermined (Lei et al., 2020).

Metadherin (MTDH), first identified in primary human fetal astrocytes by rapid subtraction hybridization

and named AEG-1, is a well-known oncogene in various cancers, including head and neck cancer, lung can-

cer, liver cancer, breast cancer, and melanoma (Emdad et al., 2016; Robertson et al., 2018; Shen et al., 2021;

Su et al., 2002; Yu et al., 2014; Zhu et al., 2017). MTDH promotes multiple hall markers of aggressive cancer

behaviors, including tumor proliferating, metastasis, angiogenesis, and chemotherapy resistance, by acti-

vating MAPK, PI3K/AKT, and WNT/b-catenin pathways in diverse cancers (Manna and Sarkar, 2021; Yoo

et al., 2011). Theoretically speaking, the expression of MTDH in cancer would be dysregulated and might

impact ICB immunotherapy response for patients with cancer. However, there is no study to investigate the

role of MTDH in cancer with ICB treatment. Here, we systematically investigated the expression of MTDH,

deconvoluted tumor immune environments, and estimated gene signatures in the The Cancer Genome
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Figure 1. The pairwise comparisons of MTDH mRNA expression in tumor and paired normal tissues across 22 types of cancer

The boxplots show that MTDH mRNA is significantly overexpressed in tumor over normal tissues within 12 cancer types including BLCA, BRCA, CHOL,

COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, and STAD (all p < 0.05). Wilcox test was used in the comparison. BLCA: bladder urothelial carcinoma,
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Atlas (TCGA) pan-cancer, independent cancer series, and multiple cancer immunotherapy cohorts. High

expression of MTDH was discovered and validated to predict a worse overall survival for immuno-

therapy-naı̈ve and immunotherapy-treated patients with cancer. Furthermore, the connections of epithe-

lial-to-mesenchymal transition (EMT) and m6A RNA methylation with MTDH may illustrate the potential

immune-related mechanisms underlying MTDH resistance to ICB treatment and unfavorable prognosis.

RESULTS

Elevated expression of MTDH in diverse types of cancer

To systematically investigate the mRNA expression of MTDH in pan-cancer levels, we performed the pair-

wise comparisons of MTDHmRNA in tumor samples and paired-adjacent normal tissues in the available 22

kinds of cancers from the TCGA dataset. As shown in Figure 1, MTDH expression was significantly

decreased in THCA (thyroid carcinoma) but elevated in 12 kinds of tumors as compared to their adjacent

normal tissues from bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cholangiocar-

cinoma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), head and neck cancer

(HNSC), liver hepatocellular carcinoma (LIHC), kidney renal papillary cell carcinoma (KIRC), kidney renal

clear cell carcinoma (KIRP), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and stom-

ach adenocarcinoma (STAD) (all p < 0.05). Furthermore, the upregulated MTDH protein expressions were

confirmed in multiple independent proteomics datasets (all p < 0.05, Figure S1).

MTDH expression predicts an unfavorable overall survival in cancer

Since higher expression of MTDH was found in cancer, we explored the prognostic value of MTDH expres-

sion in the above 12 kinds of cancer. As shown in Figures 2A–2H, high expression of MTDH indicated a

significantly poorer overall survival in BLCA, ESCA, KIRP, LUAD, BRCA, HNSC, LIHC, and LUSC. After

adjusted for TNM stages, multivariate Cox proportional hazards analysis showed that lower expression

of MTDH had decreased hazard ratios of death in BRCA, ESCA, HNSC, KIRP, LIHC, and LUAD (Figure 2I).

To validate the above findings, independent GEO cohorts were applied to analyze the associations of

MTDH expression with overall survival in cancer. High expression ofMTDH remained an unfavorable overall

survival indicator in these independent cohorts (p < 0.01, Figure S2).

MTDH expression negatively correlates with immunotherapy response in cancer

Previous studies have shown that tumor mutation burden (TMB), fPD1, and tumor immunogenicity score

can correlate with the objective response for ICB treatment in TCGA pan-cancer (Lee and Ruppin, 2019;

Wang et al., 2019; Yarchoan et al., 2017). Here, we used the same strategies to evaluate the correlation

of objective response to anti-PD1/PD-L1 with MTDH expression in the cancers whose overall survival corre-

lated with MTDH expression in the above result.

As shown in Figure 3A, the pooled objective response rate for anti-PD-1 or anti-PD-L1 therapy against the

corresponding median MTDH expression across multiple cancer types was plotted. Moreover, there was a

significant negative correlation between the MTDH expression and the objective response rate (Pearson

coefficient: R =�0.81; p < 0.001; Figure 3A), which indicated that high expression of MTDHmight associate

with poor immunotherapy response in cancer.

We further analyzed four independent cancer cohorts to confirm the negative correlation of MTDH expression

with immunotherapy response. As shown in Figures 3B–3E, patients with cancer and MTDH-high expression

trended to be non-responder or progressive disease (PD). Low expression of MTDH was more likely to be a

complete response or partial response. Meta-analysis for above four cohorts showed that the immunotherapy

response rate in theMTDH-high expressiongroupwas significantly lower than that in theMTDH-Lowexpression

group (the pooled odds ratio = 0.34, 95%CI = 0.13–0.86, p = 0.02, Figure 3F).

Figure 1. Continued

BRCA: breast invasive carcinoma, CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL: cholangiocarcinoma, COAD:

colon adenocarcinoma, ESCA: esophageal carcinoma, HNSC: head and neck squamous cell carcinoma, KIRC: kidney renal clear cell carcinoma, KIRP:

kidney renal papillary cell carcinoma, LIHC: liver hepatocellular carcinoma, LUAD: lung adenocarcinoma, LUSC: lung squamous cell carcinoma, STAD:

stomach adenocarcinoma, THCA: thyroid carcinoma, PAAD: pancreatic adenocarcinoma, PCPG: pheochromocytoma and paraganglioma, PRAD:

prostate adenocarcinoma, READ: rectum adenocarcinoma, SARC: sarcoma, THYM: thymoma, UCEC: uterine corpus endometrial carcinoma. See also

Figure S1.
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Hazard Ratio Plot (MTDH low expression vs. MTDH high expression)

BLCA

BRCA

ESCA

HNSC

KIRP

LIHC

LUAD

LUSC

aHR (95%CI)

0.555 (0.283−1.088)

0.507 (0.336−0.765)

0.29 (0.141−0.596)

0.659 (0.498−0.873)

0.269 (0.122−0.593)

0.472 (0.287−0.777)

0.61 (0.436−0.854)

0.809 (0.598−1.095)

P Value

0.08625

0.00122

0.00076

0.0036

0.00111

0.00314

0.00403

0.16998

0 0.5 1

MTDH low

MTDH high MTDH low

MTDH high

MTDH low

MTDH high
MTDH low

MTDH high

MTDH low

MTDH high
MTDH low

MTDH high

MTDH low

MTDH high

MTDH low

MTDH high

A

E

I

F G H

B C D

Figure 2. High expression of MTDH associates with a poor overall survival in various of cancers

(A–H) Kaplan-Meier survival analysis displaying in overall survival between patients with cancer with high and low MTDH expression; log rank was used for p

value calculation. BLCA: bladder urothelial carcinoma, ESCA: esophageal carcinoma, KIRP: kidney renal papillary cell carcinoma, LUAD: lung

adenocarcinoma, BRCA: breast invasive carcinoma, HNSC: head and neck squamous cell carcinoma, LIHC: liver hepatocellular carcinoma, LUSC: lung

squamous cell carcinoma.

(I) The hazard ratio of dead in MTDH low expression patients vs. MTDH high expression patients across various types of cancer. aHR: hazard ratio with 95%

confidence interval from Cox proportion hazard models adjusted for TNM stage. See also Figure S2.
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Figure 3. High expression of MTDH in cancer may associate with immunotherapy resistance

(A) The Pearson correlation of MTDH expression with objective response rate (ORR) to anti-PD1/PD-L1 therapy across cancer types. The MTDH expression

was represented by its median value within the cancer type. ORR was pooled by the current trial data.

(B–E) Four independent datasets show the proportion of immunotherapy responders between the MTDH high group and MTDH low group.

(F) Meta-analysis on the above four independent studies present that high expression of MTDH in patients with cancer have significantly lower possibilities to

response to immunotherapy (p = 0.02). CR: complete response, PR: partial response, SD: stable disease, PD: progressive disease, R: responder, NR: non-

responder, detailed definitions were mentioned in STAR methods section, OR: odds ratio. BLCA: bladder urothelial carcinoma, ESCA: esophageal

carcinoma, KIRC: kidney renal clear cell carcinoma, LUAD: lung adenocarcinoma, BRCA: breast invasive carcinoma, HNSC: head and neck squamous cell

carcinoma, LIHC: liver hepatocellular carcinoma, LUSC: lung squamous cell carcinoma, STAD: stomach adenocarcinoma.
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MTDH associates with tumor-infiltrating immune cells and immune checkpoint expression

Immunotherapy response will be determined by tumor-infiltrating immune cells. To discover the potential

mechanism of MTDH’s role in immunotherapy, we deconvoluted the tumor immune microenvironment across

the above cancers. The significant correlations of MTDH expression with estimated scores of tumor-infiltrating

immune cells were visualized in a heatmap (Figure 4A). The class-switched memory B cells were significantly

lower in the MTDH-high group comparing to the MTDH-low group (p < 0.05, Figure 4B). The estimated score

of CD8+ T cells, CD4+ central memory T cells (CD4+ Tcm), and Th1 cells were increased significantly in MTDH-

low expression patients across diverse cancer types (Figures 4C–4E). Conversely, the suppressive immune cell,

like the proportion of Th2 cells, was higher in MTDH-high patients than in MTDH-low patients (Figure 4F).

Except for tumor-infiltrated immune cells, the expressions of co-inhibitory immune checkpoints were explored

as well. MTDH expression positively correlated with almost all the current known co-inhibitory immune check-

points, including PD-L1/L2, CTLA4, TIM-3, and TIGIT, across BLCA, BRCA, ESCA, HNSC, KIRP, LIHC, LUAD, and

LUSC (Figure S3A). Besides, there was no significant difference in neoantigen number or TMB between MTDH-

high andMTDH-low expressed cancers in LUAD, BLCA, KIRP, LIHC, and HNSC (p > 0.05, Figures S3B and S3C).

Epithelial-to-mesenchymal transition may involve molecular functions of MTDH

Numerous studies and our previous work showed that high expression of MTDH promoted EMT in head and

neck cancers (Emdad et al., 2016; Yu et al., 2014). Therefore, the associations of EMT and MTDH were investi-

gated. As shown in Figures 5A–5H, there are significant positive correlations betweenMTDHexpression and the

estimated scores of EMT across BLCA, BRCA, CHOL, LUAD, HNSC, KIRC, KIRP, and LIHC.

More importantly, the differentially expressed genes comparing MTDH-high to MTDH-low tumors were

discovered based on RNA-seq expression profiles (Figure 5I). These differential genes included EMT-

related genes such as SMAD1, TGFB3, NCAM1, etc., which could be significantly enriched in EMT-up

and EMT-down pathways by MSigDb enrichment analysis (Figure 5I). Taken together, the downstream

genes of MTDH in cancer may associate with EMT. What more, the KEGG and GO enrichment assay indi-

cated that MTDH downstream genes also enriched in integrin and collagen binding and PI3K-Akt pathway

(Figure S4), which illustrates the potential mechanism of MTDH regulating EMT in a cancer cell.

m6A RNA methylation correlates with MTDH expression in cancer

To further investigate the possible mechanism of MTDH regulating EMT, given that m6A RNA methylation

is crucial for promoting EMT in cancer (Chen et al., 2020; Jin et al., 2020; Lin et al., 2019; Ma et al., 2021; Xu

et al., 2021), the correlation betweenm6A RNAmethylation andMTDHwas performed. As shown in Figures

6A–6H, the estimated score of m6A RNAmethylation was significantly correlated with MTDH expression in

BLCA (R = 0.6, p < 0.01), BRCA (R = 0.54, p < 0.01), CHOL (R = 0.73, p < 0.01), LUAD (R = 0.43, p < 0.01),

HNSC (R = 0.53, p < 0.01), KIRC (R = 0.5, p < 0.01), KIRP (R = 0.64, p < 0.01), and LIHC (R = 0.47, p < 0.01).

Furthermore, the expression pattern of MTDH in the above cancers showed similar trends with individual

m6A RNAmethylation genes such as METTL3 andMETTL14 (Figure 6I). Therefore, the role of MTDH in can-

cer may connect with the function of m6A RNA methylation.

The mutual interactions between EMT, m6A RNA methylation, and MTDH in cancer

Both EMT and m6A RNAmethylation correlated with MTDH expression in cancers; therefore, we hypothesized

a mutual correlation between MTDH, EMT, and m6A RNA methylation. As shown in Figure 7A, the 3D plot

showed the mutual correlations between EMT, m6A RNAmethylation, and MTDH expression in cancer. More-

over, the protein-protein interaction network including m6A RNA methylation-associated genes, EMT-associ-

ated genes, and the most MTDH-associated differently expressed genes showed a comprehensive connection

betweenMTDH, EMT, andm6ARNAmethylation inmultiplemolecular levels (Figure 7B), which indicated that a

molecular pathway from MTDH to m6A RNA methylation and EMT might exist in cancers.

The estimated score of MTDH/m6A RNA methylation/EMT pathway in cancer

immunotherapy

In order to discover the significance of the comprehensive pathway connecting with MTDH, EMT, and m6A

RNA methylation, we estimated the score of the pathway by z-scored their associated genes in TCGA tu-

mors and an independent cancer immunotherapy cohort.
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Figure 4. The correlation of MTDH expression and immune cells estimation in cancer

(A) The colored cycles shows the Pearson correlations of MTDH expression with immune cell and component estimation deconvoluted by xCell or

CIBERSORT in BLCA, BRCA, ESCA, HNSC, KIRP, LIHC, LUAD, and LUSC; the cycled block presents into white if p value less than 0.05. The depth of color

represents the extent of Pearson correlation.

(B–F) High expression of MTDH in tumors indicates lower class switchedmemory B cells, Th1 cells, CD4+ central memory T cells (CD4 Tcm cells), CD8+ T cells

(CD8 T cells), and higher Th2 cells as compared to the tumors withMTDH low expression. BLCA: bladder urothelial carcinoma, ESCA: esophageal carcinoma,

KIRP: kidney renal papillary cell carcinoma, LUAD: lung adenocarcinoma, BRCA: breast invasive carcinoma, HNSC: head and neck squamous cell carcinoma,

LIHC: liver hepatocellular carcinoma, LUSC: lung squamous cell carcinoma. See also Figure S3.
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Figure 5. MTDH expression associates with epithelial-mesenchymal transition (EMT) in cancer

(A–H) The expression of MTDH mRNA significantly correlates with estimated score of EMT within tumor samples from BLCA, BRCA, CHOL, LUAD, HNSC,

KIRC, KIRP, and LIHC (all p < 0.05).

(I) The significantly differential gene expressions in the group of MTDH-high samples compared to the samples with MTDH-low expression, which enriched

into EMT pathway by MSigDb enrichment analysis. BLCA: bladder urothelial carcinoma, BRCA: breast invasive carcinoma, CHOL: cholangiocarcinoma,

HNSC: head and neck squamous cell carcinoma, KIRC: kidney renal clear cell carcinoma, KIRP: kidney renal papillary cell carcinoma, LIHC: liver

hepatocellular carcinoma, LUAD: lung adenocarcinoma, Up: upregulated genes in MTDH-high vs. MTDH-low, Down: downregulated genes in MTDH-high

vs. MTDH-low, adj. p.value: adjusted p value by Benjamini-Hochberg (BH) method. See also Figure S4.
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Immunosuppressive cells (such asM2macrophages, Th2 cells, fibroblasts) positively correlatedwith theMTDH/

m6A/EMT pathway score across diverse cancers. In contrast, CD4+ Tcm, NKT cells, Th1 cells, and CD8+ naive

T cells negatively correlated with the MTDH/m6A/EMT pathway (all p < 0.05, Figure 8A). Compared to immu-

notherapy responders, there was a significantly higher MTDH/m6A/EMT pathway score in non-responders (p =

0.026, Figure 8B). All the complete response patients (n = 2) were inMTDH/m6A/EMTpathway score low group

(Figure 8C). More patients with progressive disease after immunotherapy were founded in the high-MTDH/

m6A/EMT pathway score group than their low counterparts (n = 19 vs. n = 9, Figure 8C). Furthermore, the Ka-

plan-Meier curve indicates that high-MTDH/m6A/EMT pathway score was an unfavorable overall survival factor

in the immunotherapy-treated patients with cancer (p = 0.023, Figure 8D).
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Figure 6. MTDH expression associates with the estimation of m6A RNA methylation in cancer

(A–H). The expression of MTDHmRNA significantly correlates with estimated score of m6A RNAmethylation within tumor samples from BLCA, BRCA, CHOL,

LUAD, HNSC, KIRC, KIRP, and LIHC (all p < 0.05).

(I) The heatmap shows the gene expression pattern between MTDH and m6A RNA methylation-associated genes; BLCA: bladder urothelial carcinoma,

BRCA: breast invasive carcinoma, CHOL: cholangiocarcinoma, HNSC: head and neck squamous cell carcinoma, KIRC: kidney renal clear cell carcinoma,

KIRP: kidney renal papillary cell carcinoma, LIHC: liver hepatocellular carcinoma, LUAD: lung adenocarcinoma.
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A

B

Figure 7. The correlation and connections between MTDH, EMT, and m6A RNA methylation in cancer

(A) 3D axis shows the mutual correlations between MTDH expression, EMT score, and m6A RNA methylation signature score in cancer (all p < 0.05),

each sphere means a tumor sample, different color represent cancer source which includes BLCA, BRCA, CHOL, LUAD, HNSC, KIRC, KIRP, and

LIHC.

(B) The comprehensive protein-protein interaction networks between EMT signature, m6A RNA methylation, and the most differently expressed genes in

MTDH-high tumors comparing to MTDH-low tumors were constructed in String database and re-visualized by Cytoscape.
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DISCUSSION

Our study is the first investigation focusing on the associations between MTDH expression and immuno-

therapy response in multiple cancer cohorts, which consistently indicated that high expression of MTDH

might resist cancer immunotherapy. The immune response is determined by the interactions between tu-

mor cells and the immune environment. The mechanism of resistance to immunotherapy is obscure, but

both tumor-cell-intrinsic and tumor-cell-extrinsic factors may be involved (Sharma et al., 2017).

Multiple tumor-intrinsic mechanisms, including MAPK, PTEN/PI3K, WNT/beta-catenin, and IFN signaling

pathways, have recently been identified to be related to immunotherapy resistance (Sharma et al., 2017).

Concretely, activation of the MAPK pathway could result in secreted VEGF and IL-8, which would inhibit

T cell recruitment and function (Liu et al., 2013). Similarly, PTEN loss in cancer, which enhances PI3K

signaling, was associated with resistance to immune checkpoint therapy (Peng et al., 2016). Constitutive

WNT/beta-catenin pathway may associate with decreased expression of CCL4, a chemokine that attracts

CD103+ DCs, and ineffective response to immune checkpoint therapy (Spranger et al., 2015).

Our previous work and other colleagues’ studies showed that MTDH is an oncogene and a trigger that ac-

tivates PI3K, MAPK, and WNT pathway in head and neck cancer and other types of cancer (Emdad et al.,

2016; Robertson et al., 2018; Yoo et al., 2011; Yu et al., 2014), which indicates MTDH would serve as an un-

favorable prognosis indicator for patients with cancer. This study confirmed that MTDH expression is

A

C D

B

Figure 8. High estimated EMT-MTDH-m6A signature correlates with immune cells and resistance to

immunotherapy

(A) Pearson correlations of EMT-MTDH-m6A signature with immune cells in BLCA, BRCA, ESCA, HNSC, KIRP, LIHC,

LUAD, and LUSC; the cycled block presents into white if p value less than 0.05. The depth of color represents the extent of

Pearson correlation.

(B) The estimated EMT-MTDH-m6A signature was significantly higher in immunotherapy non-responders as compared to

immunotherapy responders.

(C) Different immunotherapy responses between patients with high EMT-MTDH-m6A signature and patients with high

EMT-MTDH-m6A signature.

(D) Kaplan-Meier curve indicates EMT-MTDH-m6A signature is an unfavorable overall survival factor (p = 0.023).
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significantly increased in various tumors than paired adjuvant normal tissues except for thyroid cancer. The

downregulated expression of MTDH in thyroid cancer was in contrast to the previous thyroid cancer

publication (Moore et al., 2016). We excluded thyroid cancer from our downstream analysis for conscien-

tiousness. After adjusting for TNM stages, MTDH expression was associated with overall survival time

for patients with BRCA, ESCA, HNSC, KIRP, LIHC, or LUAD. More importantly, based on the above tu-

mor-cell-intrinsic mechanism of immunotherapy resistance, high expression of MTDH may theoretically

associate with poor immunotherapy response due to its regulations on PI3K, MAPK, and WNT pathways.

The negative correlation of MTDH expression and pooled response rate of immune checkpoint blockade

therapy is significant among various cancer types in our preliminary TCGA analysis. More importantly, we

confirmed the unfavorable role of MTDH expression on immunotherapy response in four independent clin-

ical trials (Auslander et al., 2018; Cho et al., 2020; Riaz et al., 2017; Van Allen et al., 2015). Beyond that, we

further discovered the additional underlying mechanisms, including tumor-cell-extrinsic factors.

Tumor-cell-extrinsic mechanisms of immunotherapy resistance involve components other than tumor cells

within the tumor microenvironment, including increased distribution of Th2 cells, M2 macrophages, and

decreased tumor-infiltrating CD8+ T cells, DCs, Th1 cells, CD4+ T cells, and M1 macrophages (Aldea

et al., 2021). This study found that MTDH expression positively correlated with Th2 cells and M2 macro-

phages, which indicates that patients with high expression of MTDH would recruit more Th2 cells and

M2 macrophages. Th2 cells secrete cytokines such as IL-10, IL-4, and IL-5, which inhibit cytotoxic CD8+

T cell proliferation and promote macrophage polarization to M2 type (Liu et al., 2009). M2 macrophages

express higher levels of anti-inflammatory cytokines that skewing tumor microenvironment into immuno-

suppressive (Yang and Zhang, 2017). Our study consistently showed that high expression of MTDH in

diverse cancers is likely to be a lower enrichment for Th1 cells, B cells, and CD4/CD8 memory cells

(including central memory and effector memory T cell), involved in the immune response ejection and

maintenance to viral or tumor antigens (Bagarazzi et al., 2012; Egelston et al., 2021; Helmink et al., 2020;

Sharma et al., 2017). These correlations of MTDH expression and immune cell infiltration may explain

the association between high expression of MTDH and inadequate immunotherapy response.

Interestingly, we found that MTDH expression positively correlated with many inhibitory immune checkpoints,

including PD-1/PD-L1, PD-L2, Tim-3, TIGIT, and LAG3, which demonstrated that a single or few immune check-

point blockades might not be sufficient to recharge cytotoxic T cell killings due to the high expression of other

inhibitory checkpoints (He andXu, 2020). Several emerging trials are undergoing to test the efficiency of immune

checkpoint blockade combination in patients with cancer. Here, our study indicates that combining withMTDH

inhibition rather than the combination of alternative immune checkpoint blockades should be suggested to

overcome immunotherapy resistance for patients with elevated MTDH expression. TMB was approved as an

indicator for immunotherapy by U.S. Food and Drug Administration (FDA). Neoantigen number is crucial for

the recognition and killing capabilities of CD8+ T cells. Therefore, the relationship between MTDH expression

and TMB or neoantigen was investigated in this study. There is no significantly different TMB or neoantigen be-

tween low and high expressed MTDH patients, indicating that the mechanism of MTDH-associated immuno-

therapy resistance might be independent of tumor mutation burden and neoantigen numbers.

The EMT in cancer is a process of dedifferentiation due to external stimulation like TGF-b or IL-8, activation

of transcription factors including Snail, Slug Twist, Zeb1, and Zeb2 (Horn et al., 2020), or oncogenic signals

like WNT, Notch, and MAPK pathways (Stemmler et al., 2019). EMT confers cancer cells with increased tu-

mor metastatic potential and more resistance to immunotherapy (Dongre andWeinberg, 2019; Horn et al.,

2020). This study found that the positive correlation of MTDH expression and estimated EMT score is sig-

nificant in various cancers. What more, the differentially expressed genes between MTDH-high andMTDH-

low tumor samples include EMT-associated genes, such as fibronectin (FN1), N-cadherin (CDH2), and

SMAD. These findings imply the possible role of EMT in MTDH-associated immunotherapy resistance.

Current preclinical and clinical research demonstrates that EMT correlates with increased resistance to

immunotherapy (Horn et al., 2020). Hugo et al. reported a high transcriptomic signature of EMT-related

genes associated with primary resistance to anti-PD-1 therapy in patients with metastatic melanoma

(Hugo et al., 2017). EMT-associated transcription factors and downstream pathways that drive tumor cell

metastasis also help confer resistance against antitumor immunity and therapy. For example, the overex-

pression of Snail was shown to induce Tregs and to inhibit dendritic cell function through the secretion of

TGF-b and TSP1 in melanoma (Kudo-Saito et al., 2009). Furthermore, Snail was reported to shield tumor
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cells from T cell-mediated lysis via autophagy (Akalay et al., 2013). A recent study showed that hypoxic con-

ditions in the lung cancer environment could upregulate numerous EMT-associated transcription factors,

including Snail and Twist, resulting in highly mesenchymal cancer cells resisting T cell and NK cell-medi-

ated killing (Terry et al., 2017). The expressions of inhibitory immune checkpoints, like PD-L1, were elevated

on the cancer cell or immune cells as epithelial cancer cells transiting to mesenchymal cancer cells (Horn

et al., 2020; Qin et al., 2020). Therefore, EMT is an intermediary phenomenon connecting with tumor-

cell-intrinsic and tumor-cell-extrinsic mechanisms of immunotherapy resistance. Taken together, MTDH

may promote immunotherapy resistance by regulating the EMT of the cancer cell. The mechanism of

MTDH regulating EMT remains unknown; our previous data showed PI3K/Akt might involve in the

MTDH-induced EMT process (Yu et al., 2014).

m6A RNA methylation is crucial for the regulation of EMT through WNT/beta-catenin, PI3K/Akt, LAST2/

YAP pathway, or Sox4 mRNA stability (Chen et al., 2020; Jin et al., 2020; Lin et al., 2019; Ma et al., 2021;

Xu et al., 2021). Our study showed that the most differential genes in the high expression of MTDH tumor

might be enriched in the activation of the PI3K/Akt pathway, indicating MTDH may regulate PI3K/Akt-

induced EMT by m6A RNA methylation. Analogous to histones and DNA, abundant eukaryotic mRNAs

can also be reversibly modified by methylation on m6A sites (Roundtree et al., 2017). m6A modification

is mainly mediated by a methyltransferase (named as writers including METTL3, METTL14, KIAA1429,

and WTAP), m6A demethylases (erasers) consists of ALKBH5 and FTO, and m6A modification reader pro-

teins mainly include YTHDF1/2/3, IGF2BP1/2/3, HNRNPA2B1, and HNRNPC (Roundtree et al., 2017). Inter-

estingly, m6A RNAmethylation was reported to regulate T cell-mediated pathogenesis (Li et al., 2017a) and

immunotherapy sensitivity in colorectal cancer (Wang et al., 2020) andmelanoma (Li et al., 2020; Yang et al.,

2019) and implied that the positive correlation of m6A RNAmethylation withMTDHmight contribute to the

mechanism of MTDH in immunotherapy resistance. Furthermore, our analysis illustrated a positive mutual

correlation between MTDH expression, EMT score, and m6A RNA methylation in pan-cancer levels,

showing a molecular axis from MTDH to m6A RNA methylation and EMT existed in cancer samples.

Taking the above knowledge together with the protein-protein interaction network between MTDH, m6A

RNAmethylation, and EMT established in this study, the comprehensive signaling fromMTDH tom6A RNA

methylation and EMT in order could be a potential mechanism underlying immunotherapy resistance.

Moreover, we explored the MTDH-m6A-RNA-methylation-EMT-associated gene signature in cancers.

M2 macrophages, Th2 cells, and fibroblasts were confirmed to be positively correlated with the MTDH-

m6A-RNA-methylation-EMT-associated gene signature, while CD4+ Tcm, NK cells, and Th1 cells

negatively correlated with this comprehensive signature. Therefore, it would be expected that the

MTDH-m6A-RNA-methylation-EMT-associated gene signature would influence immunotherapy response.

The higher estimated score of MTDH-m6A-RNA-methylation-EMT-associated gene signature was founded

in non-responders or worse overall survival patients treated by immunotherapy, which confirmed the clin-

ical importance of checking this comprehensive signature in the tumor before given immunotherapy.

In conclusion, we systematically investigated the expression of MTDH and its associations with cancer

prognosis, immunotherapy response, tumor-infiltrating cells, and immune checkpoints in multiple inde-

pendent cohorts. m6A RNA methylation and EMT may involve the associations of MTDH with immuno-

therapy resistance and cancer prognosis. Although more designed experiments and trials need to be

performed, the development of blockades to MTDH and immune checkpoints on tumors may help cancer

cells overcome the primary or adaptive resistance to immunotherapy and repress its metastasis, resulting in

the long-lasting treatment effect of immunotherapy on a broader range of patients with cancer.

Limitation of the study

Since this is a retrospective pan-cancer study, the potential bias from different cohort patients or clinical

trials is inevitable, whichmight confound our results to some extent. As far as we know, there is no standard-

ized definition of immunotherapy responders on the stable disease. In other words, there is no consensus

that whether stable disease with six months duration or with 12 months should be considered as a

responder. Here, the definition of responders in our included immunotherapy clinical trials also shows a

bit of variance when including the patients with stable disease, which might bring an unknown bias to

our analysis. Furthermore, the findings in this study were confirmed in multiple cancer RNA/protein profiles

and clinical trials datasets by in silico analysis. More clinical trials or large population cohorts are needed to

validate the possible translational role of MTDH in cancer immunotherapy.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to the lead contact, GC

Zhu (qianhudoctor@csu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table.

d R codes used in this study have been deposited and publicly available at GitHub. DOIs are listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHODS DETAILS

Datasets and cohorts

The pan-Cancer normalized gene-level RNA-Seq data for 33 TCGA cohorts were downloaded from UCSC

Xena (https://xenabrowser.net/). Only Primary Tumor and matched normal tissues were saved for further

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Pan-Cancer RNA expression Data TCGA https://portal.gdc.cancer.gov;

https://xenabrowser.net/

Clinical Data for TCGA Cohorts Thorsson et al., 2018 Table S1

Independent Cancer Cohort 1 Wichmann et al., 2015 GEO: GSE65858

Independent Cancer Cohort 2 Yamauchi et al., 2012 GEO: GSE31210

Independent Cancer Cohort 3 Kao et al., 2011 GEO: GSE20685

Cancer Immunotherapy Cohort 1 Auslander et al., 2018 GEO: GSE115821

Cancer Immunotherapy Cohort 2 Cho et al., 2020 GEO: GSE126044

Cancer Immunotherapy Cohort 3 Riaz et al., 2017 https://github.com/riazn/bms038_analysis

Cancer Immunotherapy Cohort 4 Van Allen et al., 2015 dbGap: phs000452.v2.p1

Software and algorithms

clusterProfiler Yu et al., 2012 https://guangchuangyu.github.io/

software/clusterProfiler

xCell Aran et al., 2017 https://xcell.ucsf.edu

MCP-Counter Becht et al., 2016 https://github.com/ebecht/MCPcounter

TIMER Li et al., 2017b http://cistrome.org/TIMER

CIBERSORT Newman et al., 2015 https://cibersort.stanford.edu

String Szklarczyk et al., 2019 https://string-db.org

Cytoscape (v3.8.2) Shannon et al., 2003 https://cytoscape.org

R -project R Foundation for Statistical Computing R version 4.0.1

R codes in this study This paper https://github.com/entcai/MTDH_immunology
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analysis. Clinical data for TCGAwere download from a TCGA-Clinical Data Resource (CDR) (Thorsson et al.,

2018). The tumor mutation burden (TMB) and neoantigen number in TCGA were acquired from Thorsson

et al.(Thorsson et al., 2018). The available cohorts (Independent Cancer Cohort 1-3) for validations were

downloaded from the GEO database (head and neck cancer: GSE65858 (Wichmann et al., 2015), lung

adenocarcinoma: GSE31210 (Yamauchi et al., 2012); invasive breast cancer: GSE20685 (Kao et al., 2011))

and an online platform (Chen et al., 2019) based on the NCI Clinical Proteomic Tumor Analysis Consortium

(CPTAC) database including breast cancer, ovarian cancer, colon cancer, clear cell renal cell carcinoma,

Uterine corpus endometrial carcinoma, lung adenocarcinoma, and pediatric brain cancer.

The pooled objective response rate for immune checkpoint blockade in different types of cancer in the

TCGA dataset has been described previously (Yarchoan et al., 2017) and updated in a recent study

(Wang et al., 2019). The validations of cancer immunotherapy cohorts (Cancer Immunotherapy Cohort 1-

4) were retrieved from four independent datasets with RNA-seq data (Auslander et al., 2018; Cho et al.,

2020; Riaz et al., 2017; Van Allen et al., 2015). The Van Allen et al. (Science, 2015) dataset (Van Allen

et al., 2015) related to CTLA-4 blockade in metastatic melanoma and defined ‘clinical benefit’ using a com-

posite endpoint of complete response or partial response to CTLA-4 blockade as assessed by RECIST

criteria or stable disease by RECIST criteria with overall survival greater than one year, ‘no clinical benefit

was defined as a progressive disease by RECIST criteria or stable disease with overall survival less than one

year. The NoamAuslander et al. (Nat Med, 2018) dataset (Auslander et al., 2018) related to anti-PD1 or anti-

CTLA4 therapy in metastatic melanoma: responding tumors were derived from patients who have

complete or partial responses; non-responding tumors were derived from patients who had progressive

disease. The Nadeem Riaz et al. (Cell, 2017) dataset (Riaz et al., 2017) related to PD-1 blockade in mela-

noma: responding tumors were derived from patients who have complete or partial responses; non-re-

sponding tumors were derived from patients who had progressive disease or stable disease. The

Jae�Won Cho et al. (Exp Mol Med, 2020) dataset (Cho et al., 2020) related to PD-1 blockade in non-small

cell lung cancer: responding tumors were derived from patients who have complete or partial responses or

stable disease for >6months; otherwise, the patient would be defined as non-responders. RNA-Seq data in

these cohorts were used to calculate the MTDH expression and MTDH-m6A-RNA-methylation-EMT signa-

ture for each patient. The median value is used as the threshold to separate the high and low groups.

Immune cell deconvolution and signature estimation on gene set

The proportions of tumor-infiltrating immune and stromal cell populations in TCGA cancer were deconvo-

luted from corresponding bulk RNA sequencing data by xCell (Aran et al., 2017), MCP-Counter (Becht et al.,

2016), TIMER (Li et al., 2017b), and CIBERSORT (Newman et al., 2015) algorithms. The estimated scores of

EMT, m6A RNA methylation, and the comprehensive pathway of MTDH-m6A-RNA-methylation-EMT were

evaluated by principal component analysis and Z-score by IOBR package (Lee et al., 2008; Zeng et al.,

2020). EMT associated gene set includes SOX9, TWIST1, FOXF1, ZEB1, ZEB2, and GATA6 (Mariathasan

et al., 2018). METTL3, METTL14, RBM15, RBM15B, WTAP, KIAA1429, CBLL1, ZC3H13, ALKBH5, FTO,

YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, HNRNPA2B1, HNRNPC, FMR1, LRPPRC, and

ELAVL1 were calculated for the m6A RNA methylation signature (Zhang et al., 2020). The comprehensive

pathway of MTDH-m6A-RNA-methylation-EMT consists of genes in the EMT-associated gene set, m6A

RNA methylation gene set, and MTDH.

GO, KEGG enrichment assay and protein-protein interaction network

The differential gene expression (DGE) analysis was applied to compare the variable genes between

MTDH-high and MTDH-low groups by the limma package. Genes with p-value < 0.01, FDR < 0.05 and

absolute value of log2FC >1 would be considered as DGE genes and inputted in GO and KEGG pathway

enrichment analysis by using the clusterProfiler package (Yu et al., 2012). GO terms and KEGG pathways

with an adjusted p-value less than 0.05 were considered to be statistically significant. For enrichment

analysis, the DGE genes were inputted into enricher function in the clusterProfiler package (Yu et al.,

2012).

The protein-protein interaction (PPI) network between MTDH, EMT, and m6A RNA methylation was con-

structed by String online web (Szklarczyk et al., 2019) and visualized by Cytoscape (v3.8.2) (Shannon

et al., 2003) after inputting the DGE genes and the gene set in EMT and m6A RNA methylation.
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QUANTIFICATION AND STATISTICAL ANALYSIS

A pairwise student t-test was used to compare the MTDH expression in tumors and matched adjacent

normal tissues. Kaplan-Meier analysis or multivariate cox analysis was performed for survival analysis.

The Pearson coefficient was applied to analyze correlations. Wilcox test was used to compare the differ-

ence between the two variables. Meta-analysis with the random effect model was applied to test the

pooled effect of MTDH expression on immunotherapy response in four cohorts with immune checkpoint

blockade treatment. All reported p-values are two-tailed, and for all analyses, p < 0.05 is considered sta-

tistically significant unless otherwise specified. Statistical analyses were performed using R (version 4.0.1).

ADDITIONAL RESOURCES

No additional resource was used in this study.
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