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Simulation data generation 

To provide data samples with ground truth for evaluation, we followed the approach outlined 

by Townes et al. 1  to use nonnegative spatial factorization to simulate spatial multi-omics data. 

We employed the ‘ggblocks’ model from Townes et al. to generate expression matrices of 

different modalities. For modality 1, we generated a spatial gene expression matrix of 1,296 

cells x 1,000 genes with the zero-inflated negative binomial (ZINB) distribution, featuring 4 

distinct factors. Similarly, we generated a spatial protein expression matrix (modality 2) with 

negative binomial (NB) distribution, dimensions of 1,296 cells x 100 proteins, and featuring 4 

distinct factors. The simulation approach recapitulates the ZINB and NB distributions of spatial 

transcriptomics and proteomics respectively and matches the cells from the two modalities. 

We also added Gaussian distributed noise to both modalities to better mimic real-world 

scenarios. To increase statistical analysis power, we generated 5 simulation datasets with 

different parameters. The summary statistics of the 5 simulation datasets are shown in Table 

S3. 

Benchmarking methods 

To evaluate the performance of SpatialGlue, we compare it with 10 state-of-the-art methods, 

including 7 single-cell multi-omics data integration methods, Seurat 2, totalVI 3, MultiVI 4, 

MOFA+ 5, MEFISTO 6, scMM 7, and StabMap 8, and 3 single-modal methods, SpaGCN 9, 

STAGATE 10, and GraphST 11.  

All of benchmarking methods were executed based on their provided vignettes. For 

Seurat’s data pre-processing of the RNA modality, 2,000 and 3,000 highly variable genes were 

selected for log normalization for the RNA & protein and RNA & ATAC (histone) data, 

respectively. The dimensions of feature reduction were set to 30 and 18 for the RNA and 

protein modalities, respectively. For the RNA & ATAC (histone) data, the dimensions of feature 

reduction were set to 10 for both the RNA and ATAC (histone) modalities. For MOFA+ and 

MEFISTO, the top 2,000 and 5,000 highly variable genes and peaks were chosen for 

normalization for the RNA and ATAC (histone) modality data, respectively. The number of 

factors was set to 10. For totalVI and MultiVI, we employed the scVI package (version 1.0.2) 

for data integration. The input dataset was preprocessed using the standard SCANPY 

workflow. Specifically, the top 4,000 highly variable genes were selected for log-normalization 

when implementing totalVI tool. For MultiVI, genes and peaks expressed in fewer than 1% 

pixels were eliminated for the RNA & epigenome (ATAC, histone) data. We need to highlight 

that totalVI was designed only for CITE-seq. scMM was executed with its default settings. The 

epochs, batch size, and learning rating were set to 50, 32, and 0.0001, respectively. Following 

the tutorial provided by the original paper, we ran StabMap using default settings. SpaGCN, 

STAGATE, and GraphST are deep learning models designed for single-modal spatial 

transcriptomics data. All three models were employed based on the tutorials provided. To 

adapt these methods to spatial multi-omics data, we concatenated the pre-processed 

expression matrices of the RNA and protein/ATAC/histone data as input to obtain latent 

representations. For totalVI, MultiVI, scMM, SpaGCN, STAGATE, and GraphST, after model 

training, we extracted the latent representations to perform clustering with the ‘mclust’ 

algorithm 12. 

 



Downstream analyses 

Spatial clustering. Taking the expression data of different omics modalities as input, 

SpatialGlue outputs an integrated representation of spots/cells. With the output 

representations as input, we applied the ‘mclust’ algorithm 12 to identify spatial domains. We 

tested different numbers of clusters to select the clustering that best capture the known 

biological structures and/or cell types.  

DEG analysis. After obtaining the clustering labels, differential expressed gene (DEG) analysis 

was performed on the identified clusters using Seurat v4.0 2 to identify differentially expressed 

genes, proteins, or peaks. Similarly, tSNE and UMAP plots were generated using the 

integrated representations for visualization.  

Signac. We first performed log-normalization followed by data scaling on the ‘SCT’ assay 

using the Seurat package. To find differentially expressed genes, we used the ‘FindAllMarkers’ 

function with the following parameter settings: logfc.threshold = 0.1, min.pct = 0.1 and 

‘wilcoxon’ test. We then ran Term frequency-inverse document frequency (TF-IDF) 

normalization, FeatureSelection and RunSVD (Singular value decomposition), followed by 

data scaling on the CUT&Tag assay using Signac v1.8.0 13. We estimated the Gene Activity 

scores and used the SpatialGlue’s clustering results to identify differentially expressed genes 

using the Gene Activity Scores using the ‘FindAllMarkers’ function with the following 

parameters settings: logfc.threshold = 0.25, min.pct = 0.25 and ‘wilcoxon’ test.  

ArchR. To estimate the differentially expressed peaks, we employ the ArchR package v1.0.2 
14. We first created ‘arrow’ files using the parameters: minFrags = 0, maxFrags = 1e+07, 

tile_size = 5000, and ‘the mm10’ genome. We computed the dimensionality reduced space 

via IterativeLSI with dims = 1:30 and performed clustering using the standard Seurat 

neighborhood detection method via addClusters, followed by UMAP via the ‘addUMAP’ 

function. We then prepare the spatially resolved ATAC object as follows: the spatial 

information was integrated using Seurat’s ‘Read10X_image’ function to create a 10x 

Genomics Visium object named image containing all the spatial folder information. We then 

filtered out the off-tissue pixels in both the image object and in the ArchR object. The gene 

score matrix containing all gene accessibility scores and metadata including the computed 

SpatialGlue clusters was then extracted, and the image object is added.   

We next generated a reproducible peak set in ArchR using the ‘addReproduciblePeakSet’ 

function and called the peaks using MACS2 15. The differentially expressed peaks were then 

identified for the SpatialGlue’s clusters in the ‘PeakMatrix’ with the ‘getMarkerFeatures’ 

function. Marker genes with differential gene scores were also computed from the 

‘GeneScoreMatrix’ using the same function. Finally, we computed the linkage between genes 

and peaks using the ‘addPeak2GeneLinks’ function with the ‘Iterative LSI’ reductions and 

‘GeneScoreMatrix’ values. We ran the ‘addPeak2GeneLinks’ function with the following 

settings: corCutOff = 0.45 and resolution = 1,000. To visualize the correlation between peaks 

and genes, we used the ‘plotPeak2GeneHeatmap’ function to plot the peak-to-gene links 

heatmap.  

Evaluation metrics 

To evaluate the data integration performance of the model, we used eight quantitative metrics, 

of which six are supervised metrics (AMI, NMI, ARI, homogeneity, mutual information, and V-

measure), and two unsupervised metrics (Jaccard similarity and Moran’s I score). The 

supervised metrics were computed using the scikit-learn 16 package in Python. 



ARI. ARI (Adjusted Rand Index) measures the similarity between the ground truth and 

predicted labels. If 𝐶 is a set of ground truth assignments and 𝐾 the set of predicted labels, let 

us define 𝑎 and 𝑏 as: 

• 𝑎, the number of pairs of elements that are in the same set in 𝐶 and in the same set in 

𝐾. 

• 𝑏, the number of pairs of elements that are in different sets in 𝐶 and in different sets in 

𝐾. 

The unadjusted Rand index is then given by: 

𝑅𝐼 =
𝑎+𝑏

𝐶2

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
, (1) 

where 𝐶2

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 is the total number of possible pairs in the dataset. However, the Rand Index 

(RI) does not guarantee that random label assignments will get a value close to zero, 

especially if the number of clusters is in the same order of magnitude as the number of 

samples. To counter this effect, ARI is introduced to discount the expected RI 𝐸[𝑅𝐼] of random 

labellings, and is defined as follows:  

𝐴𝑅𝐼 =
𝑅𝐼−𝐸[𝑅𝐼]

max(𝑅𝐼)−𝐸[𝑅𝐼]
 . (2) 

Mutual Information.  MI (Mutual Information), NMI (Normalized Mutual Information), and AMI 

(Adjusted Mutual Information) are functions that measure the agreement of the ground truth 

and predicted labels. Assume two label assignments (of the same N objects), 𝑈 and 𝑉. Their 

entropy is the amount of uncertainty for a partition set, defined by: 

𝐻(𝑈) = − ∑ 𝑃(𝑖) log(𝑃(𝑖)) ,
|𝑈|
𝑖=1  (3) 

where 𝑃(𝑖) =
|𝑈𝑖|

𝑁
 is the probability that an object picked at random from 𝑈 falls into class 𝑈𝑖. 

Likewise for 𝑉: 

𝐻(𝑉) = − ∑ 𝑃′(𝑗) log(𝑃′(𝑗)) ,
|𝑉|
𝑗=1  (4) 

with 𝑃′(𝑗) =
|𝑉𝑖|

𝑁
. The mutual information (MI) between 𝑈 and 𝑉 is calculated by: 

𝑀𝐼(𝑈, 𝑉) = ∑ ∑ 𝑃(𝑖, 𝑗) log (
𝑃(𝑖,𝑗)

𝑃(𝑖)𝑃′(𝑗)
) ,𝑉

𝑗=1
|𝑈|
𝑖=1  (5) 

where 𝑃(𝑖, 𝑗) =
|𝑈𝑖∩𝑉𝑗|

𝑁
 is the probability that an object picked at random falls into both classes 

𝑈𝑖 and 𝑉𝑗. The normalized mutual information is defined as 

𝑁𝑀𝐼(𝑈, 𝑉) =
𝑀𝐼(𝑈,𝑉)

𝑚𝑒𝑎𝑛(𝐻(𝑈),𝐻(𝑉))
. (6) 

The AMI can be defined as follows:  

𝐴𝑀𝐼 =
𝑀𝐼−𝐸[𝑀𝐼]

𝑚𝑒𝑎𝑛(𝐻(𝑈),𝐻(𝑉)−𝐸[𝑀𝐼])
, (7) 

where 𝐸(𝑀𝐼) means the expected value of the mutual information and is defined as follows: 



𝐸[𝑀𝐼(𝑈, 𝑉)]

= ∑ ∑ ∑
𝑛𝑖𝑗

𝑁
log (

𝑁. 𝑛𝑖𝑗

𝑎𝑖𝑏𝑗
)

𝑎𝑖! 𝑏𝑗! (𝑁 − 𝑎𝑖)! (𝑁 − 𝑏𝑗)!

𝑁! 𝑛𝑖𝑗! (𝑎𝑖 − 𝑛𝑖𝑗)! (𝑏𝑗 − 𝑛𝑖𝑗)! (𝑁 − 𝑎𝑖 − 𝑏𝑗 + 𝑛𝑖𝑗)!
,

min (𝑎𝑖,𝑏𝑗)

𝑛𝑖𝑗=(𝑎𝑖+𝑏𝑗−𝑁)
+

|𝑉|

𝑗=1

|𝑈|

𝑖=1

 

(8) 

where 𝑎𝑖 = |𝑈𝑖| and 𝑏𝑗 = |𝑉𝑗| are the numbers of elements in 𝑈𝑖 and 𝑉𝑗, respectively. 

Homogeneity Homogeneity is a clustering metric that measures if each cluster contains only 

members of a single class. This metric is grounded in the concept that a cluster should be 

composed entirely of data points that are similar to each other. The value of homogeneity 

ranges from 0 to 1, where 1 signifies perfect homogeneity and 0 indicates that the clustering 

is completely heterogeneous. 

V-measure V-measure is a metric that combines both homogeneity and completeness to 

provide a single score that measures the quality of a clustering outcome. Homogeneity 

measures if each cluster contains only members of a single class, while completeness 

evaluates whether all members of a given class are assigned to the same cluster. V-measure 

is thus a harmonic mean of homogeneity and completeness, providing a balance between 

these two aspects. The homogeneity and completeness scores are formally given by: 

ℎ = 1 −
𝐻(𝐶|𝐾)

𝐻(𝐶)
, (9)  

𝑐 = 1 −
𝐻(𝐾|𝐶)

𝐻(𝐾)
, (10) 

where 𝐻(𝐶|𝐾) is the conditional entropy of the classes given the cluster assignments and is 

given by: 

𝐻(𝐶|𝐾) = − ∑ ∑
𝑛𝑐,𝑘

𝑛

|𝐾|
𝑘=1 ∙ log (

𝑛𝑐,𝑘

𝑛𝑘
)

|𝐶|
𝑐=1 , (11) 

and 𝐻(𝐶) is the entropy of the classes and is given by: 

𝐻(𝐶) = − ∑
𝑛𝑐

𝑛

|𝐶|
𝑐=1 ∙ log (

𝑛𝑐

𝑛
), (12) 

with 𝑛 the total number of samples,  𝑛𝑐 and 𝑛𝑘 the number of samples respectively belonging 

to class 𝑐  and cluster 𝑘 , and finally 𝑛𝑐,𝑘  the number of samples from class 𝑐  assigned to 

cluster 𝑘. The conditional entropy of clusters given class 𝐻(𝐾|𝐶)and the entropy of clusters 

𝐻(𝐾) are defined in a symmetric manner. Finally, V-measure is defined as the harmonic mean 

of homogeneity and completeness: 

𝑣 = 2 ∗
ℎ∗𝑐

ℎ+𝑐
. (13) 

Both homogeneity score and V-measure score range from 0 to 1, where 1 indicates perfect 

clustering and 0 imply poor clustering. 

Jaccard similarity. Similar to the metric employed by Ghazanfar et al. 8, for spot 𝑖 , we 

separately extract the sets 𝑁𝑖𝑚 and 𝑁𝑖𝑒 of size 𝑘 (default 50) containing the nearest spots in 

the 𝑚-th modality and embedding space, that is,  

𝑁𝑖𝑚 = {𝑠𝑒𝑡 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑝𝑎𝑐𝑒 𝑚, 𝑠. 𝑡.  𝑟𝑎𝑛𝑘 (𝐷(𝑍𝑖𝑚, 𝑍𝑗𝑚)) ≤ 𝑘}, (14) 

where 𝐷(𝑎, 𝑏) is the Euclidean distance of vectors 𝑎 and 𝑏. The Jaccard similarity is thus:  



𝐽𝑖 = 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑁𝑖𝑚, 𝑁𝑖𝑒) =
|𝑁𝑖𝑚∩𝑁𝑖𝑒|

|𝑁𝑖𝑚∪𝑁𝑖𝑒|
. (15) 

A larger value of 𝐽𝑖 means greater similarity between the integrated representation and the 𝑚-

th modality data.  

Moran’s I score. Moran’s  𝐼 score was calculated using the Squidpy package (Palla et al.17). 

Briefly, given a feature (gene or label) and the spatial location of observations, Moran’s 𝐼 score 

assesses whether the pattern expressed is clustered, dispersed, or random (Getis et al.18). 

Specifically, Moran’s 𝐼 is defined as: 

𝐼 =
𝑛

𝑊

∑ ∑ 𝑤𝑖,𝑗𝑧𝑖𝑧𝑗
𝑛
𝑗

𝑛
𝑖

∑ 𝑧𝑖
2𝑛

𝑖=1

, (16) 

where 𝑧𝑖  is the deviation of the feature from the mean (𝑥𝑖 − 𝑋̃), 𝑤𝑖,𝑗  is the spatial weight 

between observations, 𝑛 is the number of spatial units, and 𝑊 is the sum of all 𝑤𝑖,𝑗. A higher 

value of Moran’s I score corresponds to a more centralized spatial pattern.  

Neighborhood enrichment and co-occurrence. To assess the spatial relationships between 

clusters, we calculated neighborhood enrichment and co-occurrence scores with the Squidpy 
17 package. First, we applied the ‘mclust’ algorithm on the output representation of SpatialGlue 

to obtain spatial clusters. With the spatial clusters as input, we calculated the co-occurrence 

score of each cluster using Squidpy. For neighborhood enrichment analysis to evaluate spatial 

autocorrelations of clusters, we used the spatial clusters and coordinates as input to Squidpy.  

Ablation studies 

Here we performed a series of ablation studies to illustrate the impact of different components 

in the SpatialGlue model on performance. We first considered the use of attention (A) over 

concatenation (C) in integrating information. We created three variants of SpatialGlue (AC, 

CA, CC). The variants CA and CC clearly showed deterioration in capturing the original data 

and AC was the closest in performance to the original SpatialGlue (Suppl. Figure S1c). This 

was also reflected in the computed supervised metrics (Suppl. Figure S1d). We next 

demonstrated the importance of spatial information by feeding in data without spatial 

information. Without spatial information, the output of the variant was much noisier than that 

of SpatialGlue (Suppl. Figure S1e). The metrics also showed that this variant performed worse 

(Suppl. Figure S1f). Finally, we fed the original data into SpatialGlue and found no 

performance difference (Suppl. Figure S1g,h). This suggested that PCA pre-processing does 

not negatively impact performance while offering the benefit of reduced data dimension which 

lower memory requirements and speed up computation.  

 Finally, we also tested SpatialGlue alongside single-modal methods with simple data 

concatenation of simulated and experimentally acquired data. With simulated data, GraphST 

and SpatialGlue achieved similar performance while STAGATE and SpaGCN’s outputs were 

noisier (Suppl. Figure S5b,c). The second test employed the P22 mouse brain data with RNA-

Seq and ATAC-Seq modalities (Suppl. Figure S5d,c,e). STAGATE’s output showed high 

levels of smoothing (Moran’s I score) but lowest similarity to the data modalities (lowest 

Jaccard Similarity). SpaGCN achieved the lowest Moran’s I score and also failed to delineate 

the cortex layers. GraphST and SpatialGlue obtained similar Moran’s I score but SpatialGlue 

was the overall best in terms of Jaccard Similarity. Visually, SpatialGlue was also able to 

capture the cortex layers more accurately.  

 

 



Sensitivity to parameters   

Using the simulated data, we tested SpatialGlue’s sensitivity to parameter changes, namely 

the number of neighbors k, the number of PCs, and the number of GNN layers. The 

performance of SpatialGlue clearly varied significantly with k increasing both visually and in 

terms of metrics (Extended Data Fig.1a,b). At relatively small values of k (3 to 6), we 

considered the performance loss to be tolerable. By default, we set k to 3. For number of PCs 

selected, the performance increased with the PCs count increasing but reduced from 25 to 50. 

The initial increase could be attributed to the additional PCs capturing more information while 

the poor performance at 50 was likely due to the higher dimension PCs containing noise 

instead. We also evaluated SpatialGlue’s performance with the number of GNN layers ranging 

from 1 to 3. Our results showed SpatialGlue achieving the best performance with 1 GNN layer. 

Therefore, we use this value as the default in our model.  
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Supplementary Tables 

Supplementary Table S1 Experimental datasets used in the manuscript 

Dataset Name Platform 
Size (spots x genes/ 

proteins/peaks) 
Figure  

Dataset1 
Mouse spleen 

replicate1  
SPOTS (RNA-protein) 

2,568x32,285 

2,568x21 

Figure 4e-l, Extended Data 

Fig.1g, Extended Data Fig.9, 

Extended Data Fig.10a-c, 

Suppl. Figure 10a 

Dataset2 
Mouse spleen 

replicate2 
SPOTS (RNA-protein) 

2,768x32,285 

2,768x21 

Extended Data Fig.10d-h, 

Suppl. Figure 10b 

Dataset3 Mouse Thymus1 
Stereo-CITE-seq (RNA-

protein) 

4,697x23,622 

4,697x51 

Figure 4a-d, Extended Data 

Fig.8, Suppl. Figure 12a, 

Suppl. Figure 13 

Dataset4 Mouse Thymus2 
Stereo-CITE-seq (RNA-

protein) 

4,253x23,529 

4,253x19 

Suppl. Figure 6, Suppl. Figure 

12b, Suppl. Figure 14 

Dataset5 Mouse Thymus3 
Stereo-CITE-seq (RNA-

protein) 

4,646x23,960 

4,646x19 

Suppl. Figure 7, Suppl. Figure 

12c, Suppl. Figure 15a 

Dataset6 Mouse Thymus4 
Stereo-CITE-seq (RNA-

protein) 

4,228x23,221 

4,228x19 

Suppl. Figure 8, Suppl. Figure 

12d, Suppl. Figure 15b 

Dataset7 
Mouse Brain RNA 

ATAC P22 

Spatial-transcriptome-

epigenome 

9,215x22,914 

9,215x121,068 

Figure 3a-e, Extended Data 

Fig.1g,h, Extended Data 

Fig.4a,c,e, Extended Data 

Fig.5f-h, Suppl. Figure 9d-f 

Dataset8 
Mouse Brain RNA 

H3K4me3 

Spatial-transcriptome-

epigenome 

9,548x22,731 

9,548x35,270 
Extended Data Fig.5a-e 

Dataset9 
Mouse Brain RNA 

H3K27ac 

Spatial-transcriptome-

epigenome 

9,370x23,415 

9,370x104,162 

Figure 3f-l, Extended Data 

Fig.4b,d,f, Extended Data 

Fig.7 

Dataset10 
Mouse Brain RNA 

H3K27me3 

Spatial-transcriptome-

epigenome 

9,752x25,881 

9,752x70,470 
Extended Data Fig.6 

Dataset11 
Human Lymph 

Node A1 

10x Genomics Visium 

(RNA-protein) 

3,484x18,085 

3,484x31 

Figure 2e-i, Extended Data 

Fig.3a-c 

Dataset12 
Human Lymph 

Node D1 

10x Genomics Visium 

(RNA-protein) 

3,359x18,085 

3,359x31 

Extended Data Fig.3d-k, 

Suppl. Figure 11 

Dataset13 Simulation 1 
NSF (Townes et al., 

2023) 

1,296x1,000 

1,296x100 

Figure 2a-d, Extended Data 

Fig.1a-f, Suppl. Figure 1, 

Suppl. Figure 2a,b, Suppl. 

Figure 9a-c 

Dataset14 Simulation 2 
NSF (Townes et al., 

2023) 

1,296x1,000 

1,296x100 
Suppl. Figure 2c-g 

Dataset15 Simulation 3 
NSF (Townes et al., 

2023) 

1,296x1,000 

1,296x100 
Suppl. Figure 3 

Dataset16 Simulation 4 
NSF (Townes et al., 

2023) 

1,296x1,000 

1,296x100 
Suppl. Figure 4a-e 

Dataset17 Simulation 5 
NSF (Townes et al., 

2023) 

1,296x1,000 

1,296x100 
Suppl. Figure 4f-j 

Dataset18 
Simulation 6 (triplet 

omics) 

NSF (Townes et al., 

2023) 

1,296x1,000 

1,296x100 
Extended Data Fig.2 



 Supplementary Table S2 Applicability of methods 

Data type Seurat totalVI MultiVI MOFA+ MEFISTO scMM StabMap SpatialGlue 

RNA & protein √ √ √ √ √ √ √ √ 

RNA & ATAC √ × √ √ √ √ √ √ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S3 Application of methods on datasets 

Datasets Platform Seurat totalVI MultiVI MOFA+ MEFISTO scMM StabMap SpatialGlue 

Dataset1 SPOTS (RNA-protein) √ √ √ √ √ √ √ √ 

Dataset2 SPOTS (RNA-protein) √ √ √ √ √ √ √ √ 

Dataset3 Stereo-CITE-seq (RNA-protein) √ √ √ √ √ √ √ √ 

Dataset4 Stereo-CITE-seq (RNA-protein) √ √ √ √ √ √ √ √ 

Dataset5 Stereo-CITE-seq (RNA-protein) √ √ √ √ √ √ √ √ 

Dataset6 Stereo-CITE-seq (RNA-protein) √ √ √ √ √ √ √ √ 

Dataset7 
Spatial-transcriptome-
epigenome √ × √ √ × √ √ √ 

Dataset8 
Spatial-transcriptome-
epigenome √ × √ √ × √ √ √ 

Dataset9 
Spatial-transcriptome-
epigenome √ × √ √ × √ √ √ 

Dataset10 
Spatial-transcriptome-
epigenome √ × √ √ × × √ √ 

Dataset11 
10x Genomics Visium (RNA-
protein) √ √ √ √ √ √ √ √ 

Dataset12 
10x Genomics Visium (RNA-
protein) √ √ √ √ √ √ √ √ 

Dataset13 
NSF (Townes et al., 2023)  
(Simulation data, RNA-protein) √ √ √ √ √ √ √ √ 

Dataset14 
NSF (Townes et al., 2023)  
(Simulation data, RNA-protein) √ √ √ √ √ √ √ √ 

Dataset15 
NSF (Townes et al., 2023)  
(Simulation data, RNA-protein) √ √ √ √ √ √ √ √ 

Dataset16 
NSF (Townes et al., 2023)  
(Simulation data, RNA-protein) √ √ √ √ √ √ √ √ 

Dataset17 
NSF (Townes et al., 2023)  
(Simulation data, RNA-protein) √ √ √ √ √ √ √ √ 



Supplementary Table S4. Summary of simulation parameters. Here, “pi” denotes the zero-inflation probability of the ZINB (Zero-Inflated 

Negative Binomial) distribution, “nzprob_nsp” denotes the probability of a “one” (else zero) for nonspatial factors, and “bkg_mean” denotes the 

negative binomial mean for observations that are “zero” in the factors.  “mean” and “std” are mean and standard deviation of the Gaussian 

distribution, respectively. 

Dataset 

Modality 1 Modality 2 

ZINB Gaussian 

dimension 

NB Gaussian 

dimension 

pi nzprob_nsp bkg_mean mean std nzprob_nsp bkg_mean mean std 

Simulation 1 0.5 0.2 0.2 2 0.5 1,000 0.25 0.4 2 0.5 100 

Simulation 2 0.5 0.2 0.3 2 0.5 1,000 0.25 0.5 2 0.5 100 

Simulation 3 0.5 0.2 0.4 2 0.5 1,000 0.25 0.6 2 0.5 100 

Simulation 4 0.5 0.2 0.5 2 0.5 1,000 0.25 0.7 2 0.5 100 

Simulation 5 0.5 0.2 0.6 2 0.5 1,000 0.25 0.8 2 0.5 100 



Supplementary Table S5. Summary of technical specifications of different technologies. 

Platform Spatial resolution (µm) 
Distance between 

spots (µm) 
Image area size 

10x Genomics Visium 
& SPOTS 

55 100 6.5 x 6.5 mm 

Stereo-seq 0.22 0.5 200 mm2 

Spatial-epigenome-
transcriptome 

20 - 50x50 or 100x100 grid 
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Supplementary Figure S1. Ablation study to validate the contribution of each component to the perfor-
mance of the SpatialGlue model. The ablation study was conducted using the simulated data 1. (a) Ground 
truth. (b) Spatial clustering of modalities 1 and 2. (c) Comparison of SpatialGlue and its variants, i.e., using concate-
nation (C) instead of attention (A) for intra-modality integration (SpatialGlue-CA), using concatenation instead of 
attention inter-modality for integration (SpatialGlue-AC), and using concatenation instead of attention for both intra- 
and inter-modality integration (SpatialGlue-CC). (d) Quantitative evaluation of SpatialGlue and variants (CA, AC, 
CC) with the six supervised metrics. (e) Clustering results of SpatialGlue and the non-spatial variant (SpatialGlue 
w/o spatial). (f) Quantitative comparison of SpatialGlue with ‘SpatialGlue w/o spatial’. (g) Comparison of SpatialGlue 
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Supplementary Figure S2: Results for simulation data 1 and 2. (a) Modality weights of different modalities, denoting 
their importance to the integrated output of SpatialGlue with simulation data 1. (b) SpatialGlue’s within-modality weights 
for the importance of spatial and feature graphs with simulation data 1. (c) Simulated data 2 ground truth, unimodal 
clustering of modalities, and integration results from Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and 
SpatialGlue. (d) Density distribution of the simulated data modalities. (e) Quantitative comparison of the eight methods 
with six measurement metrics, homogeneity, mutual information, V measure score, adjusted mutual information (AMI), 
normalized mutual information (NMI), and adjusted rand index (ARI). (f) SpatialGlue’s between-modality weights 
explaining the importance of each modality to each cluster. (g) Within-modality weights for the importance of spatial and 
feature graphs. 
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Supplementary Figure S3. Results for simulation data 3. (a) Modality weights of different modalities, denoting their 
importance to the integrated output of SpatialGlue with simulation data 1. (b) SpatialGlue’s within-modality weights for the 
importance of spatial and feature graphs with simulation data 1. (c) Simulated data 2 ground truth, unimodal clustering of 
modalities, and integration results from Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and SpatialGlue. (d) 
Density distribution of the simulated data modalities. (e) Quantitative comparison of the eight methods with six measurement 
metrics, homogeneity, mutual information, V measure score, adjusted mutual information (AMI), normalized mutual informa-
tion (NMI), and adjusted rand index (ARI). (f) SpatialGlue’s between-modality weights explaining the importance of each 
modality to each cluster. (g) Within-modality weights for the importance of spatial and feature graphs.
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Supplementary Figure S4. Results for simulation data 4 and 5. (a) Simulated data 4 ground truth, unimodal clustering of 
modalities, and integration results from Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and SpatialGlue. (b) 
Density distribution of the simulated data modalities. (c) Quantitative comparison of the eight methods with six measurement 
metrics, homogeneity, mutual information, V measure score, adjusted mutual information (AMI), normalized mutual information 
(NMI), and adjusted rand index (ARI). (d) SpatialGlue’s between-modality weights explaining the importance of each modality to 
each cluster. (e) Within-modality weights for the importance of spatial and feature graphs. (f) Simulated data 5 ground truth, 
unimodal clustering of modalities, and integration results from Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and 
SpatialGlue. (g) Density distribution of the simulated data modalities. (h) Quantitative comparison of the eight methods with six 
measurement metrics, homogeneity, mutual information, V measure score, adjusted mutual information (AMI), normalized 
mutual information (NMI), and adjusted rand index (ARI). (i) SpatialGlue’s between-modality weight explaining the importance of 
each modality to each cluster. (j) Within-modality weights for the importance of spatial and feature graphs. 



Supplementary Figure S5. ADT intensity plots of the lymph node A1 sample.
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Supplementary Figure S6. Results for the mouse thymus 2 sample. (a) Spatial plots of data modalities 
with unimodal clustering (left), and clustering results (right) from single-cell and spatial multi-omics integration 
methods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and SpatialGlue. (b) Comparison of 
Moran’s I score. In the boxplot, the center line denotes the median, box limits denote the upper and lower 
quartiles, and whiskers denote the 1.5× interquartile range. n=6 clusters. (c) Comparison of Jaccard Similarity 
scores. (d) Between-modality weight explaining the importance of each modality to each cluster. (e) Within-mo-
dality weights explaining the contributions of the spatial and feature graphs to each cluster for each modality. 
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Supplementary Figure S7. Results for the mouse thymus 3 sample. (a) Spatial plots of data modalities with 
unimodal clustering (left), and clustering results (right) from single-cell and spatial multi-omics integration meth-
ods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and SpatialGlue. (b) Comparison of Moran’s I 
score. In the boxplot, the center line denotes the median, box limits denote the upper and lower quartiles, and 
whiskers denote the 1.5× interquartile range. n=6 clusters. (c) Comparison of Jaccard Similarity scores. (d) 
Between-modality weight explaining the importance of each modality to each cluster. (e) Within-modality weights 
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Supplementary Figure S8. Results for the mouse thymus 4 sample. (a) Spatial plots of data modalities with 
unimodal clustering (left), and clustering results (right) from single-cell and spatial multi-omics integration meth-
ods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, StabMap, and SpatialGlue. (b) Comparison of Moran’s I score. 
In the boxplot, the center line denotes the median, box limits denote the upper and lower quartiles, and whiskers 
denote the 1.5× interquartile range. n=6 clusters. (c) Comparison of Jaccard Similarity scores. (d) Between-mo-
dality weight explaining the importance of each modality to each cluster. (e) Within-modality weights explaining 
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Supplementary Figure S9. Comparison between SpatialGlue and single-modal methods on simulated 
and real (mouse brain P22 sample acquired using spatial-ATAC-RNA-seq) data. (a) Ground truth of the 
simulated data. (b) Comparison between SpatialGlue and single-modal methods, SpaGCN, STAGATE, and 
GraphST on the simulated data. (c) Quantitative evaluation using six supervised metrics. (d) Comparison 
between SpatialGlue and single-modal methods on the mouse brain P22 sample data. (e) Comparison of 
Moran’s I score. In the boxplot, the center line denotes the median, box limits denote the upper and lower 
quartiles, and whiskers denote the 1.5× interquartile range. n=18 clusters. (f) Comparison of Jaccard Similari-
ty scores. 
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Supplementary Figure S10: Heatmap of differentially expressed ADTs for each cluster for the human 
lymph node A1 (a) and D1 (b) samples.



Supplementary Figure S11. ADTs intensity plots of the lymph node D1 sample.
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Supplementary Figure S12. Heatmap of differentially expressed ADTs for each cluster from the mouse 
thymus 1 (a), 2 (b), 3 (c), and 4 (d) samples.



Supplementary Figure S13. Intensity plots of ADTs for the mouse thymus 1 sample.



Supplementary Figure S14. Intensity plots of ADTs for the mouse thymus 2 sample.
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Supplementary Figure S15. Intensity plots of ADTs for the mouse thymus 3 (a) and 4 (b) samples.




