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Lung cancer has the highest mortality of all cancers worldwide. Epigenetic

alterations have emerged as potential biomarkers for early diagnosis of var-

ious cancer tissue types. To identify methylation markers for early diagno-

sis of lung adenocarcinoma, we aimed to integrate genome-wide DNA

methylation and gene expression data from The Cancer Genome Atlas. To

this end, we first examined the global DNA methylation pattern of lung

adenocarcinoma and investigated the relationship between DNA methyla-

tion subtypes and clinical features. We then extracted differentially methy-

lated and expressed genes, and adopted feature selection techniques to

determine the final methylation markers. The performance of the markers

in predicting lung adenocarcinoma was evaluated on three independent

datasets from Gene Expression Omnibus. Protein levels of marker genes

were validated by immunohistochemistry, and their biological function was

further verified in vivo. We identified three novel methylation markers in

lung adenocarcinoma including cg08032924, cg14823851, and cg19161124,

mapping to CMTM2, TBX4, and DPP6, respectively. Validating these

results on three independent datasets indicated that the three markers can

achieve extremely high sensitivity and specificity in distinguishing lung ade-

nocarcinoma from normal samples. Immunohistochemistry quantification

results confirmed that markers are weakly expressed in human lung adeno-

carcinoma, and CMTM2 decreased tumor growth of mouse Lewis lung

carcinoma in vivo. Overall, our study identified three novel methylation

markers in lung adenocarcinoma which may contribute toward an

improved diagnosis potentially leading to a better outcome for patients

with lung adenocarcinoma.
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1. Introduction

Lung cancer is the leading cause of death with cancer

worldwide [1]. An estimated 72 000 deaths in men and

an estimated 63 220 deaths in women from lung can-

cer occurred in the United States alone in 2020 [2]. As

the major histological type, non-small-cell lung cancer

(NSCLC) accounts for ~ 80% of all lung cancer cases,

in which lung adenocarcinoma (LUAD), arising from

the mucus-secreting glandular cells, accounts for

~ 50% [3]. The average 5-year survival rate in the Uni-

ted States for the patients diagnosed with lung cancer

during 2009 through 2015 was as low as 19%. It is

noticeable that the survival rates varied most among

different stages of lung cancer. The 5-year relative sur-

vival rate is only 5% for patients diagnosed with meta-

static disease, which is far less than the rate for

patients diagnosed with localized stage disease (57%)

[2]. Obviously, early detection contributes to favorable

prognosis, and thus, early screening and diagnosis of

cancer is of great significance.

Cancer screening tests have been used to detect dif-

ferent types of cancers at an early stage. The National

Lung Screening Trial (NLST) showed that low-dose

helical computed tomography (CT) screening can

reduce lung cancer mortality [4,5]. However, not all of

the cancers detected by screening with low-dose CT

will be found early. Furthermore, although low-dose

CT is a diagnostic method with high sensitivity, it

often detects things that turn out not to be cancer [6].

Further follow-up or invasive tests are required after

screening for accurate diagnosis. As the advance of

high-throughput technologies, such as next-generation

sequencing, epigenetic alterations [7–9] of oncogenes

or tumor suppressor genes have been investigated and

emerged as the potential biomarkers for early diagno-

sis of cancers.

DNA methylation is a chemical modification of

DNA by which methyl groups are added to the cytosi-

nes [10,11]. Hypermethylation of tumor suppressor

genes is a common event in various tumors, suggesting

that DNA methylation alterations could be a new

strategy for cancer diagnosis [12]. Compared with pro-

tein and genetic markers, DNA methylation signatures

have a number of advantages. Methylation markers

are relatively sensitive and stable than protein markers

[12]. DNA methylation alterations often occur in the

early stage of the cancer [13]. Moreover, methylation

signatures can be detected in both cancer tissue and

circulating tumor DNA which can be obtained in a

minimally invasive manner [14]. In recent years, several

candidate methylation markers have been studied in

various cancer types [15–17], but none has been used

in clinical practice yet. Integrative analysis of genome-

wide DNA methylation and gene expression has

become an alternative method for systematically

understanding the role of methylation variation in can-

cers with the potential of discovering new epigenetic

markers that are more sensitive and robust.

In this study, we performed an integrative analysis

of genome-wide DNA methylation and gene expres-

sion data to identify DNA methylation markers for

early diagnosis of LUAD. For this purpose, we used

two public databases: The Cancer Genome Atlas

(TCGA) and Gene Expression Omnibus (GEO). Using

a machine learning approach, we finally identified

three LUAD methylation markers including

cg08032924, cg14823851, and cg19161124, mapped to

CMTM2, TBX4, and DPP6, respectively. A logistic

regression model based on the combination of these

markers can accurately distinguish LUAD from nor-

mal samples on independent validation sets. The pro-

tein expression patterns of the markers were further

validated by immunohistochemistry, and the suppres-

sion of tumor growth of CMTM2 was confirmed in

the mouse model.

2. Methods

2.1. DNA methylation

Illumina HumanMethylation450K array data of 415

LUAD and 31 associated normal tissues were down-

loaded from UCSC Xena (cohort: GDC TCGA Lung

Adenocarcinoma) [18]. CpGs were annotated using

human reference genome version 19 using Illu-

minaHumanMethylation450kanno.ilmn12.hg19 R

package [19], and CpGs contain SNPs were removed

from the analysis. Among the original data, the methy-

lation profiles of paired adjacent normal tissues were

available for 29 LUAD samples. Thus, these 29 pri-

mary tumors and matched adjacent normal samples

were selected for differential methylation analysis.

CpGs have missing values in less than 20% of the

samples were imputed using mean methylation levels

while those with more than 20% missing values were

removed for differential analysis. The differentially

methylated cytosines (DMCs) were reported with false

discovery rate (FDR) < 0.05 (the Wilcoxon rank-sum

test) and methylation difference > 0.2. In addition,

three independent validation datasets including

GSE114989, GSE83842, and GSE85845 were obtained

from the GEO [20]. GSE114989 [21] included 27
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primary tumors and 7 matched normal tissues from 7

LUAD patients, GSE83842 [22] contained 12 cases

with paired tumor and normal tissue, and GSE85845

[23] included 8 LUAD and adjacent nontumor tissues.

2.2. Gene expression

The HTSeq counts of RNA-seq data for LUAD

including 524 tumors and 59 normal samples were

obtained from UCSC Xena, and the log-transformed

counts were converted into raw counts. Of the data,

18 primary tumors and matched adjacent normal sam-

ples were selected for differential expression analysis.

The raw counts were normalized using the trimmed

mean of M values (TMM) method, and EDGER [24]

was used to perform the differential analysis. Differen-

tially expressed genes (DEGs) were determined with

adjusted P-value < 0.05 and the log fold change > 1.5.

2.3. Clinical characteristics

The well-preprocessed clinical information of the

LUAD patients was obtained from [25] including basic

characteristics such as sex, age at diagnosis, tumor

stage, smoking status, and mutation status of genes

such as STK11, KRAS, KEAP1, and EGFR. The sur-

vival data of the patients were obtained from UCSC

Xena, and the Kaplan–Meier analysis with log-rank

test was used to compare overall survival across differ-

ent groups.

2.4. Unsupervised clustering analysis

K-means clustering algorithm with the Euclidean dis-

tance was used to determine the methylation subtypes

of LUAD. Of the 54 429 promoter CpGs, 35 414

CpGs that were methylated (b > 0.05) in 32 normal

tissues were removed, 18 859 CpGs showing low varia-

tions (r < 0.2) in 153 tumor samples were removed,

and finally 156 most variable CpGs were retained for

clustering analysis.

2.5. Statistical analysis

The associations of methylation subtypes with clinical

characteristics including sex, age at diagnosis, smok-

ing history, tumor stage, smoking history, STK11

mutation, KEAP1 mutation, KRAS mutation, and

EGFR mutation were examined using Fisher’s exact

test. The Kruskal–Wallis test was used to assess the

statistical significance of differences in mean methyla-

tion levels among clusters. Pearson’s correlation anal-

ysis was performed to assess the relationship between

methylation status of CpGs and expression levels of

genes.

2.6. Functional annotation

Gene ontology analysis was performed using the

DAVID functional annotation tool [26], and signifi-

cantly enriched (FDR < 0.05) biological processes and

molecular functions were reported.

2.7. Marker identification by feature selection

Information gain [27], gain ratio [28], symmetrical

uncertainty [29], and reliefF [30] in WEKA software

package [31] were used for initial screening of the

methylation markers. Information gain, gain ratio, and

symmetrical uncertainty were all entropy-based impu-

rity measures. ReliefF considers differences in nearest

neighbors to obtain the feature weights. All feature

selection methods generate a score for each CpG that

can be used to rank features. Top 15 scoring CpGs by

each method were recorded. Default parameters were

used for all methods except the number of selected

attributes.

2.8. Immunohistochemical staining

Tissue microarrays (HLugA060PG02 and HLu-

gA150CS03) were purchased from Shanghai Outdo Bio-

tech Co., Ltd. (Shanghai, China), containing 105 human

LUAD and paired normal adjacent lung tissues. The

paraffin sections were stained with anti-TBX4 antibody

(#sc-515196; Santa Cruz Biotechnology, Shanghai,

China) at a dilution of 1/10, anti-CMTM2 antibody

(#PA5-50208; Thermo Fisher Scientific, Shanghai,

China) at a dilution of 1/150, and anti-DPP6 antibody

(#sc-365147; Santa Cruz Biotechnology) at a dilution of

1/50. For microwave antigen retrieval, Tris-EDTA

Buffer (pH 8.0) was employed, and multiple antigen

retrievals were used if necessary. The H-score was used

for quantifying the protein levels in human LUAD and

paired adjacent normal lung tissues. H-score, ranging

from 0 to 300, is the sum over product, which is calcu-

lated by multiplying the percentage of positive cells at

each intensity and its staining intensity (weak, moderate,

and strong were scored as 1, 2, and 3 based on color

density).

2.9. Establishment of stable cell lines

To construct pLV-EF1a-Cmtm2-IRES-Bsd, DNA

sequences encoding murine Cmtm2 were amplified from

cDNA extracted from murine testis, then were cloned
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into the plasmid pLV-EF1a-MCS-IRES-Bsd (Biosettia,

San Diego, CA, USA). Next, the lentiviruses carrying

pLV-EF1a-Cmtm2-IRES-Bsd or pLV-EF1a-MCS-

IRES-Bsd were packaged combined with commercial

transfection agents, Lipofectamine 2000 (#11668027;

Thermo Fisher Scientific). Mouse Lewis lung carcinoma

(LLC) cells were incubated with the lentivirus-contain-

ing supernatant with the presence of 8 lg�mL�1 poly-

brene for 48 h and followed by a selection with

10 lg�mL�1 blasticidin for one week to establish stable

cell lines. The primers for amplification are mCmtm2

Forward 50-TCAACGCGTGCCACCATGGCAG-

CACCGATAAAGTTTCC-30 and mCmtm2 Reverse 50-
TCAGCTAGCTTACCACTTCCTTAACCTA-30.

2.10. Real-time quantitative PCR

Total RNA was extracted using TRIzol reagent

(#15596026; Thermo Fisher Scientific) and then was

under reverse transcription via the TransScript First-

Strand cDNA Synthesis SuperMix Kit (TransGen Bio-

tech, Beijing, China). Quantitative PCR was performed

on Roche real-time PCR detection system using the

following primers: Q-Cmtm2 Forward 50-
CCCAAAAAGGGGGCTTCGAC-30, Q-Cmtm2 Rev-

erse 50-ACCGGATGTGGGAGCATTGT-30.

2.11. Mouse model

Seven-week-old C57BL/6J mice (Vital River Labora-

tory Animal Technology Co. Ltd) were used and

maintained in a specific pathogen-free facility. Lucifer-

ase-expressing Lewis lung carcinoma cells (1.5 9 105)

were injected subcutaneously into the right flank of

C57BL/6J mice, and then, the volume of tumors was

monitored every 3 days. And tumor weights were mea-

sured when the mice were sacrificed 4 weeks postim-

plant.

2.12. Bioluminescence imaging

For live imaging, the C57BL/6J mice were given

intraperitoneal injections of the reporter substrate

(15 mg�mL�1 stock in PBS, 100 lg�g�1 mouse) 10 min

before imaging and then were transferred to the imag-

ing chamber for imaging after anesthesia. Images were

analyzed using Living Image software, and the fluores-

cence intensity was quantified.

2.13. Ethical approval

All the experiments involving mice were conducted

according to the guidelines established by the Nankai

University Animal Care and Use Committee (NUA-

CUC) by skilled experimenters under an approved

protocol, which was in accordance with the principles

and procedures outlined in the NIH Guide for the

Care and Use of Laboratory Animals.

3. Results

3.1. Global DNA methylation pattern in LUAD

To examine the global DNA methylation patterns in

LUAD patients, the mean b value was calculated for

each CpG dinucleotide across 415 tumors, and the dis-

tribution of methylation levels was examined in CpG

islands (CGIs), shores, and shelves (Fig. 1A). A bimo-

dal distribution was observed for all CpGs while a

large hypomethylation (the peak in the left) was found

for CpGs located in CGIs. In addition, the CpGs in

both north and south shores had variable methylation

levels (bimodal distribution) and the CpGs in north

and south shelves had large hypermethylations (the

peak in the right), indicating the CpGs within or near

the CGIs tend to have low methylation levels, which is

consistent with previous findings [32,33]. We then per-

formed an unsupervised clustering analysis of 156

CpGs that varied most across 153 well-annotated

LUAD samples (Fig. 1B). The DNA methylation pro-

file of tumors was clustered into three distinct sub-

types, which denoted C1 (n = 62), C2 (n = 54), and C3

(n = 37), and the mean beta values indicated a signifi-

cant difference (Kruskal–Wallis P < 2.2e-16) among

clusters (Fig. 1C). Then, we investigated the associa-

tion between the clusters and clinical characteristics,

and sex, tumor stage, smoking history, STK11 muta-

tion, and KEAP1 mutation were significantly (P-

value < 0.05) associated with clusters (Table 1).

Kaplan–Meier survival analysis was performed to esti-

mate overall survival of each cluster, and there were

Fig. 1. Genome-wide DNA methylation patterns in LUAD. (A) The distribution of mean methylation levels of CpGs across 415 LUAD

patients in whole-genome CpG islands, north shores, south shores, north shelves, and south shelves. (B) Consensus clustering of 156

CpGs that varied most across 153 well-annotated LUAD samples. Samples are presented in columns, and the CpGs are presented in rows.

The methylation profile was clustered into three groups denoted as C1 (n = 62), C2 (n = 54), and C3 (n = 37). (C) The distributions of

methylation levels in three clusters. Kruskal–Wallis test. (D) The distribution of hypermethylated and hypomethylated CpGs in different

genomic regions including CpG island, shore, shelf, TSS1500, TSS200, 50UTR, 1stExon, body, and 30UTR.
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no significant differences among different clusters (P-

value = 0.46). Overall, hypermethylation of CGI was

observed in LUAD patients as with in other cancer

types, and the samples can clearly be divided into three

methylation groups. However, high methylation was

unlikely to be associated with poor survival.

Next, we analyzed the methylation differences in 29

LUAD and 29 matched normal samples. A total of

11 266 DMCs mapped to 3119 genes were detected,

including 7415 hypermethylation (1687 genes) and

3851 hypomethylation (1432 genes) in tumors. We

then investigated the distribution of hypermethylated

and hypomethylated CpGs and genes in various geno-

mic regions (Fig. 1D). Among hypermethylated CpGs,

71.1% were located in CGIs, 25.1% were in shores,

and 3.8% were in shelves. However, 53.4% of hyper-

methylated CpGs were located in shores, 30% were in

shelves, and only 16.4% were in CGIs. The variation

of distribution between hypermethylated CpGs and

hypomethylated ones was relatively smaller in gene-

context regions than in CGI-based regions. Of hyper-

methylated (hypomethylated) CpGs, 15.4% (17.8%),

15.9% (6.7%), 12.2% (11.1%), 11.2% (5.2%), 41.9%

(53.5%), and 3.4% (5.7%) were located in 1500-bp

upstream of transcription start site (TSS1500), 200-bp

upstream of TSS (TSS200), 50 untranslated region

(50UTR), the first exon (1stExon), gene body, and 30

untranslated region (30UTR), respectively. It is obvious

that the number of hypermethylated sites was higher

in the regions near TSS. By differential methylation

analysis, we identified 11 266 sites showing significant

DNA methylation changes in tumors, and those

DMCs were further used to be correlated with gene

expression in downstream analysis to filter the DMCs

that do not contribute to transcriptional regulation of

genes.

3.2. Identification of relevant DNA methylation

changes associated with mRNA expression

We performed an integrated analysis of DNA methyla-

tion and gene expression to identify potentially rele-

vant DNA methylation alterations in LUAD. Of the

29 matched tumor and normal samples for differential

methylation analysis, 18 pairs that have expression

profiles were used for differential expression analysis.

A total of 2622 DEGs were detected including 1500

upregulated genes and 1086 downregulated genes. Of

these genes, approximately one fifth of them showed

significant methylation changes between LUAD and

normal samples, including 134 (487 CpGs) hyperme-

thylated and upregulated genes, 147 (383 CpGs) hyper-

methylated and downregulated genes, 128 (211 CpGs)

hypomethylated and upregulated genes, and 82 (160

CpGs) hypomethylated and downregulated genes

(Fig. 2A). Gene Ontology (GO) analysis was then per-

formed to examine the biological functions of the 147

hypermethylated and downregulated genes (Fig. 2B).

In biological processes, negative regulation of cell

growth, stem cell proliferation, positive regulation of

BMP signaling pathway, and Wnt signaling pathway

were significantly enriched. In terms of molecular func-

tion, the genes were related to transforming growth

factor beta binding, transcriptional activator activity,

sequence-specific binding, RNA polymerase II regula-

tory region sequence-specific DNA binding, and cal-

cium ion binding. Cancer-related pathways such as

Wnt signaling pathway were enriched in hypermethy-

lated and downregulated groups.

Next, we performed a correlation analysis to assess

the relationship between DNA methylation and gene

expression. Pearson’s correlation coefficients were cal-

culated between 281 938 CpGs and corresponding

genes (Fig. 2C). Using a coefficient cutoff of 0.3, 595

genes (19%) were positively correlated with methyla-

tion while 2409 genes (75%) were negatively correlated

with methylation. Similar patterns were observed when

considering correlations in DEGs, differentially methy-

lated genes, and differentially expressed and methy-

lated genes. Note that multiple CpGs can be

associated with a gene, and the methylation of those

CpGs can be both positively and negatively correlated

with gene expression. Then, we examined the distribu-

tion of CpGs that are significantly correlated with

Table 1. Clinical characteristics.

Characteristics Classes C1 C2 C3

P-

value

Sex Female 34 37 15 0.030

Male 28 17 22

Age at

diagnosisa
≥ 66 34 27 18 0.820

<66 28 27 19

Stage Low (Stage I, Stage II) 44 47 25 0.044

High (Stage III, Stage

IV)

18 7 12

Smoking history Current or past smoker 59 40 34 0.003

Lifelong nonsmoker 3 14 3

STK11 mutation Mutant 18 7 4 0.038

WT 44 47 33

KRAS mutation Mutant 22 16 14 0.691

WT 40 38 23

KEAP1 mutation Mutant 18 5 4 0.014

WT 44 49 33

EGFR mutation Mutant 10 7 4 0.832

WT 52 47 33

a

Average age of the patients is 66.
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genes in different genomic regions (Fig. 2D). Of the

CpGs positively affected gene expression, approxi-

mately half of them were located in gene body, 20%

were in 50UTR, 16% were in TSS1500, and 12% were

in 30UTR. Of the CpGs negatively regulated gene

expression, 34.9% were located in gene body, 20.9%

were in TSS200, 18.6% were in 50UTR, 16.3% were in

TSS1500, and 9.3% were in 1stExon. Interestingly, all

CpGs in TSS200 and 1stExon were negatively corre-

lated with gene expression. These results reveal that

the CpGs located near TSS tend to negatively regulate

expression of genes while the CpGs in gene body tend

to positively regulate gene expression.

3.3. Identification and validation of methylation

signatures in LUAD

To identify methylation markers for LUAD diagnosis,

the candidate markers were further narrowed down to

hypermethylated and downregulated CpGs since the

Fig. 2. Joint analysis of DNA methylation and mRNA expression. (A) Starburst plot integrating DNA methylation changes and gene

expression changes (n = 4297). The genes are divided into four groups that are hypermethylated and upregulated (pink); hypermethylated

and downregulated (orange); hypomethylated and upregulated (green); hypomethylated and downregulated in LUAD (blue). (B) GO analysis

for hypermethylated and downregulated genes. (C) Percentage of positive/negative correlation between DNA methylation and gene

expression. Pearson’s correlation coefficient was calculated for all genes, DEGs, differentially methylated genes, and differentially expressed

and methylated genes. (D) The distribution of positive and negative correlations in different genomic areas.
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repression of tumor suppressor genes by the promoter

hypermethylation is one of the most frequently

observed epigenetic alterations in cancers. Of the 383

hypermethylated and downregulated CpGs, we selected

138 CpGs in promoter regions as a candidate function-

ally relevant group, and machine learning techniques

were adopted to determine the final methylation mark-

ers in LUAD (Fig. 3A). We used four different feature

selection approaches that were information gain (IG),

gain ratio (GR), symmetrical uncertainty (SU), and

reliefF (RF) to screen the markers. We extracted top

15 ranked CpGs found by each method and took the

intersections of those CpGs as the final methylation

markers (Table 2). Finally, we identified three methy-

lation markers that were cg08032924, cg14823851, and

cg19161124, mapped to CMTM2, TBX4, and DPP6,

respectively (Fig. 3B). A logistic regression model was

then built with these markers on TCGA LUAD sam-

ples, and the model was validated on three indepen-

dent datasets from GEO. The areas under the receiver

operating characteristic curve (AUCs) were 0.923, 1,

and 0.905 for GSE114989, GSE83842, and GSE85845,

respectively, indicating that the three markers can

accurately classify LUAD samples from controls

(Fig. 3C). To examine whether these markers were

suitable for early detection of LUAD, we compared

the methylation levels of TCGA LUAD patients in

different tumor stages. All the markers were found to

be significantly (Mann–Whitney P-value < 0.0001)

hypermethylated in stage I tumors compared to nor-

mal samples (Fig. 3D). In addition, the patients were

divided into high methylation and low methylation

groups based on the average methylation levels of the

markers, and the Kaplan–Meier analysis was con-

ducted to investigate the association between the

methylation status of the markers and the overall sur-

vival of patients (Fig. 3E). For cg08032924 and

cg14823851, patients with low methylation levels had

significantly better survival than those with high

methylation levels (P = 0.0367 and P = 0.0917). For

cg19161124, the overall survival between the two

groups was not statistically significant (P = 0.5953)

but the low methylation group still had better survival

than the high methylation group. These results suggest

that the identified markers can accurately predict

LUAD and also work well on early-stage patients.

3.4. CMTM2 and TBX4 are weakly expressed in

human LUAD

To further confirm the correlation between the three

newly identified hypermethylated genes and LUAD

progression, immunohistochemistry (IHC) was

performed to evaluate the protein expression of

CMTM2, TBX4, and DPP6 in tissue arrays containing

105 human LUAD specimens and paired adjacent nor-

mal tissues. Quantitative analysis based on intact and

paired specimens via H-score revealed that the expres-

sion of CMTM2 and TBX4 was obviously lower in

LUAD when compared to the paired adjacent normal

lung tissues, implying the potential gene silencing of

CMTM2 and TBX4 caused by DNA methylation in

LUAD (Fig. 4), whereas the correlation between

DDP6 and LUAD remains to be further investigated

since DPP6 might have low expression even in the

normal lung cells (Fig. S1). The protein expression

patterns of CMTM2 and TBX4 in LUAD were consis-

tent with their hypermethylation profiles previously

identified, confirming that cg08032924 and

cg14823851, mapped to CMTM2 and TBX4, are

potential novel methylation markers in human LUAD.

3.5. CMTM2 decreases tumor growth of mouse

Lewis lung carcinoma in vivo

Considering potential clinical significance and biologic

implications, we focused on CMTM2 for further

research as the immunohistochemical analysis demon-

strates that CMTM2 is extensively expressed in human

lung tissues in our study, implying its comprehensive

significance. To elucidate the role of Cmtm2 in LUAD,

we examined the effects of Cmtm2 on mouse Lewis

lung carcinoma (LLC) in vivo. The mRNA level of

Cmtm2 revealed that the Cmtm2 was successfully

ectopically expressed in LLC cells (Fig. 5A). Subcuta-

neously implanted tumor model was applied to

C57BL/6J mice to investigate the effects of Cmtm2

in vivo (Fig. 5B). Meanwhile, the tumor growth was

monitored by measuring the tumor volume (Fig. 5C)

as well as living imaging (Fig. 5D,E). It is noticeable

that the elevation of Cmtm2 significantly suppressed

the subcutaneous tumor growth compared with the

control group (Fig. 5C–F) even in the early stage

(Fig. 5D). As expected, the weight of tumors was

diminished by Cmtm2 robustly when the mice were

sacrificed after 4 weeks (Fig. 5F,G). These results sug-

gest that Cmtm2 could suppress the tumor growth of

LUAD in vivo.

4. Discussion

In this study, we explored the global DNA methyla-

tion patterns in LUAD and identified three subgroups

showing distinct methylation status. CpG island

methylator phenotype (CIMP) is characterized by

strong hypermethylation of CpG islands in the
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Fig. 3. Identification of LUAD methylation markers. (A) The framework of identifying LUAD methylation markers. (B) The genomic details of

discovered three methylation markers. (C) Receiver operating characteristic (ROC) curves and AUC values on validation sets. (D) The

distribution of methylation levels of three markers in different tumor stages (n = 495). (E) The Kaplan–Meier survival curves for three

methylation markers. The boundary for high and low methylation was the average methylation level.
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promoter regions of tumor suppressor genes, and pre-

vious studies have reported that CIMP is associated

with patient outcomes in various cancers including col-

orectal cancer, hepatocellular carcinoma, and gastric

cancer [34,35]. The association between CIMP high

group and overall survival of LUAD patients remains

unclear since there are some discrepancies among dif-

ferent genome-wide methylation studies. Karlsson

et al. [36] have reported that CIMP shows differences

in adenocarcinomas and it is associated with mutation

frequency of common tumor suppressor genes such as

KEAP1, TP53, STK11, and SMARCA4. However,

Vaissi�ere et al. [33] and Selamat et al. [37] have shown

that CIMP is unlikely to be present in LUAD. Our

analysis results demonstrated that DNA methylation

subgroups were associated with genetic and clinical

characteristics including sex, stage, smoking history,

KEAP1, and STK11 mutation but there is no evidence

for poorer overall survival in CIMP group.

Functional annotation analysis revealed that hyper-

methylated and downregulated genes were enriched in

cancer-related pathways such as Wnt signaling path-

way. A number of researches have shown that Wnt

signaling pathway is important in the development of

lung cancer. Mazieres et al. [38] have reported that

aberrant methylation of Wnt inhibitory factor-1 (WIF-

1) is an important cause of constitutive activation of

the Wnt pathway in lung cancer. Selamat et al. [37]

have shown that sclerostin domain containing 1

(SOSTDC1), a secreted regulator of Wnt pathway, is

hypermethylated and downregulated in LUAD. Con-

sistent with these results, hypermethylation of WIF-1

and SOSTDC1 was observed in our study and the

mRNA levels of these two genes were decreased in

LUAD. Additionally, hypermethylation of other Wnt

inhibitors including RSPO1, RSPO2, RSPO4,

WNT3A, DKK2, NKD1, and TMEM88 was also

observed in our study.

To further screen reliable methylation markers, we

designed a machine learning framework and identified

discriminative CpGs for accurately distinguishing

LUAD from normal samples. Feature selection is a

machine learning technique, which determines the most

relevant features for the target problem [39]. Feature

selection has been widely used in biological and medi-

cal applications including gene expression analysis [40],

transcription factor binding motif analysis [41], and

drug discovery [42]. Here, we considered the marker

screening as a problem of selecting a relevant feature

(CpG) subset for predicting LUAD. Thus, four feature

selection models were selected as the initial screening

and the results of them were combined together by

taking the intersections. Finally, we identified three

methylation markers that were cg08032924 (CMTM2),

cg14823851 (TBX4), and cg19161124 (DPP6), and the

logistic regression model trained using these markers

can accurately predict LUAD in independent valida-

tion datasets from GEO. CMTM2 (CKLF Like MAR-

VEL Transmembrane Domain Containing 2) is a

protein coding gene that belongs to the chemokine-like

factor gene superfamily. CMTM2 may play an impor-

tant role in testicular development and is highly

expressed in normal adult human testis in a stage-

specific manner. Lower expression of CMTM2 is cor-

related with spermatogenesis defects including sper-

matogenesis arrest, which indicates that CMTM2

might be involved in spermatogenesis [43]. CMTM2

was found to be expressed at significantly lower level

in S�ezary syndrome (Sz), an aggressive type of cuta-

neous T-cell lymphoma, than in benign T-cell samples,

and hypermethylation of CMTM2 promoter can dis-

tinguish Sz from erythroderma secondary to

Table 2. Top 15 ranked CpGs (genes) identified by different

feature selection methods for diagnosis of LUAD.

IG GR SU RF

cg14823851:

TBX4

cg14823851:

TBX4

cg14823851:

TBX4

cg14823851:

TBX4

cg01158277:

CRYAB

cg09523275:

NKAPL

cg10253847:

NKAPL

cg22620221:

DPP6

cg10253847:

NKAPL

cg18252309:

DPP6

cg18252309:

DPP6

cg19161124:

DPP6

cg18252309:

DPP6

cg10253847:

NKAPL

cg18694169:

NKAPL

cg25075794:

AQP1

cg18694169:

NKAPL

cg18694169:

NKAPL

cg09523275:

NKAPL

cg04372674:

AQP1

cg09523275:

NKAPL

cg19161124:

DPP6

cg19161124:

DPP6

cg01031101:

NKAPL

cg19161124:

DPP6

cg19797376:

TAL1

cg07153665:

CMTM2

cg08032924:

CMTM2

cg07153665:

CMTM2

cg07153665:

CMTM2

cg08032924:

CMTM2

cg18674980:

CA3

cg06499647:

C2orf40

cg21838979:

C2orf40

cg19797376:

TAL1

cg14535980:

C2orf40

cg21838979:

C2orf40

cg08032924:

CMTM2

cg21838979:

C2orf40

cg25230363:

AQP1

cg19797376:

TAL1

cg06499647:

C2orf40

cg06499647:

C2orf40

cg10402698:

SMAD6

cg09854734:

CMTM2

cg05546863:

CMTM2

cg09854734:

CMTM2

cg19908768:

SULT1C4

cg08032924:

CMTM2

cg16626067:

CMTM2

cg05546863:

CMTM2

cg04567731:

TBX4

cg14535980:

C2orf40

cg09854734:

CMTM2

cg14535980:

C2orf40

cg07510423:

C2orf40

cg17384889:

NKAPL

cg17384889:

NKAPL

cg16626067:

CMTM2

cg01158277:

CRYAB

The markers commonly identified by four methods (in bold).
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inflammatory skin diseases [44]. TBX4 is a transcrip-

tion factor that belongs to a phylogenetically con-

served family of genes that share a common DNA-

binding domain, the T-box. TBX4 was found to be

expressed in hindlimb, lung, and proctodeum, and it

plays an important role in the development of the hin-

dlimb and in the formation of the umbilicus. A study

of a total of 119 bladder cancer samples analyzed by

Infinium methylation array showed that TBX4 was dif-

ferentially methylated in bladder cancer and was

related to disease progression [45]. The methylation of

TBX4 promoter has not been reported to be associated

with LUAD, though it has been observed to be down-

regulated in human non-small-cell lung cancer

(NSCLC). Lai et al. [46] investigated the expression of

a long noncoding RNA TTTY15 in 37 NSCLC sam-

ples and found that downregulation of TTTY15 was

associated with poor prognosis. Interestingly, they also

reported that TTTY15 positively regulated TBX4

expression by interacting with DNMT3A to affect the

binding ability of DNMT3A to the TBX4 promoter.

DPP6 is a single transmembrane protein that belongs

to the peptidase S9B family of serine proteases and is

most known for promoting cell surface expression of

the potassium channel KCND2. Hypermethylation

and decreased expression of DPP6 were observed in

endometrial cancer [47] and melanoma [48] while the

role of DPP6 in LUAD is still unclear.

Early detection, screening, and diagnosis of cancer

greatly improve the patient survival rates, as well as

significantly reduce the cost and increase the chances

for successful treatment. Aberrant DNA methylation

plays an important role in cancers and has shown to

be a potential biomarker for the early detection of

cancer. Compared with other biomarkers such as pro-

tein, methylation signature is relatively stable over

time and involved in the early stage of carcinogenesis

[49]. Moreover, DNA can be isolated with high quality

and sufficient yield from frozen biospecimens [50], and

DNA methylation status of various gene promoters

can be easily captured from biological samples that

can be obtained noninvasively including urine, blood,

saliva [51]. Epi proColon is an FDA-approved methy-

lation assay that diagnoses colorectal cancer based on

methylation status of the target DNA sequence in the

promoter region of the SEPT9. Methylation markers

have also been evaluated for early detection of pros-

tate cancer, and a number of studies have shown that

tissue-based GSTP1 methylation assay can achieve rel-

atively high sensitivity (~ 80%) compared with pros-

tate-specific antigen testing [52,53]. A number of

researches have also been done to identify cancer-

specific DNA methylation markers in lung cancer

patients. Yan et al. [54] identified a panel with nine

CpGs using a combined public methylation datasets

and constructed a prognosis model to predict survival
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Fig. 4. CMTM2 and TBX4 are

weakly expressed in human LUAD.

(A) Representative IHC images of

tissue arrays containing human

LUAD specimens and paired

adjacent normal tissues. Regions in

squares are magnified 49 in

bottom panels. Scale bar

represents 20 lm. (B) Summary

statistics of H-score based on only

intact and paired specimens,

n = 45 for CMTM2 and n = 61 for

TBX4. Student’s t-test. **P-

value < 0.01, ***P-value < 0.001.
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in LUAD patients. Diaz-Lagares et al. [13] identified

four methylation markers including BCAT1, CDO1,

TRIM58, and ZNF177 and achieved 85% AUC on a

regression model trained from the combination of four

markers in bronchoalveolar lavages from patients with

lung cancer. In our study, we identified three methyla-

tion markers and a logistic regression model trained

with these markers on TCGA LUAD samples

achieved high AUCs on three independent validation

sets. Moreover, we observed these three markers were

significantly hypermethylated in stage I LUAD

patients, indicating these markers have a great poten-

tial to be used to detect LUAD at an early stage.

Although the markers have high sensitivity, further

validations on different populations are needed and

the methylation status of there markers should be vali-

dated using cost-effective technology, such as PCR-

based methods, in both LUAD tissues and noninvasive

samples. In addition, the downstream functions of the

marker genes will be systemically studied on our future

work.

5. Conclusions

In summary, we integrated genome-wide DNA methy-

lation and mRNA expression data and identified three

methylation signatures including cg08032924

(CMTM2), cg14823851 (TBX4), and cg19161124

(DPP6) for early diagnosis of LUAD. The results

revealed that these markers can distinguish LUAD

from normal samples with extremely high AUCs. The

decreased expressions of CMTM2 and TBX4 were fur-

ther confirmed in LUAD tissues by IHC. Moreover,

we demonstrated that Cmtm2 could suppress the

tumor growth of LUAD in vivo. We believe that our

study lays the foundation for further biological mecha-

nisms of LUAD development and can contribute to

the improvements in early detection and intervention

for lung cancer.
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