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Abstract

When designing a comparative oncology trial for an overall or progression-free survival endpoint, investigators often quan-
tify the treatment effect using a difference in median survival times. However, rather than directly designing the study to es-
timate this difference, it is almost always converted to a hazard ratio (HR) to determine the study size. At the analysis stage,
the hazard ratio is utilized for formal analysis, yet because it may be difficult to interpret clinically, especially when the pro-
portional hazards assumption is not met, the observed medians are also reported descriptively. The hazard ratio and median
difference contrast different aspects of the survival curves. Whereas the hazard ratio places greater emphasis on late-
occurring separation, the median difference focuses locally on the centers of the distributions and cannot capture either
short- or long-term differences. Having 2 sets of summaries (a hazard ratio and the medians) may lead to incoherent conclu-
sions regarding the treatment effect. For instance, the hazard ratio may suggest a treatment difference whereas the medians
do not, or vice versa. In this commentary, we illustrate these commonly encountered issues using examples from recent on-
cology trials. We present a coherent alternative strategy that, unlike relying on the hazard ratio, does not require modeling
assumptions and always results in clinically interpretable summaries of the treatment effect.

When designing a typical comparative oncology study with
overall or progression-free survival (PFS) as an endpoint, the
median survival times are generally posited for the 2 study
arms and the trial designed to detect the corresponding differ-
ence. Although it is possible to estimate the study size needed
to provide adequate power for detecting such a difference,
rather than using this direct approach, the median difference is
routinely converted to a hazard ratio (HR) by assuming an expo-
nential distribution of time-to-event in each arm. The study
size is then determined from the hazard ratio. The reason for
taking this detour is that the estimated median is generally un-
stable; thus, the study size needed to detect a median difference
can be impractically large. Moreover, the median overall or PFS
provides only a local summary of the survival curve, which can-
not capture the short-term or long-term profile (1,2). If the treat-
ment effect is late-occurring or affects only long-term survival,
which may not be known at the study design stage, then an
analysis based on the median difference may lack power to de-
tect it. On the other hand, although the hazard ratio provides a
global comparison of 2 survival curves, it lacks a clear clinical
interpretation, particularly when the proportional hazards

assumption is not met (1,3). This creates a dissonance where
the hazard ratio is used for the formal design and analysis while
the median is used descriptively for interpretation.

One drawback to using the hazard ratio to design an event-
driven study is that we cannot control the study duration, be-
cause having adequate power mainly depends on the total
number of observed events rather than the duration of follow-
up. If the event rate is high, the study duration may be short,
providing insufficient information regarding the therapies’
safety profiles. On the other hand, if the event rate is low, the
study duration may be long. This is burdensome to patients and
investigators, and the investigated therapy may become obso-
lete by the study’s completion. Thus, even when using the haz-
ard ratio to design the study, one may need to prespecify a
clinically meaningful follow-up period that depends not only on
the observed number of events to adequately evaluate both effi-
cacy and safety.

When analyzing data at the end of the trial, conclusions re-
garding treatment efficacy are typically based on hazard ratio
analysis. To provide a clinical interpretation, the observed
medians are also reported descriptively but without formal
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comparisons, making it unclear whether their difference is sta-
tistically meaningful. The hazard ratio and the median differ-
ence provide very different contrasts of 2 time-to-event
distributions, and a statistically significant difference via the
hazard ratio does not imply a statistically significant difference
in medians or vice versa. This creates a dissonance where the
primary analysis, based on a hazard ratio, may suggest a treat-
ment difference that completely lacks support from an inter-
pretable summary measure, such as the median difference.
Another complication is that the population median may not be
estimable for a study with short-term follow-up. When the pro-
portional hazards assumption does not hold, it is unclear how
to interpret the resulting hazard ratio (1-3). For this case, a
weighted log-rank test or a test based on a nonproportional haz-
ards model, such as a model that includes time-varying effects,
may be used to summarize the treatment effect in terms of a P
value (4). However, these statistical tests do not provide esti-
mates for the size of the treatment effect. A P value alone can-
not be used to quantify clinical utility (5). Moreover, even when
the proportional hazards assumption is plausible, it is not
straightforward to interpret a hazard ratio of, for example, 0.75
in favor of the new treatment. This ratio does not mean that the
treatment reduces the risk of mortality by 25% relative to the
reference because hazard is not a probability measure like risk.
Rather, hazard is the “force of mortality,” which is an intensity
rate measure and is difficult to estimate well without modeling.
Additionally, as a relative measure, the hazard ratio alone lacks
context without a hazard curve from the reference arm across
the entire study period. If the underlying hazard is low, then a
25% reduction in hazard relative to the reference arm may not
be clinically meaningful.

When the study results from the hazard ratio are quite dif-
ferent from those based on the median difference, the trial may
provide a conclusion about the treatment effect based mainly
on the hazard ratio’s P value. After investing tremendous
resources to conduct the trial, we are left without knowing how
to quantify and interpret the clinical utility for the study
therapies.

Numerous recent trials have encountered the pitfall of using
separate summary measures for the design and analysis vs the
interpretation of results (6–11). As a specific example, consider
KEYNOTE-604, which compared pembrolizumab and placebo
among patients with extensive-stage small-cell lung cancer
(10). The primary endpoint was PFS. The study was designed as-
suming medians of 4.3 and 6.6 months for PFS with placebo and
pembrolizumab. Assuming exponential models, the hazard ra-
tio is 0.65 on conversion. Using data reconstructed (12) from the
original publication (10), the PFS curves are presented in
Figure 1, A below. Because the Kaplan-Meier (KM) curves are
intertwined across the first 4 months, the proportional hazards
assumption was clearly not met. Consequently, the reported
hazard ratio of 0.75 is not clinically interpretable. Note that as
mentioned before, we cannot conclude that the risk of progres-
sion was 25% lower among patients receiving pembrolizumab,
because hazard is not a direct measure of risk (1–3). The ob-
served medians for PFS were 4.3 and 4.5 months for pembrolizu-
mab and placebo, respectively. Although no formal comparison
of medians was presented in the publication, based on recon-
structed data, the 95% confidence interval for the difference of
medians was �0.6 to 0.8 months, providing no evidence for a
difference between the population medians. This is an example
where conventional inference about the treatment difference
would be primarily based on a P value that lacks support from
clinically interpretable summary measures.

Instead of using medians to justify the choice of hazard ratio
at the design stage, trialists sometimes specify survival rates at
a landmark timepoint, expressing the target treatment effect as
a rate difference. However, rather than designing the study via
this difference, the study size is typically estimated by convert-
ing the assumed survival rates to a hazard ratio. This was the
strategy taken in the recent Adjuvant Platinum and Taxane in
Triple-negative Breast Cancer trial exploring whether a pacli-
taxel plus carboplatin regimen (PCb) would improve disease-
free survival (DFS) relative to anthracycline and docetaxel (CEF-
T) among women with triple-negative breast cancer (11). From
the DFS KM curves presented in the publication, the propor-
tional hazards assumption was likely not met, making it diffi-
cult to interpret the observed hazard ratio of 0.65. Moreover, the
median was not reached in either arm, and the 5-year DFS rates
of 86.5% for PCb and 80.3% CEF-T were presented without for-
mal comparison. As with KEYNOTE-604, it is unclear how to ap-
propriately quantify the size of the PCb benefit from this study.

From the above examples, having separate summaries for
evaluating and interpreting the treatment difference is subopti-
mal and may result in incoherent conclusions. Ideally, one
would use a single, clinically interpretable, and global summary
of the event-time profile as the primary estimand, whose esti-
mate is efficient for detecting a clinically meaningful treatment
effect. So, the question is whether there are alternatives to the
median/hazard ratio approach for the design and analysis of
oncology trials.

Now, from Figure 1, A, the higher the KM curve, the better
the therapy. Therefore, a larger area under the curve suggests
better treatment efficacy. In fact, the area under the curve up to
the specific time window is the t-year restricted mean survival
time (RMST), which is the expected survival time across t years
of follow-up (1–3). For example, using reconstructed PFS data
from KEYNOTE-604 (8), the 18-month survival times were
6.2 months for pembrolizumab and 5.0 months for placebo,
which are displayed in Figure 1, B and C. The difference of
1.2 months (95% CI ¼ 0.5 to 1.9, P¼ .001) is highly statistically
significant in favor of pembrolizumab. This single, interpretable
summary provides both statistical and clinical evidence of
treatment efficacy. Specifically, across 18 months of follow-up,
patients receiving pembrolizumab are expected to survive an
additional 1.2 months on average. Because mean survival time
analysis requires no modeling assumptions, this interpretation
is always valid. Notice that the PFS KM nearly reached zero by
the end of follow-up. When this occurs, the restricted mean sur-
vival time, over 18 months in the present case, will be close to
the (unrestricted) mean survival time across the patients’ entire
lives. Using parametric Weibull models fit to the observed data,
the estimated mean survival times were likewise 6.2 months for
pembrolizumab and 5.0 months for placebo, with a difference of
1.2 months. Such parametric modeling allows investigators to
extrapolate the expected treatment difference if follow-up were
continued indefinitely.

For Adjuvant Platinum and Taxane in Triple-negative Breast
Cancer (11), using reconstructed data from the publication, the 10-
year (120-month) mean survival times were 107 months for PCb
and 101 months for CEF-T. Note that 10 years is the period over
which the log-rank test in the publication was calculated. The dif-
ference of 6.0 months (95% CI, 0.4 to 11.6, P¼ .036) favors PCb.

The need to specify a truncation time t is often cited as a
limitation of the RMST, and inferences concerning the treat-
ment effect can depend on its choice (13,14). If the study does
not have a prespecified time window for analysis, the hazard ra-
tio analysis is valid only up to the largest observed event time
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from both arms (15). On the other hand, the RMST can generally
be estimated until the last observed event or censoring time
(15). Therefore, RMST analysis utilizes more empirical informa-
tion than its hazard ratio counterpart. As mentioned before, the
study duration should ideally be prespecified at the design stage
based on safety and efficacy considerations. Sensitivity analy-
ses can be conducted for various choices of truncation time. As
with other robust statistical procedures, a limitation of the
RMST analysis is that it may not be as efficient as the hazard ra-
tio estimation when the proportional hazards assumption in
fact holds. On the other hand, when this model assumption is
not met, the estimated hazard ratio is not a simple average of
hazard ratios over time (16,17). For this case, the RMST can pro-
vide a substantial power advantage (18). Methodology and soft-
ware to perform the power and sample size calculations are
publicly available (2).

All analytic methods in survival analysis have advantages
and disadvantages, and no single method is superior in all cir-
cumstances. On the other hand, effect size estimates provide
more useful and actionable information regarding treatment
efficacy than hypothesis tests alone (19). Although no single
summary measure can capture all information contained in the
survival profile, we need a single clinically relevant summary
for designing the trial, quantifying treatment efficacy, and

facilitating decision making. In a comparative study, by consid-
ering the entire survival profile, the hazard ratio and t-year
mean survival time can increase statistical power. Yet in con-
trast to the hazard ratio, the mean survival time makes no
modeling assumptions and is always estimable and interpret-
able (20). To make the design and analysis of clinical trials more
coherent, we encourage trialists to move beyond the conven-
tional framework when conducting future oncology studies.
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Figure 1. The 18-month restricted mean survival time (RMST) analysis of progression-free survival (PFS) from the KEYNOTE-604 study. A) Reconstructed PFS curves

comparing pembrolizumab or placebo, in addition to etoposide and platinum, for patients with extensive-stage small-cell lung cancer are shown. The numbers of

patients at risk are shown below the graph. The 18-month restricted mean PFS times as the area under the PFS curve for B) placebo and C) pembrolizumab are shown.
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Data Availability

No new data were generated in this manuscript. The data ana-
lyzed were reconstructed from the published Kaplan-Meier
curves in the original articles using the method of Guyot et al. (12)
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