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Abstract. Using a double antibody sandwich ELISA 
we examined the heavy chain isoform composition of 
myosin molecules isolated from chicken pectoralis ma- 
jor muscle during different stages of development. At 
2- and 40-d posthatch, when multiple myosin heavy 
chain isoforms are being synthesized, we detected no 
heterodimeric myosins, suggesting that myosins are 
homodimers of the heavy chain subunit. Chymotryptic 
rod fragments of embryonic, neonatal, and adult myo- 
sins were prepared and equimolar mixtures of em- 
bryonic and neonatal rods and neonatal and adult rods 
were denatured in 8 M guanidine. The guanidine 
denatured myosin heavy chain fragments were either 
dialyzed or diluted into renaturation buffer and 
reformed dimers which were electrophoretically indis- 

tinguishable from native rods. Analysis of these rena- 
tured rods using double antibody sandwich ELISA 
showed them to be predominantly homodimers of each 
of the isoforms. Although hybrids between the differ- 
ent heavy chain fragments were not detected, exchange 
was possible under these conditions since mixture 
of biotinylated neonatal rods and fluoresceinated neo- 
natal rods formed a heterodimeric biotinylated- 
fluoresceinated species upon renaturation. Therefore, 
we propose that homodimers are the thermodynami- 
cally stable form of skeletal muscle myosin isoforms 
and that there is no need to invoke compartmentaliza- 
tion or other cellular regulatory processes to explain 
the lack of heavy chain heterodimers in vivo. 

M 
YOSIN is the major contractile protein of vertebrate 
skeletal muscle. It is a hexameric protein com- 
posed of two heavy chains and four light chains. 

The COOH-terminal domains of two MHCs fold into an 
or-helical coiled coil known as the rod that can be purified 
after proteolytic cleavage of whole myosin. The rod is in- 
volved in myosin thick filament formation and may also play 
some role in contraction. The NH2-terminal domain of 
each MHC is folded into a globular structure that along 
with the myosin light chains form the myosin head con- 
taining the ATPase and actin binding sites intrinsic to my- 
osin (for review see Cooke, 1986; Harrington and 
Rogers, 1984; McLachlan, 1984). 

In the chicken, as in other vertebrates, MHCs are encoded 
by a multigene family (Nguyen et al., 1982; Buckingham, 
1985; Robbins et al., 1986). As a result of differential gene 
expression during development distinct MHC isoforms are 
expressed (Robbins et al., 1986; Moriarity et al., 1987). The 
MHCs expressed in the pectoralis major (PM) t have been 
characterized by peptide mapping and mAb analysis and 
termed embryonic, neonatal, and adult isoforms (Bader et 
al., 1982; Bandman et al., 1982; Winkelmann et al., 1983; 
Cerny and Bandman, 1987; Bandman and Bennett, 1988; 
Van Horn and Crow, 1989). However, recent studies have 

1. Abbreviations used in this paper: DASE, double antibody sandwich 
ELISA; PM, pectoralis major. 

shown that embryonic and neonatal MHCs are expressed in 
other adult muscles of the chicken (Crow and Stockdale, 
1986; Bandman and Bennett, 1988). It is likely that the ex- 
tent of MHC protein diversity has not been fully character- 
ized since genomic studies of the chicken have found >20 
myosin-like genes (Robbins et al., 1986; Moriarity et al., 
1987). 

During certain periods of muscle maturation, multiple 
MHC isoforms are simultaneously expressed in the develop- 
ing PM. This occurs just before hatching when both em- 
bryonic and neonatal MHC isoforms are expressed and again 
from days 20 to 80 after hatching when both the neonatal and 
adult MHC isoforms are expressed. Recent evidence indi- 
cates that when multiple MHC isoforms are present within 
the PM, coexpression of multiple isoforms occurs within the 
same muscle cell (Gauthier, 1990; Cerny and Bandman, 
1987). Experiments in our lab using differentially labeled 
mAbs to either the embryonic and neonatal or neonatal and 
adult MHCs have also been used to demonstrate the colocali- 
zation of multiple MHC isoforms within the same myofibril 
during periods of coexpression (unpublished observations). 
Furthermore, it has also been demonstrated that the majority 
of native thick filaments isolated from PM myofibrils of 19-d 
embryonic and from 44-d chickens contain multiple MHCs 
(Taylor and Bandman, 1989). Similar results have been found 
in Caenorhabditis elegans where two different myosin iso- 
enzymes have been shown to be differentially distributed 
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within the same thick filament (Miller et al., 1983). To- 
gether, these studies suggest that different MHC isoforms 
can reside within the same thick filament and myofibrils of 
a single cell. 

While colocalization of different PM MHC isoforms to the 
same thick filament and myofibril has been observed, it is un- 
clear whether these different MHC isoforms can reside 
within the same myosin molecule. Since myosin molecules 
are dimers of the heavy chain, it is possible for myosins in 
PM cells expressing multiple MHCs to be heterodimers of 
the heavy chain subunit as has been shown for rat cardiac 
myosin (Hob et al., 1979; Dechesne et al., 1987). However 
in studies of myosin isoforms from the body wall of C ele- 
gans, two different myosin heavy chain subunits expressed 
in the same cell were found only as homodimers (Schachat 
et al., 1977, 1978). In an accompanying paper (Lowey et al., 
1991), immunoaffinity chromatography and immunoelectron 
microscopy were used to demonstrate that chicken PM myo- 
sins were also predominantly homodimers. In this report we 
have used MHC isoform-specific mAbs to develop a double 
antibody sandwich ELISA (DASE) that enabled us to study 
the heavy chain subunit composition of myosin molecules 
and myosin rods. We also found that at 2-d posthatch when 
embryonic and neonatal MHC isoforms were coexpressed 
and at 40-d posthatch when neonatal and adult MHC iso- 
forms were present essentially no heavy chains beterodimers 
were detected. We investigated the molecular basis for this 
observation by preparing chymotryptic rod fragments of em- 
bryonic, neonatal, and adult myosins. We found that equimo- 
lar mixtures of embryonic and neonatal rods and neonatal 
and adult rods denatured in guanidine failed to form hetero- 
dimeric rods upon renaturation by either dialysis or quick di- 
lution. That subunlt exchange could occur under these con- 
ditions was shown by denaturing a mixture of biotinylated 
neonatal rods and fluoresceinated neonatal rods and produc- 
ing heterodimeric biotinylated-fluoresceinated neonatal rods 
upon renaturation. Thus, based on these results we propose 
that the MHC homodimer is the thermodynamically stable 
form of avian skeletal myosin and that there is no need to in- 
voke compartmentalization or other cellular regulatory 
processes to explain the lack of heavy chains heterodimers 
in vivo. 

Materials and Methods 

DASE 
Monoclonal antibodies 2E9, AB8, EB165, and B103 were purified with ei- 
ther a protein G column (Genex Corp., Galthersburg, MD) or a protein A 
column (Pierce Chemical Co., Rockford, IL) according to the manufacturers 
instructions. Purified monoclonal antibodies were biotinylated with sul- 
fosuccinimidyl 6-(biotinamido) hexanoate (Pierce Chemical Co.) according 
to the method of Gretch et al. (1987) and stored at 1 ms/ml in PBS. 

DASE was performed according to the following method. Purified anti- 
bodies were diluted to 10 #g/mi in panacoat which was diluted 1:49 with 
water according to the manufacturers instructions (Panbaxy Laboratories, 
McLean, VA). 50 #1 of the diluted antibody solution was placed into a well 
of a polystyrene microtiter plate and incubated overnight at room tempera- 
ture in a humidified chamber. The next day each well was washed three 
times with 100 #1 per well of PBS/Tween (PBS, 0.05 % [vol/vol]Tween-20). 
Whole myosin, or myosin rod, was diluted to a concentration of 10 #g/ml 
in HSB/Tween (40 mM Na,tP2OT, 1 mM MgC12, 1 mM EGTA, 0.05% 
[vol/vol]Tween-20, pH 7.5 at 4°C). 50 #1 of the diluted myosin was added 
to the wells of the microtiter plate containing the bound antibody and in- 
cubated 1-2 d at 4°C in a humidified chamber. Subsequently, the wells were 

washed three times with PBS/Tween as before and 50 pl of biotinylated 
mAb, diluted in PBS/Tween, was added. The microtiter plate was then in- 
cubated for 30 min at 37°C. After the incubation the wells were washed 
three times with PBS/Tween and 50 pl of HRP-streptavidin (Pierce Chemi- 
cal Co.) (1 pg/ml in PBS/Tween) was added to each well and the plate was 
incubated for 15 min at 37°C. The plate was then washed twice with 
PBS/Tween for 30 s each and once for 5 rain. After the washes 100 pl per 
well of ABTS peroxidase substrate (Kirkegard & Perry Laboratories, 
Gaithersburg, MD) was added to each well and incubated in the dark. The 
absorbance was read at 405 nm at 5-rain intervals with a Titertek Multiscan 
MC ELISA plate reader (Flow Laboratories, McLean, VA). While the rate 
of color development differed for each of the biotinylated mAbs, the data 
shown is from a time when all data points were within the linear range of 
the assay. All data points are the average of triplicate determinations and 
error bars are given as 95% confidence levels. 

In the sandwich ELISA for detection of biotinylated-fluoresceinated bet- 
erodimeric rod, affinity-purified polyclonal anti-fluorescein antibody (Bio- 
design Int., Kennebunkport, ME) was diluted to 20 pg/ml in l× panacoat 
and adsorbed to the microtiter plate as described above for mAbs. Modified 
rod mixtures were diluted to 20 pg/ml in PBS/Tween and incubated in the 
wells for 30 min at 37°C. After washing the wells three times in PBS/Tween, 
bound biotinylated subunits were detected, with streptavidin horseradish 
peroxidase (4 pg/ml) as described above. 

Purification of Myosin 
Myosin was purified from the pectoralis major muscle of White Leghorn 
chickens according to the method of Bandman et ai. (1982) and further 
purified on a diethylaminoethyl-cellulose column as described by Margos- 
sian and Lowey (1982). Myosins were prepared from the PM of 15-d em- 
bryos (predominantly embryonic myosin), from the PM of 2-d chickens (a 
mixture of embryonic and neonatal myosin) from the PM of 8- and 12-d 
chickens (predominantly neonatal myosin), from the PM of 40-d-old 
chickens (a mixture of neonatal and adult myosin), and from the PM of 
1- and 2-yr-old chickens (adult myosin). 

Preparation and Purification of Myosin Rods 
Embryonic, neonatal, and adult myosins were used to prepare myosin rod 
fragments. Digestion of the myosin was performed with ,-chymotrypsin as 
described by Margossian and Lowey (1982). After digestion the myosin was 
either purified according to the method of Margossian and Lowey (1982) 
or the method of Bertazzon and Tsong (1989). When the method of Margos- 
sian and Lowey (1982) was used solution A was replaced by HSB (40 mM 
Na4P2OT, 1 mM MgC12, 1 mM EGTA, pH 8.0 at 4°C). When the method 
of Bertazzon and Tsong 0989) was used the rods were resuspended in HSB. 
All myosin rod fragment preparations used were stored at 4°C in HSB. 

Biotinylation of Myosin Rods 
Myosin rods were biotinylated according to the method of Gretch et al. 
(1987) using sulfosuccinimidyl 6-(biotinamido)hexanoate (Pierce Chemical 
Co.) at a rod to sulfosuccinimidyl 6-(biotinamide)hexanoate molar ratio of 
1:1 in HSB, pH 8.0. 

Fluoresceination of Myosin Rods 
Myosin rods were fluoresceinated with FITC isomer I. FITC was dissolved 
in acetone at a molar concentration of 50-100 times that of the rod solution. 
FITC was then added to the myosin rods to yield a final FITC-myosin rod 
molar ratio of • 2:1. The solution was allowed to incubate overnight at 4°C 
in the dark followed by extensive dialysis for 3--4 d against many changes 
of HSB, pH 8.0. 

Denaturation and Renaturation Procedures 
Equal quantities of either embryonic and neonatal or neonatal and adult 
myosin rod fragments were mixed and dialyzed against a solution of 8 M 
guanidine hydrochloride, 10 mM Tris, 10 mM DTT, pH 8.0 at room temper- 
ature in a microdialyzer (Pierce Chemical Co.). The final concentration of 
total myosin rods after dialysis was adjusted to 0.4 mg/ml for the dialysis 
experiments and 1 mg/ml for the dilution experiments assuming 100% re- 
covery of protein from the microdialyzer. The myosin rods, in 8 M guani- 
dine buffer, were incubated overnight at room temperature then either dia- 
lyzed or diluted into HSB containing 10 mM DTT, pH 8.0 at 4°C. Dialysis 
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of the myosin rod fragments was carried out for 3--4 h at 4°C using the mi- 
crodialyzer. The final protein concentration after dialysis was adjusted to 
0.1-0.2 mg/ml. In the dilution renaturation experiments myosin rod frag- 
ments in 8 M guanidine buffer were diluted 20-fold into HSB buffer contain- 
Lug 10 mM DTT, pH 8.0 at 4°C while gently vortexing. After either dialysis 
or dilution of the guanidine denatured myosin rods, the solutions were 
stored at 4°C until they were analyzed. 

Polyacrylamide Gel Electrophoresis 
SDS-PAGE was performed according to the method of Laemmli (1970). Na- 
tive gel electrophoresis was performed on 1.5-ram slab gels run for 16-24 h 
at 33 mA according to the method of Waller and Lowey (1985). SDS-PAGE 
gels were stained overnight in Coomassie blue, destained in 10% acetic 
acid, 40% methanol until a major portion of the background disappeared, 
and then soaked in water until scanned with a laser densitometer or dried. 
Native gels were stained for 2-3 h in Coomassie blue, destalned for 10 rain 
in 10% acetic acid, 40% methanol, then further destained in 7% acetic acid 
until the background disappeared. 

Results 

Specificity of the Double Antibody Sandwich ELISA 
To determine the MHC isoform composition of  a myosin 
molecule we developed a double antibody sandwich ELISA 
(DASE) using mAbs to embryonic, neonatal, and adult 
MHC isoforms (Bandman, 1985; Cerny and Bandman, 1987; 
Bandman and Bennett, 1988). In this assay, a mAb was ad- 
sorbed onto the wells of  a microtiter plate and myosin was 
retained only if it contained the epitope recognized by the 
rnAb. Subsequently, a biotinylated mAb that recognized a 
different epitope on the same MHC was added and detected 
with streptavidin peroxidase. The specificity of  this assay.is 
illustrated in Fig. 1. When an adult specific mAb was used 
to coat the plate, myosin isolated from the adult PM was 
bound, while myosin isolated from the PM of 15-d embryos 
was not and myosin isolated from PM of neonatal chickens 
gave a weak signal (Fig. 1 C). Similarly, when a neonatal 
specific mAb was used, myosin from the PM of neonatal 
chickens was bound while myosin from the PM of adult 
chickens was not and myosin from PM of 15-d embryos was 
weakly positive (Fig. 1 B). When an antibody to embryonic 
MHC was coated on the plate, myosin from PM of 15-d em- 
bryos was bound, to a lesser extent myosin from the PM of 
12-d chickens was bound, and myosin from the PM of adult 
chickens gave a weak signal only at very high secondary anti- 
body concentrations (Fig. 1 A). These results are essentially 
identical to standard ELISA studies that have shown the pre- 
dominance of embryonic, neonatal, and adult myosins at 
similar stages of  development (Bader et al., 1982; Winkel- 
mann et al., 1983; Cerny and Bandman, 1987). Our results 
also confirm previous observations that some embryonic my- 
osin persists in the PM of neonatal chickens (Cerny and 
Bandman, 1987) and suggest that low levels of  neonatal myo- 
sin may be present in the PM of 15-d embryos and also per- 
sist in the PM of the adult chicken. 

Heavy Chain Composition of Myosins from the 
Developing PM 
The heavy chain composition of  myosins from the develop- 
ing PM was analyzed using DASE. When either the anti- 
embryonic mAb or anti-neonatal mAb was used to coat 
the plate, myosin isolated from the PM of 2-d chickens was 
bound (Fig. 2 A) indicating that both the embryonic and neo- 
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Figure 1. Specificity of double antibody sandwich ELISA. Polysty- 
rene ELISA plates were coated with (A) mAb EB165, (B) mAb 
2E9, and (C) rnAb AB8 as described in Materials and Methods. 
Myosin from the PM of 15-d embryo (o), from the PM of 8- (in 
C) or 12-d-old (in A and B) chicken (zx), or from the PM of adult 
chicken (n), was incubated in the wells overnight at 4°C. Bi- 
otinylated B103 mAb was used to detect bound myosin in A and B, 
and biotinylated EB165 mAb was used to detect bound myosin in 
(7. The ELISA was developed with HRP-streptavidin and ABTS and 
read in a microtiter plate reader as described in Materials and 
Methods. To determine nonspeeific binding of myosin, chro- 
matographically purified mouse IgG was used to coat the wells in 
place of the anti-MHC mAbs. Values obtained from these controls 
were subtracted from those obtained with the mAbs. All data points 
are the average of triplicate determinations and error bars are given 
as 95% confidence intervals. The results demonstrate the speci- 
ficity of the DASE employing EB165 and biotinylated B103 for em- 
bryonic myosin, 2E9 and biotinylated B103 for neonatal myosin, as 
well as AB8 and biotinylated EB165 for adult myosin. 
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Figure 2. DASE of myosin from the 2- and 40-d PM. (A) Myosin 
from the PM of 2-d-old chicken was incubated in wells coated with 
either EB165 mAb (e), or 2E9 mAb (,t), and detected with bi- 
otinylated BI03 mAb. (B) Myosin from the PM of 40-d old chicken 
was incubated in wells coated with either 2E9 mAb and detected 
with biotinylated B103 mAb (A), or in wells coated with AB8 mAb 
and detected with biotinylated EB165 mAb (a). Non-specific bind- 
ing was determined with nonimmune mouse IgG as described in the 
legend to Fig. 1 and all data points are the average of triplicate de- 
terminations. The results demonstrate that both embryonic and 
neonatal MHC epitopes are present in myosin from the PM of 2-d 
chicken and both neonatal and adult MHC epitopes are present in 
myosin from the PM of 40-d chicken. 

natal MHC isoforms were present. Similar qualitative 
results were obtained when myosin isolated from the PM of 
0-, 1-, and 4-d chickens was used, although with increas- 
ing age less myosin was bound in wells coated with the 
anti-embryonic antibody and more myosin was bound in 
wells coated with the anti-neonatai antibody (data not 
shown). The heavy chain composition of  myosin from PM 
of 40-d chickens was examined with DASE using the anti- 
neonatal and anti-adult mAbs. As shown in Figure 2B myo- 
sin was bound when either mAb was used to coat the microti- 
ter plate, indicating that both the neonatal and adult MHC 
isoforms were present at this stage of  PM development. 
When myosin samples from PM of 24-, 29-, 34-, 50-, and 
60-d chickens were assayed, both mAbs bound myosins. 
With increasing age the anti-neonatal mAb bound less myo- 
sin while the anti-adult mAb bound more (data not shown). 
These results are in agreement with previous studies using 
standard and competition ELISAs to determine the MHC 
isoform content of chicken PM at different stages of  develop- 
ment (Winkelmann et al., 1983; Cerny and Bandman, 1987). 

The concentrations of  the different MHC isoforms present 
in the 2- and 40-d myosin samples were estimated using 
DASE. Quantitation was performed by comparing results 
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Figure 3. Myosins containing two different MHC isoforms are 
not present in the 2- and 40-d PM. DASE was used to determine 
whether myosin from the 2- and 40-d PM was composed of two 
different MHC isoforms. (A) EB165 mAb (e) or 2E9 mAb (A) was 
adsorbed to the wells of a microtiter plate. After incubation with 
myosin from the 2-d PM, the presence of heterodimeric myosins 
was determined by incubating biotinylated 2E9 mAb in wells coated 
with EB165 mAb or biotinylated EB165 mAb in wells coated with 
2E9 mAb. Nonspecitic binding of biotinylated 2E9 mAb to embry- 
onic MHC was determined by incubating myosin from the 15-d em- 
bryonic PM in wells coated with EBI65 mAb and subtracting the 
values from those obtained using myosin from the PM of 2-d 
chicken. Nonspecific binding of biotinylated EB165 mAb to neona- 
tal MHC was determined by incubating myosin from the 12-(! 
chicken PM in wells coated with 2E9 mAb and subtracting the 
values from those obtained using myosin from the PM of 2-d chicken. 
All data points are the average of triplicate determinations and error 
bars are given as 95 % confidence intervals. The results demonstrate 
that myosins bound by EBI65 mAb do not react with 2E9 mAb 
and that myosins bound by 2E9 mAb do not react with EB165 mAb. 
(B) 2E9 mAb (*) or AB8 mAb (a) was adsorbed to the wells of 
a microtiter plate. After incubation with myosin from the PM of 
40-d chickens biotinylated AB8 mAb was used to detect myosin in 
wells coated with 2E9 mAb and biotinylated 2E9 mAb was used 
to detect myosin in wells coated with AB8 raAb. Nonspecific bind- 
ing of biotinylated 2E9 mAb to adult MHC was determined by in- 
cubating myosin from the 2-yr adult chicken PM in wells coated 
with AB8 mAb and subtracting the values from those obtained 
using myosin from the PM of 40-d chicken. Nonspeeific binding 
of biotinylated AB8 mAb to neonatal MHC was determined by in- 
cubating myosin from the 8-d chicken PM in wells coated with 2E9 
mAb and subtracting the values from those obtained using myosin 
from the PM of 40-d chicken. All data points are the average of 
triplicate determinations and error bars are given as 95 % confi- 
dence intervals. The results demonstrate that myosins bound by 
2E9 mAb do not react with AB8 mAb and that myosins bound by 
AB8 mAb do not react with 2E9 mAb. 
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Figure 4. SDS-PAGE of purified myosin 
rods from embryonic, neonatal, and adult 
PM. Myosin rods were isolated as described 
in Materials and Methods and subjected to 
SDS-PAGE on 7.5% polyacrylamide gels. 
Lane 1, molecular mass standards 200 kD 
(myosin heavy chain), 116.25 kD 03-galac- 
tosidase), 97.4 kD (phosphorylase B), 66.2 
kD (bovine serum albumin), 45.0 kD (oval- 
bumin). Lane 2, myosin rod prepared from 
myosin isolated from 15-d embryonic PM. 
Lane 3, myosin rod prepared from the myo- 
sin isolated from PM of 12-d chicken. Lane 
4, myosin rod prepared from myosin iso- 
lated from PM of 1-yr adult chicken. Calcu- 
lated molecular masses are 128.8 kD for the 
embryonic myosin rod, 127.6 kD for the 

neonatal myosin rod, and 127.2 kD for the adult myosin rod. The 
results demonstrate that myosin rods prepared from different MHC 
isoforms are of similar molecular mass and are >80% pure. 

obtained from the 2- or 40-d myosin samples against stan- 
dard curves of either the embryonic, neonatal, or adult myo- 
sins. In the myosin sample from the PM of 2-d chickens, em- 
bryonic MHC represented ,v70% and the neonatal isoform 
•30% of the total MHC present, while in the myosin sample 
from the PM of 40-d chickens, approximately equal quanti- 
fies of neonatal and adult isoforms were present (data not 
shown). If MHC dimers were formed by random association 
of the different MHC isoforms present, then the PM of 40-d 
chickens would contain ,v25 % neonatal MHC dimers, ap- 
proximately 25 % adult MHC dimers, and *50% neonatal- 
adult heterodimers. Based on the 70:30 ratio of embryonic 
and neonatal MHCs in the myosin sample from PM of 2-d 
chickens, '~50% would be dimers of the embryonic heavy 
chain, *10% dimers of the neonatal heavy chain, and *40% 
would be embryonic-neonatal heterodimers. 

We determined whether heavy chain heterodimers were 
present in myosin samples from the PM of 2- and 40-d 
chickens using DASE. As before a mAb to either embryonic, 
neonatal, or adult MHC was used to coat the wells of a mi- 
crotiter plate. After addition of the myosin sample a second 
biotinylated mAb Was added that recognized a different 
MHC isoform than the one recognized by the mAb bound 
to the plate. For example, with the 2-d sample an anti-em- 

bryonic mAb was bound to the plate, and the biotinylated 
secondary mAb was anti-neonatal. Alternatively, the anti- 
neonatal mAb was bound to the plate and the biotinylated 
secondary mAb was anti-embryonic. Similarly, with the 40-<1 
sample anti-neonatal mAb was coated in the well and bi- 
otinylated anti-adult mAb was the detecting antibody. Addi- 
tionally, the anti-adult mAb was coated in the well and the 
biotinylated anti-neonatal mAb was the secondary antibody. 
As demonstrated in Fig. 3 A no myosins were detected in the 
sample from the PM of 2-d chickens that reacted with both 
the anti-embryonic and the anti-neonatal mAbs. This was 
true if the anti-embryonic mAb was used to coat the plate 
and biotinylated anti-neonatal mAb was used for detection 
or if the anti-neonatal mAb was used to coat the plate and 
biotinylated anti-embryonic mAb was used for detection. 
Similarly, very little myosin from the 40-d sample was de- 
tected that reacted with both anti-neonatal and anti-adult 
mAbs irrespective of which antibody was used to coat the 
plate (Fig. 3 B). Quantitative estimates of the amount of my- 
osin that reacted with both anti-neonatal and anti-adult 
mAbs was <3 % of the total myosin present (data not shown). 
Taken together with the results shown in Figs. 1 and 2, these 
observations indicate that essentially all myosins are com- 
posed of identical heavy chain subunits. Furthermore, the 
lack of heterodimeric myosins suggests that the MHC com- 
position of myosin molecules is not the result of random ag- 
gregation of the two heavy chain subunits. 

Mixtures of Myosin Rods Composed of Different 
MHC Isoforras Do Not Exchange 

The lack of heterodimeric myosins in vivo could be the re- 
sult of a cell-mediated process or the inability of different 
MHC isoforms to form stable dimers. To investigate the lat- 
ter possibility we isolated and purified chymotryptic rod 
fragments of myosin from the PM of 15-d embryos, 12-d 
chickens, and adult chickens. The rod is composed of two 
subunits derived from MHC, each with an approximate size 
of 130-kD (MargossianandLowey, 1982). As shown in Fig. 4, 
the molecular masses determined by SDS-PAGE for each 
isoform fragment are similar and each was >80% pure as 
determined by laser densitometry. The mobility of.each of 
the native rods was also identical under native conditions 
(Fig. 5). To determine whether the subunits of the myosin 

Figure 5. Nondenaturing PAGE of native and rena- 
tured myosin rods. Nondenaturing 4% polyacryl- 
amide gels were run as described in Materials and 
Methods. Lane 1, an equimolar mixture of embryonic 
and neonatal myosin rods. Lane 2, an equlmolar mix- 
ture of embryonic and neonatal myosin rods which 
were denatured in 8 M guanidine and subsequently re- 
natured by dialysis. Lane 3, an equimolar mixture of 
neonatal and adult myosin rods. Lane 4, an equimolar 
mixture of neonatal and adult myosin rods which had 
been denatured in 8 M guanidine and renatured by di- 
alysis. Lane 5, an equimolar mixture of embryonic 
and neonatal myosin rods. Lane 6, an equimolar mix- 

ture of embryonic and neonatal myosin rods that were denatured in 8 M guanidine and renatured by quick dilution. Lane 7, an equimolar 
mixture of neonatal and adult myosin rods. Lane 8, an equimolar mixture of neonatal and adult myosin rods which were denatured in 
8 M guanidine and renatured by quick dilution. The results demonstrate that all myosin rods have similar electrophoretic mobilities on 
nondenaturing gels. In addition, myosin rod samples denatured in 8 M guanidine and subsequently renatured either by dialysis or dilution 
are electrophoretically indistinguishable from native rods. 
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Figure 6. DASE of native and dena- 
tured myosin rod mixtures renatured 
by dialysis. DASE was used to ana- 
lyze myosin rods, mixtures of myosin 
rods, and mixtures of myosin rods 
denatured in 8 M guanidine and 
renatured by dialysis as described in 
Materials and Methods. All data pre- 
sented are the average of triplicate 
determinations. Error bars are given 
as 95% confidence intervals. 1 ° mAb 
indicates the antibody adsorbed to the 
microtiter plate and 2 ° rnAb indi- 
cates the biotinylated mAb used to 
detect myosin bound. (A) Experi- 

ments with myosin rods from the embryonic and neonatal PM. (1) Rods prepared from myosin isolated from the PM of 15-d embryos; 
(2) rods prepared from myosin isolated from the PM of 12-d chicken, (3) an equimolar mixture of embryonic and neonatal myosin rods; 
(4) an equimolar mixture of embryonic and neonatal myosin rods denatured in 8 M guanidine and renatured by dialysis. (B) Experiments 
with myosin rods from the PM of 12-d chicken and 2-yr adult. (1) Rods prepared from myosin isolated from the PM of 12-d chicken; 
(2) rods prepared from myosin isolated from the PM of adult chicken; (3) an equimolar mixture of neonatal and adult myosin rods; (4) 
an equimolar mixture of neonatal and adult myosin rods denatured in 8 M guanidine and renatured by dialysis. Nonspecific binding was 
determined as described in the legend to Fig. 3 except myosin rods were used in place of whole myosin. The results demonstrate that 
the same antibodies used in DASE of whole myosin can be used to analyze the composition of myosin rods. Very little, if any, myosin 
rods which reacted with both EB165 and 2E9 in A and with 2E9 and AB8 in B were detected in the mixed rod sample and the denatured 
and renatured rod mixture. These results indicate that no subunit exchange has occurred under these conditions. 

rods could exchange we mixed together embryonic and neo- 
natal rods as well as neonatal and adult rods in equimolar 
quantities and dialyzed them into 8 M guanidine buffer con- 
taining 10 mM DTT. We kept these solutions at room tem- 
perature for at least 18 h to ensure the denaturation of the 
myosin rods and reduction of any disulfide bonds. The dena- 
tured myosin rod mixtures were then either dialyzed or rap- 
idly diluted 20-fold into HSB, 10 mM DTT at 4°C. After 
this, the concentration of recovered rods was determined by 
either SDS-PAGE analysis or DASE. Recovery was routinely 
in excess of 90% for the dialyzed rods and from 50 to 90% 
for the diluted rods (data not shown). 

Nondenaturing polyacrylamide gel electrophoresis was 
used to determine if the rods refolded into structures with 
the same electrophoretic mobility as native rods. As shown 
by nondenaturing gel electrophoresis in Fig. 5, the rods that 
had been denatured and renatured migrated identically to na- 
tive rods not exposed to guanidine. This was true for both 
the embryonic and neonatal and the neonatal and adult myo- 
sin rod mixtures. Furthermore, we saw no additional protein 
that was unable to enter the gel in the renatured myosin rod 
samples as compared to the native rod samples. This sug- 
gested that no large aggregates were formed upon renatura- 
tion by dialysis or dilution of the denatured myosin rods. On 
occasion a slower migrating band was observed in some elec- 
tropherograms (see Fig. 5, lane 4). While we cannot account 
for the appearance of this band, its presence was not repro- 
ducible, and was also found in native rod samples indicating 
it was not a result of the renaturation procedure. 

Previous studies demonstrated that the mAbs used in this 
study reacted with epitopes within the myosin rod (Bandman 
et al., 1989). As shown in Fig. 6, the same antibodies used 
in DASE of whole myosins could also be used to detect myo- 
sin rods composed of embryonic, neonatal, and adult MHC 
fragments (samples 1 and 2 in Fig. 6, A and B). In a sample 
composed of an equimolar mixture of embryonic and neona- 
tal rods, DASE could detect embryonic rods and neonatal 

rods, but did not detect rods which reacted with both anti- 
embryonic and anti-neonatal mAbs irrespective of which 
was the primary antibody coated in the well. Essentially 
identical results were obtained with an equimolar mixture 
of embryonic and neonatal rods that had been denatured 
and renatured by dialysis. When the anti-neonatal antibody 
was used to coat the well a small signal above background 
was observed when using the biotinylated anti-embryonic 
antibody. However, no significant signal above background 
was found when the anti-embryonic antibody was coated in 
the well and the biotinylated anti-neonatal antibody was the 
secondary detecting antibody. Thus while we do not rule out 
the possibility of the formation of some rods which react 
with both antibodies, the vast majority of renatured rods con- 
tain either embryonic epitopes or neonatal epitopes. In the 
sample composed of an equimolar mixture of neonatal and 
adult rods, DASE could detect the homodimeric neonatal 
and adult rods, but essentially no rods were detected which 
reacted with both the anti-neonatal and anti-adult mAbs. 
Again identical results were obtained with the equimolar 
mixture of neonatal and adult rods that had been denatured 
and renatured by dialysis. Equivalent results were also ob- 
tained when renaturation was carried out by quick dilution 
(data not shown). Assuming that in the presence of guanidine 
random exchange is possible, 50% of the renatured rods 
would have been heterodimeric when an equirnolar mixture 
of two isoforrns was denatured. Since we observed very little, 
if any, heterodimers, either subunit exchange was not possi- 
ble under these conditions, or only homodimers could be 
formed upon renaturation. 

Subunits of Myosin Rods of the Same MHC Isoform 
Can Exchange 
To determine whether subunit exchange was possible in 
guanidine buffer, an aliquot of neonatal rods was biotinylated 
and a second aliquot of neonatal rods was fluoresceinated. 
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Figure 7. Subunits of biotin- 
ylated neonatal myosin rods 
and subunits of fluoresceinated 
neonatal myosin rods can ex- 
change in 8 M guanidine. Neo- 
natal rods were either, bi- 
otinylated or fluoresceinated 
and mixtures were analyzed 
by DASE as described in meth- 
ods. (N) An equimolar mix- 
ture of biotinylated rods and 
fluoresceinated rods mixed im- 
mediately before the assay. 
(D/R) An equimolar mixture 
of biotinylated rods and fluo- 
rcsceinated rods was denatured 
in 8 M guanidine and rena- 
tured by dialysis. Nonspeeific 
binding of HRP-streptavidin 
to fluoreseeinated rods was 
subtracted from all values. All 
data presented are the aver- 
age of triplicate determinations 
and error bars are given as 
95 % confidence intervals. (In- 
set) Nondenaturing PAGE of 
modified neonatal myosin rods. 
Lane 1, unmodified neonatal 
myosin rods; lane 2, a mixture 

of biotinylated neonatal rods and fluoresceinated neonatal rods; lane 3, a mixture of biotinylated neonatal rods and fluoresceinated neonatal 
rods denatured in 8 M guanidine and renatured by dialysis. Neither modification significantly affected the electrophoretic mobility of the 
rod. The bar graph demonstrates that subunit exchange occurred in the mixed sample denatured in 8 M guanidine and renatured by dialysis, 
while little exchange occurred without denaturation. 

We then mixed equal quantities of the biotinylated and 
fluoresceinated rods and subjected them to the denaturation 
and dialysis procedure described above. After renaturation 
the samples were subjected to nondenaturing polyacryl- 
amide gels electrophoresis. As shown in the inset of Fig. 7, 
the modified rods were electrophoretically similar to the na- 
tive neonatal rods and the modified rods subjected to denatu- 
ration and renaturation were indistinguishable from either 
the native or modified rods. 

If  exchange of a myosin rod subunit could occur in guani- 
dine, a mixture of biotinylated and fluoresceinated neonatal 
rods would result in the formation of a population of myo- 
sin rods composed of one biotinylated subunit and one 
fluoresceinated subunit. We assayed for the formation of 
heterodimeric biotinylated and fluoresceinated rods using 
DASE. Fluoresceinated rods were captured by coating the 
well with an anti-fluorescein polyclonal antibody and the bi- 
otinylated rods detected using HRP-streptavidin. Thus this 
assay would not detect dimers of biotinylated subunits since 
they would not bind to the plate, nor would dimers of 
fluoresceinated subunits be detectable since they would not 
bind HRP-streptavidin. As shown in Fig. 7, the presence of 
biotinylated-fluoresceinated rods was only barely detectable 
when a mixture of biotinylated neonatal rods and fluorescei- 
nated neonatal rods were mixed together. However, if the 
mixture of biotinylated and fluoresceinated neonatal rods 
were denatured in 8 M guanidine buffer and then allowed to 
renature by dialysis there was a large increase in the presence 
of biotinylated-fluoresceinated rods. The identical result was 
also obtained if adult rods were biotinylated and fluorescei- 

nated and subjected to the same analysis, indicating that the 
ability to exchange was not a property specific to the neona- 
tal isoform (data not shown). Some subunit exchange, albeit 
to a lesser degree, was also observed if biotinylated and 
fluoresceinated rods were incubated overnight at room tem- 
perature, but no exchange was observed if the modified rods 
were incubated overnight at 4°C (data not shown). These 
results demonstrate that myosin rod subunits are competent 
to exchange in guanidine and suggests that the inability to de- 
tect heterodimeric rods composed of different MHC iso- 
forms in Figure 6 is due to the inability of dissimilar subunits 
to form myosin rods. 

Discussion 

Our conclusion that MHC isoforms coexpressed in the same 
fiber of chicken PM exist as homodimers is based on the 
DASE results presented in Figs. 1-3. In Fig. 1 and 2 we 
demonstrated that myosin molecules bound by a mAb ad- 
sorbed to a microtiter plate could react with a second mAb 
to a different epitope on the same MHC isoform. However, 
as shown in Fig. 3, when two mAbs which react with differ- 
ent MHC isoforms were used in DASE essentially no myosin 
was detected. Although we concluded that no heterodimeric 
myosins were present, an alternative explanation is that the 
proximity of the binding sites for the mAbs used in Fig. 3 
interfered with the DASE assay. However, this explanation 
is unlikely because we found that the same mAb can be used 
for both capture and detection of myosin in a single DASE, 
albeit with reduced sensitivity (data not shown). In addition, 
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we are mapping the positions of the epitopes in MHCs and 
our studies indicate that the anti-neonatal and anti-adult 
mAb epitopes are separated by at least 600 amino acids (un- 
published observations). Since the antibodies used to dem- 
onstrate the specificity of the DASE in Fig. 1 react with epi- 
topes that are closer than 600 amino acids (unpublished 
observations), the lack of myosin molecules that react with 
anti-neonatal and anti-adult mAbs can not be explained by 
the proximity of the two epitopes. Furthermore, similar con- 
clusions regarding the lack of neonatal and adult MHC het- 
erodimers in developing PM have been reached using differ- 
ent techniques (Lowey et al., 1991). All of these observations 
support our conclusion that during periods of MHC isoform 
transition in avian skeletal muscle, myosins are homodi- 
merit in their heavy chain subunit composition. 

The lack of MHC heterodimer formation in vivo could 
have been the result of a cell-mediated process such as co- 
translational assembly (Isaacs and Fulton, 1987) or mRNA 
compartmentalization (Lawrence and Singer, 1986; Hall and 
Ralston, 1989; Pavlath et al., 1989). However, based on our 
studies of the myosin rod there is no need to invoke cellular 
regulatory processes to explain the lack of MHC heterodi- 
mers in vivo. We have demonstrated that homodimers are the 
thermodynamically stable form of the myosin rod since no 
subunit exchange was detected when mixtures of denatured 
rods were renatured either by dialysis or dilution. Extending 
the properties of the myosin rods to the intact myosin mole- 
cule would explain the lack ofheterodimeric myosins in vivo. 
Unfortunately, it is not possible to test this hypothesis since 
intact myosin molecules have not been successfully rena- 
tured (Bertazzon and Tsong, 1989; unpublished ob'serva- 
tions). Nevertheless, there is no evidence to implicate the 
myosin head in rod assembly. In addition to our results (Fig. 
5), it has been shown that thermally denatured myosin rods 
could refold correctly (Bertazzon and Tsong, 1989). Fur- 
thermore, recent studies demonstrated that MHC tail frag- 
ments expressed in Escherichia coli formed structures with 
similar properties to native myosin filaments (De Lozanne 
et al., 1987) lending further support to the proposal that the 
structural information for correct assembly of the myosin 
dimer lies principally within the amino acid sequence of the 
rod. 

Other a-helical coiled-coil proteins also contain subunits 
that exist as different isoforms. In the case of tropomyosin, 
one of the factors that regulates the composition of the dimer 
is the sequence similarity of the isoforms. The existence of 
oc/3 tropomyosin heterodimers observed in vivo was attrib- 
uted to the 87 % sequence similarity of ,v and/5 isoforms 
(Mak et al., 1980). A similar process may also regulate the 
assembly of the u-helical coiled-coil of the myosin rod. The 
lack of myosin heterodimers composed ofMHC A and MHC 
B in nematode muscle (Schachat et al., 1978) is likely 
related to relatively low sequence homology ('x,61% ) of the 
isoforms (Dibb et al., 1989). Conversely, the 93 % similarity 
of the rat o~ and/~ cardiac MHCs, can explain the existence 
of heterodimeric myosins in the rat heart (Hoh et al., 1979; 
Dechesne et al., 1987; McNally et al., 1989). However, fac- 
tors other than sequence similarity must also play a role in 
dimer stability. The preponderance of the oL/3 tropomyosin 
heterodimer in frog and rabbit skeletal muscle was explained 
by observations that the/5/~ homodimer was thermodynami- 

cally less stable than the a/3 heterodimer at physiological tem- 
peratures (Bronson and Schachat, 1982; Brown and Schachat, 
1985; Lehrer et al., 1989). Thus sequence similarity is 
necessary but not sufficient to form stable dimers in vivo. 
Similar conclusions have also been reached concerning other 
a-helical coiled-coil proteins (O'Shea et al., 1989). Given 
the high homology of skeletal muscle myosin rods in ver- 
tebrates (Stedman et al., 1990) and our observations, factors 
other than sequence similarity must also play a role in myo- 
sin assembly. 

Different enzymatic activities of myosin could provide an 
explanation for the diversity ofMHC isoforms. It is clear that 
motility is proportional to myosin ATPase activity in fast 
and slow muscle in vivo (Barany, 1967) and in vitro (Sheetz 
and Spudich, 1983; Sheetz et al., 1984). However, the vari- 
ous myosins expressed in the chicken PM have been found 
to exhibit identical enzymatic activities (Lowey, 1986). If the 
unique amino acid composition in the rod of each MHC 
subunit regulates myosin assembly, then the sequence diver- 
sity that exists in the rod likely has functional ramifications 
in myosin filament assembly as well. Previous observations 
that certain myosin isoforms are localized in specific regions 
of the thick filament in nematodes (Epstein et al., 1986) and 
in developing chicken muscle (Taylor and Bandman, 1989) 
would support this hypothesis. 

We propose that the inability of skeletal MHCs to form 
heterodimers provides a mechanism for compartmentalizing 
isoforms which may be important for fibrillogenesis in vivo. 
Studies on the assembly of Acanthamoeba myosin-U mini- 
filaments demonstrated that protomeric bipolar filaments 
arose from successive dimerization of anti-parallel dimers 
(Sinard et al., 1989). Studies on synthetic filaments from 
skeletal muscle have shown that a parallel dimer was in- 
volved in the elongation phase of assembly (Davis et al., 
1982). Assuming that an equilibrium exists between myosin 
monomers and the assembly intermediates, differences in the 
composition of the rod regions among the various isoforms 
could effect the equilibria and hence the proportion of the 
different forms. If this mechanism is correct for thick ila- 
ment assembly in vivo, this could explain our previous ob- 
servation of the non-random distribution of the neonatal 
MHC isoform in thick filament isolated from the developing 
PM (Taylor and Bandman, 1989). The capability to capture 
these intermediates (Davis et al., 1982) combined with our 
ability to analyze their MHC composition by DASE provides 
the basis for testing this hypothesis. 

That myosins in the PM are restricted to being homo- 
dimers may also be necessary for their specific interaction 
with myosin binding proteins. Recent studies have shown 
that C protein is a member of the immunoglobulin superset 
of proteins (Eirdaeber and Fischman, 1990) and has a pre- 
cisely defined position along the thick filament in the myo- 
fibril in the PM (Bennett et al., 1986). C protein also exists 
as multiple isoforms and undergoes isoform transitions in the 
chicken PM similar to myosin (Takano-Ohmuro et al., 1989). 
If there are specific interactions between myosin binding 
proteins and different myosin isoforms, the lack of heterodi- 
meric myosins and the coordinate switching among other 
contractile proteins (Masaki et al., 1982; Obinata, 1984) 
may facilitate transitions within the myofibril. Clearly, fur- 
ther studies are necessary in order to clarify the role of dif- 
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ferent MHC isoforms in fibriUogenesis and turnover before 
we may understand the advantage that the homodimeric struc- 
ture of myosin provides in the PM. 
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