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Abstract

Toll-like receptors (TLRs) are a family of transmembrane pattern recognition receptors (PRR) that play a key role in
innate and adaptive immunity by recognizing structural components unique to bacteria, fungi and viruses. TLR4 is
the most studied of the TLRs, and its primary exogenous ligand is lipopolysaccharide, a component of Gram-
negative bacterial walls. In the absence of exogenous microbes, endogenous ligands including damage-associated
molecular pattern molecules from damaged matrix and injured cells can also activate TLR4 signaling. In humans,
single nucleotide polymorphisms of the TLR4 gene have an effect on its signal transduction and on associated risks
of specific diseases, including cirrhosis. In liver, TLR4 is expressed by all parenchymal and non-parenchymal cell
types, and contributes to tissue damage caused by a variety of etiologies. Intact TLR4 signaling was identified in
hepatic stellate cells (HSCs), the major fibrogenic cell type in injured liver, and mediates key responses including an
inflammatory phenotype, fibrogenesis and anti-apoptotic properties. Further clarification of the function and
endogenous ligands of TLR4 signaling in HSCs and other liver cells could uncover novel mechanisms of
fibrogenesis and facilitate the development of therapeutic strategies.

Introduction

Toll-like receptors (TLRs) are evolutionarily conserved
trans-membrane proteins originally identified in mam-
mals on the basis of their homology with Toll, a Droso-
phila receptor that contributes to development in the
embryo, and in the production of antimicrobial peptides
against microorganism invasion in the adult fly [1,2].

TLRs are a family of pattern-recognition receptors
that recognize pathogen-derived molecules termed
pathogen-associated molecular patterns (PAMPs), which
are structural components unique to bacteria, fungi and
viruses. These ligands bind to TLRs, leading to signaling
and activation of innate and adaptive inflammatory
responses.

Ten TLRs have been identified in humans [3], which
have individual or shared substrates for activation, and
recognize microbes either on the cell surface or on lyso-
some/endosome membranes (Table 1). Toll-like recep-
tor (TLR)4 was the first to be discovered, and is the
most important Toll homolog; it responds primarily to
its main ligand, lipopolysaccharide (LPS).
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Recent studies indicate that TLR4 signaling can also
be activated by some endogenous ligands from cellular
compartments, which are released and/or increased dur-
ing tissue injury and matrix degradation. These ligands
are collectively referred to as damage-associated molecu-
lar patterns (DAMPs).

There is rapidly increasing knowledge both about
TLR4 signaling in cells and about the association of sin-
gle nucleotide polymorphisms (SNPs) of the TLR4 gene
with the risks and mechanisms of human diseases. In
liver, both parenchymal and non-parenchymal cell types
express TLR4, which is actively involved in the response
to injury from a variety of etiologies, including viral
hepatitis, alcoholic and non-alcoholic liver diseases,
autoimmune liver diseases and drug-induced liver dis-
eases. TLR4 signaling is present in activated hepatic stel-
late cells (HSCs), the major fibrogenic cell type in
injured liver, and mediates the inflammatory phenotype
and survival of the cell. Recent studies have uncovered
an important role for TLR4 signaling in liver fibrogen-
esis and the association of TLR4 polymorphisms with
fibrosis risk.

In this review, we introduce TLR signal transduction
and the functional role of TLR4 signaling in liver injury
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Table 1 Toll-like receptor (TLR) family and ligands
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TLR  Ligands

Cellular location

TLR1  Triacylated bacterial lipopeptides

Cell membrane

TLR2  Triacylated bacterial lipopeptides Cell membrane
TLR3  Double-stranded RNA produced by most viruses during replication Endosomal
compartment
TLR4  Lipopolysaccharide, low-molecular weight hyaluronic acid, heparin sulfate, saturated fatty acid, fibrinogen, fibronectin, ~ Cell membrane
heat shock proteins 60 and 70, high mobility group box-1, degraded matrix
TLR5  Bacterial flagellin Cell membrane
TLR6  TLR1 and 6 combine with TLR2 to distinguish the subtle differences between triacyl and diacyl lipopeptides Cell membrane
TLR7  ssRNA viruses, influenza virus Endosomal
compartment
TLR8  ssRNA Endosomal
compartment
TLR9  Unmethylated CpG DNA found in bacteria, DNA virus Endosomal

compartment

TLR10 unknown

Cell membrane

'ssRNA = single-stranded RNA.

and fibrogenesis, pointing towards the potential to
develop specific therapeutics.

Components of the TLR4 signaling pathway

TLRs mediate a tightly integrated signal transduction
cascade linking a series of protein-protein interactions
with their ligands, receptors, co-receptors and adaptor
proteins to convey downstream signals that control
transcription [4] (Figure 1). Genes regulated by TLRs
include cytokines and proteins controlling innate and
adaptive immunity, cell survival and apoptosis, and
fibrogenesis.

TLR4 and co-receptors

Human TLRs are type I transmembrane glycoproteins
that are structurally characterized by the presence of a
leucine-rich repeat (LRR) domain in their extracellular
structure, and a conserved Toll/interleukin (IL)-1 recep-
tor (TIR) homology domain in their intracellular
domains.

The extracellular domain is unique to each individual
TLR, as it confers specificity for ligand recognition. For
example, for the initiation of LPS to activate intracellu-
lar TLR4 signaling, the ligand first interacts with circu-
lating LPS-binding protein (LBP) along with three LRR
domain-containing proteins, TLR4 and the two co-
receptors CD14 and myeloid differentiation protein
(MD)2, together comprising the LPS receptor complex
[5]. CD14 is a 55 kDa glycophosphatidylinositol-linked
protein expressed on the surface of LPS-responsive cells
such as macrophages and monocytes. Alone, CD14 can-
not transduce a signal intracellularly because it lacks a
transmembrane domain. Instead, it transfers LPS to a
hydrophobic pocket within the MD2 glycoprotein,

resulting in TLR4-dependent activation of cells. MD2 is
a glycoprotein of approximately 17 to 25 kDa, and is
present with TLR4 at the surface of various cell types,
principally those of the myeloid and endothelial
lineages. Despite the absence of a transmembrane
domain, MD2 can attach to the cell surface via its inter-
action with TLR4 through specific epitopes. Human
MD?2 is an accessory molecule expressed on the cell
surface that is not only required for cell-surface expres-
sion of TLR4, but also appears to be essential for the
activation of the TLR4 signaling cascade. Activation of
TLR4 by LPS absolutely requires the presence of the
co-receptor MD2 for signaling, whereas some TLR4-
mediated signals may still be generated in the absence
of CD14.

Both CD14 and MD?2 are soluble acute phase proteins
[6]. They may act as a sink for LPS, and participate in
opsonization and internalization of Gram-negative bac-
teria by human phagocytes.

Adaptors

Upon LPS recognition, TLR4 undergoes oligomerization
and recruits its downstream adaptors through interac-
tions with the TIR domains. Four adaptor proteins
(myeloid differentiation factor (MyD)88, MyD88-adap-
tor-like/TIR domain-containing adaptor protein (MAL/
TIRAP) [7], TIR domain-containing adaptor inducing
interferon-f (TRIF) and TRIF-related adaptor molecule
(TRAM) [8,9]) transduce signals from all of the TIR
domains and engage downstream signaling proteins.
The function of a fifth adaptor, SARM (sterile alpha and
HEAT/Armadillo motif protein), has yet to be defined.
Different TLRs use different combinations of adaptor
proteins to determine downstream signaling; TLR4 is
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Figure 1 Schematic overview of Toll-like receptor (TLR)4 signaling pathway. LPS interacts with circulating LPS-binding protein (LBP) and
binds to TLR4 on the cell membrane with two co-receptors (CD14 and myeloid differentiation protein (MD)2), activating myeloid differentiation
factor (MyD)88-dependent and (MyD)88-independent TLR4 signaling via different adaptor proteins. The MyD88-dependent pathway signals
through activation of ixB kinase (IKK) and mitogen activated protein kinase (MAPK) pathways, which in turn leads to activation of transcription
factors nuclear factor (NF)-xB and activator protein (AP)-1, respectively, and controls the expression of pro-inflammatory cytokines and other
immune related genes. In addition, phosphatidylinositol 3-kinase (PI3K) and AKT are also important factors downstream of MyD88 that mediate

NF-xB activation. The MyD88-independent pathway is mediated by the TIR domain-containing adaptor inducing interferon8 (TRIF), which
activates interferon regulatory (IRF)3 and induces the expression of interferon (IFN)8 and IFN-responsive genes.

the only known TLR that uses all these adaptor
proteins.

TLR4 signaling has been divided into MyD88-depen-
dent and MyD88-independent, TRIF-dependent path-
ways. The MyD88-dependent pathway signals through
IL-1 receptor-associated kinase (IRAK)-1, IRAK-4,
tumor necrosis factor (TNF) receptor-associated factor
(TRAF)6, and transforming growth factor-f-activated
kinase (TAK)1, which activates downstream ixB kinase
(IKK) and mitogen-activated protein kinase (MAPK)
pathways [10]. These events in turn lead to activation of
the transcription factors nuclear factor (NF)-xB and

activator protein (AP)-1, respectively, and control the
expression of pro-inflammatory cytokines and other
immune related genes. In addition, phosphatidylinositol
3-kinase (PI3K) and AKT are also important factors
downstream of MyD88 that mediate NF-xB activation
[11,12]. The MyD88-independent pathway is mediated
by TRIF, which activates interferon regulatory factor
(IRF)3 and induces the expression of interferon (IFN)-f§
and IFN-responsive genes [13]. The MyD88-indepen-
dent pathway also mediates the late-phase activation of
NF-xB and MAPK. The activation of two signaling path-
ways downstream of TLR4 is cell-specific and dependent
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on the dose of the ligands [14]. Interestingly, LPS is
unable to activate the MyD88-independent pathway in
terminally mature neutrophils [15].

Transcription factors

At least three major transcriptional complexes are
involved in TLR4 signaling: NF-xB, AP-1 and IFN regu-
latory factors (IRFs). These nuclear factors have impor-
tant activities in HSCs (see below) and other resident
liver cell populations. However, a comprehensive under-
standing of which transcriptional complexes are down-
stream of TLR4 in each cell type is lacking, and
warrants further investigation.

NF-xB

NEF-£B is a pleiotropic protein complex that is activated
from a sequestered, cytoplasmic form normally retained
in the cytoplasm by binding to ixB (the NF-x<B inhibitor
protein) via pro-inflammatory extracellular signals and
cellular stress. However, after ixB degradation, initiated
by a complex signaling cascade initiated at the cell sur-
face (for example, TLR4 signaling), the active form of
NE-xB translocates into the nucleus, where it activates
transcription.

NE-£B regulates hundreds of cellular genes including
cytokines, chemokines, adhesion molecules that partici-
pate in the regulation of innate and adaptive immunity,
and proteins that regulate cell-cycle progression (for
example, cyclin D1) and cell survival (for example, Bcl-
2, Bcl-xL and Bfl-1). Both pro- and anti-apoptotic gene
products are regulated by NF-xB, depending on the cell
type and the stimulus [16].

NF-kB activity can be perturbed in a variety of non-
parenchymal and parenchymal liver cells during hepatic
inflammation, fibrosis and the development of hepato-
cellular carcinoma, and regulates the interplay between
immune, fibrogenic and oncogenic mediators [17].
Hepatic NF-xB is implicated in homeostatic processes
such as: clearance of microbial pathogens, protection of
hepatocytes from TNF-o-induced cell death, and com-
pensatory proliferation of hepatocytes in response to
loss of hepatic mass after liver injury [18]. NF-xB signal-
ing has vast complexity, and the NF-xB activities are
context-dependently regulated by subunit interactions,
post-translational modification and recruitment of co-
regulators.

Activated HSCs have persistently activated NF-«B,
with a reduction in ixkB expression. As a result, many
NEF-xB responsive genes are constitutively expressed in
activated, but not in quiescent HSCs. Inhibiting NF-xB
activation does not alter the activated cellular morphol-
ogy of HSCs, or the expression of either a.-smooth mus-
cle actin (.-SMA) or collagen; however, NF-xB plays an
important role in the anti-apoptotic property of
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activated HSCs and hepatic myofibroblasts [19]. It also
mediates the regulation of the TGF-1 pseudoreceptor
BAMBI (bone morphogenic protein and active mem-
brane bound inhibitor) in HSCs by TLR4-MyD88 activa-
tion, thus sensitizing the cell to TGF-B1 signaling [20].

AP-1

The transcription factor AP-1 is composed of either
homodimers or heterodimers of members of the Jun (c-
Jun, v-Jun, Jun-B and Jun-D) and Fos (c-Fos, Fos-B, Fra-
1 and Fra-2) families, and regulates cell proliferation,
differentiation and survival. The regulation of AP-1
activity is complex, which can be achieved by modulat-
ing jun and fos gene transcription and mRNA turnover;
Jun and Fos protein turnover; post-translational modifi-
cations of Jun and Fos proteins that modulate their
transactivation potential; or interactions of AP-1 with
other transcription factors that can either synergize or
interfere with its activity. Various stimuli, such as phy-
siological agents (growth factors, mitogens, polypeptide
hormones, cell-matrix interactions and inflammatory
cytokines), bacterial and viral infections, pharmacologi-
cal compounds (phorbol esters), cellular stress (ultravio-
let or ionizing radiation, hyperosmotic and heavy-metal
stress), can induce AP-1 activity. These stimuli activate
MAPK cascades by phosphorylating distinct substrates,
mostly for p38, Jun amino-terminal kinase (JNK) and
extracellular signal-regulated kinase (ERK), which
enhance AP-1 activity.

In activated HSCs, AP-1 represents another family of
transcription factors that has increased and persistent
activity. AP-1 is a downstream effector of MAPK signal-
ing that contributes to TGF-B1 and platelet-derived
growth factor-induced HSC fibrogenesis and prolifera-
tion, respectively. In addition, AP-1 regulates tissue
inhibitor of metalloproteinase (TIMP), matrix metallo-
proteinase (MMP) and other genes involved in matrix
remodeling [21-23]. Jun D is the most important AP-1
factor in activated HSCs, as it is required for both
TIMP-1 and IL-6 gene expression [22].

AP-1 can combine with several transcription factors to
form complexes that synergistically mediate the tran-
scription of fibrogenic genes. Examples of these crucial
combinations include the cooperation of Smad3/4 com-
plex with AP-1 in mediating TGF-B1-induced a2(I) col-
lagen transcription [24], assembly of the Jun D and
RunX factors at the TIMP-1 promoter to stimulate gene
transcription [25], and NF-xB- and AP-1-mediated, IL-
1B-stimulated TGF-B1 transcription [26].

IRFs and STAT1

A family of IRFs regulate the transcription of IFN genes
and IFN-stimulated genes. The MyD88-independent
TRIF-dependent TLR4 pathway activates IRF3, and
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induces the expression of IFN-f and IFN-responsive
genes [13,27], whereas IRF1 is activated via MyD88-
dependent pathways. IRF1 rapidly translocates to the
nucleus, and cooperates with IRF3 in response to LPS
for the initial induction of target genes, including IL-
27p28 [28].

Activation of signal transducers and activators of tran-
scription 1(STAT1) by TLR4 signaling can occur
directly via a protein kinase (PK)C-8 related mechanism
[29] or indirectly by the induction of IFN-§ via MyD88-
independent IRF3 activation [13]. In the indirect
mechanism, STAT1 is tyrosine-phosphorylated and
dimerized after antocrine/paracrine interactions within
IFN-B and IFNa/p receptors on the surface of cells,
which result in the crossactivation of the receptor-asso-
ciated Janus protein tyrosine kinases (JAKs). The acti-
vated STAT1 in turn regulates the expression of several
STAT1-dependent genes [30], including genes involved
in growth control and that mediate the responses of
IEN types (for example, IFN-y) to viral infections and
other pathological agents.

Downstream factors
The downstream factors regulated by TLR4 signaling
include:

1. Effectors of the innate immune response: pro-
inflammatory cytokines (TNF-a, IL-1, IL-6), chemotactic
cytokines (monocyte chemotactic protein (MCP)-1,
macrophage migration inhibitory factor (MIF)), pro-
inflammatory proteins (inducible nitric oxide synthase
(iNOS)), reactive oxygen species (ROS); adhesion mole-
cules (intercellular adhesion molecule (ICAM)-1, vascu-
lar cell adhesion molecule (VCAM)-1) and other
effectors of the innate immune response (for example,
IFN-y). Products of the inflammatory cascade such as
IL-1, TNF-a and cyclooxygenase (COX)-2 can further
amplify the inflammatory response.

2. Proteins that regulate cell-cycle progression (for
example, cyclin D1) and the apoptotic threshold (for
example, Bcl-2, Bcl-xL and Bfl-1).

3. The TGF-B1 pseudoreceptor BAMBI [20], which is
downregulated by a TLR4-MyD88-NF-xB dependent
pathway, thereby sensitizing HSCs to TGF-B1 signaling.
Rregulation of BAMBI by TLR4 signaling provides a link
between pro-inflammatory and profibrogenic signals [31].

Negative regulation of TLR4 signaling
TLR4 signaling can be controlled at multiple levels by
many regulators [4]. These (mostly inhibitory) pathways
are necessary to protect the host from inflammation-
induced damage. The key regulators include:

1. Radioprotective (RP)105, ST2L (also known as IL-
1R1) and single immunoglobulin IL-1R-related molecule
(SIGIRR), which are expressed on the cell surface,
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interact with TLR4, MD2, MyD88 and TIRAP, and inhi-
bit the initiation of TLR4 signaling.

2. TRIAD3A (Triad domain-containing protein 3, var-
iant A) and suppressor of cytokine signaling (SOCS)1,
which are two E3 ubiquitin protein ligases involved in
LPS/TLR4 signaling. TRIAD3A can interact with certain
TIR domain-containing proteins such as TIRAP and
TRIF, and promote their degradation. SOCS-1 was iden-
tified as a cytokine regulator that inhibits JAK-STAT
signaling. SOCS-1 can induce the ubiquitination of
TIRAP, leading to its subsequent degradation [32].

3. Other intracellular negative regulatory proteins act
further downstream in the signaling pathway, and
include IRAK-M (IRAK family member but lacks kinase
activity), IRAK-2c and MyD88s (splicing variants of
IRAK and MyD88), TRAF1 and TRAF4 (TRAF family
members that interact with TRIF activity), A20 (a de-
ubiquitinating enzyme that can remove ubiquitin moi-
eties from TRAF6) [33], and syntenin [34].

4. Activating transcription factor (ATF)3, a member of
the cAMP response element binding (CREB)/ATF family
of transcription factors that negatively regulates TLR4-
stimulated inflammatory responses by altering chroma-
tin structure and interacting with regulatory regions of
targeted genes (for example, NF-xB and AP-1 promoter
binding sites) [35,36].

5. Let-7i, a cellular micro (mi)RNA, regulates TLR4
expression via post-transcriptional suppression [37]. The
miRNAs are a newly identified class of endogenous
small regulatory RNAs in the cytoplasm that associate
with messenger RNAs based on complementarity
between the miRNAs and the target mRNAs [38,39].
This binding causes either mRNA degradation or trans-
lational suppression, resulting in gene suppression at a
post-transcriptional level. Human biliary epithelial cells
(cholangiocytes) express let-7 family members, which
are decreased in response to Cryptosporidium parvum
infection and LPS, and are associated with upregulation
of TLR4 and improved epithelial defense responses [37].

Ligands

Exogenous ligands

The exogenous ligands of TLRs that are related to
pathogen and host defense are referred to as PAMPs.
LPS is the well-characterized PAMP for TLR4, and is
the principal glycolipid component of the outer mem-
brane of Gram-negative bacteria. TLR4 plays an impor-
tant role in mediating LPS-induced inflammatory
signaling and infectious diseases. TLR4 also recognizes
proteins from respiratory syncytial virus, vesicular sto-
matitis virus and mouse mammary tumor virus [40-42].
Endogenous ligands

Besides its natural exogenous substrate LPS, there are
endogenous substrates for TLR4 that also bind and
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activate TLR4 [43], including low molecular weight hya-
luronic acid [44,45], free fatty acids (FFAs) [46], fibrino-
gen [47], fibronectin [48], heat shock proteins (HSPs) 60
and 70 [49,50] and high mobility group box (HMGB)1
[51]. In vivo, damage signals and intact extracellular
matrix (ECM) degradation activate TLR4 [52].

Most of these endogenous ligands are released and/or
increased during tissue injury and matrix degradation,
and are now referred to as DAMPs. Release of DAMPs
into the extracellular space is achieved by a number of
mechanisms, including: leakage from necrotic cells;
increased synthesis and post-translational modification
in response to inflammation; and degradation of inactive
precursors into TLR-mimetic degradation products in
inflammatory environments. DAMPs mediate non-sterile
inflammation by activating TLR4 signaling [53].

Most of the endogenous TLR4 ligands have been stu-

died in macrophages, monocytes and neutrophils, and in
cells from C3H/HeJ mice, which lack a functional TLR4
receptor because of a missense point mutation that
results in the substitution of histidine for proline within
the cytoplasmic portion of TLR4. The direct effect of
these DAMPs on activated HSCs, which have intact
TLR4 signaling [10,20,54], is yet to be delineated, and
has potential importance for further clarifying the
mechanisms of fibrogenesis.
HMGB1 HMGBI is a highly conserved nuclear non-his-
tone DNA-binding protein that functions as a structural
co-factor that is crucial for proper transcriptional regu-
lation in somatic cells. It induces bends in the helical
DNA structure to facilitate multiple physical interactions
of DNA with transcription factors, recombinases and
steroid hormone receptors, and thus allows transcription
and other nuclear events to take place. In addition to
this transcription factor-like function, HMGB1 also has
cytokine-like effects by promoting tumor metastasis and
inflammation, which require its presence in the extracel-
lular space. In vitro studies indicate that HMGB1 stimu-
lates HSCs proliferation and expression of a-SMA [55].

Release of HMGBI1 into the extracellular space is
mediated by two mechanisms:

1. Acetylation of many of the lysine residues of
HMGBI1 that lie in proximity to its two nuclear-localiza-
tion signals, thus reducing interaction with the nuclear
importer protein complex and preventing nuclear re-
entry while promoting secretion of HMGB1. This active
HMGBI1 secretion seems to occur predominantly in
inflammatory cells.

2. Passive diffusion of HMGBI from cells that undergo
necrosis. The release of HMGB1 does not occur from
apoptotic cells, presumably because HMGBI is tightly
bound to cruciform DNA and to hypoacetylated pro-
teins within the nucleus of the apoptotic cell, whereas it
is only loosely bound to DNA in necrotic cells. HMGB1
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has been suggested as a signature DAMP that signals
the presence of necrosis, and subsequently triggers
inflammation.

HMGBI is a late mediator of lethality, and contributes

to the increased levels of circulating and tissue cytokines
that are present hours to days after the initial exposure
to LPS [56]. Transfection with dominant-negative con-
structs of TLR2 and TLR4 into macrophage cell lines
demonstrates that both of these TLRs are involved in
HMGBI-induced activation of NF-xB [51].
Mrp8 and Mrp14 The migration inhibitory factor-
(MIF)-related protein (MRP)-8, encoded by Mrp8, also
known as S100A8) and MRP14 (encoded by Mrp14, also
known as S100A9) are the most abundant cytoplasmic
proteins of neutrophils and monocytes. They belong to
the calcium-binding S100 protein family and form a het-
erodimeric complex in a Ca**-dependent manner. Both
proteins are specifically released during the activation of
phagocytes, and have an important role in the pathogen-
esis of sepsis.

Expression and release of MRP8-MRP14 complexes by

phagocytes correlates with disease activity in many
inflammatory disorders. The complexes induce an
inflammatory and prothrombotic response in endothelial
cells in vitro, and promote leukocyte-endothelial cell
interactions [57,58]. The Mrp8-Mrpl4 complexes
amplify the endotoxin-triggered inflammatory responses
of phagocytes, enhance the expression of TNF-a, and
promote lethality during septic shock [59]. Mrp14-defi-
cient mice have decreased systemic inflammation, lower
cytokine plasma concentrations, and less severe liver
damage during abdominal sepsis [60]. Using phagocytes
obtained from mice expressing a non-functional TLR4
mutant protein, and HEK293 cells (human embryonic
kidney cells) replaced with exogenous expression of
TLR4, MRP8 was demonstrated to interact specifically
with the TLR-MD2 complex, thus representing an endo-
genous ligand of TLR4 [59].
Fibrinogen Fibrinogen is a 340 kDa multimeric glyco-
protein that has crucial functions in vascular hemostasis.
It is normally confined to the vasculature, but at sites of
inflammation, increased vascular permeability allows
plasma extravasation. The concentration of circulating
fibrinogen and the deposition of local fibrinogen
increases significantly during inflammatory responses.
LPS and fibrinogen stimulate the expression of similar
cytokines (for example, IL-6) and chemokines (for
example, MCP-1), and activate the transcriptional fac-
tors NF-xB and AP-1 in macrophages, fibroblasts and
endothelial cells [47,61]. Macrophages from C3H/HeJ
mice that express mutant TLR4 fail to respond to fibri-
nogen, indicating that innate responses to fibrinogen
and bacterial endotoxin may converge at the evolutiona-
rily conserved Toll-like recognition molecules [47].
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Fibronectin Cellular fibronectin, which contains alterna-
tively spliced exons encoding type III repeat extra
domain (ED)A and EDB, are produced in response to
tissue injury. Fragments of fibronectin or specific fibro-
nectin domains are believed to play important roles in
physiological and pathological processes, including tissue
remodeling in response to inflammation. The responses
of cells exposed to recombinant EDA or EDA-contain-
ing fibronectin are similar to those observed when cells
are treated with bacterial LPS, including the induction
of genes encoding proinflammatory cytokines and
MMPs. Recombinant EDA, but not other recombinant
fibronectin domains, activates human TLR4 expressed
in a cell type (HEK293) that normally lacks this TLR.
EDA stimulation of TLR4 is dependent upon co-expres-
sion of MD2, a TLR4 accessory protein [48].
Hyaluronan Hyaluronan is a negatively charged, high
molecular weight glycosaminoglycan, which is ubiqui-
tously distributed in the ECM and is a component of
the basement membrane. At sites of inflammation and
tissue destruction, high molecular weight hyaluronan
can be broken down to lower molecular weight hyaluro-
nan fragments via oxygen radicals and enzymatic degra-
dation. In contrast to high molecular weight hyaluronan,
low molecular weight hyaluronan has cytokine-like
properties, and induces inflammatory gene expression in
epithelial cells, endothelial cells, fibroblasts, dendritic
cells and macrophages. These effects are at least par-
tially TLR4-dependent, as shown in studies using a
TLR4 blocking antibody and TLR4-deficient mice
[44,45]. Because the disruption of basement membranes
is typically associated with injury, recognition of low
molecular weight hyaluronan by TLR4 and other recep-
tors is part of an injury recognition system.

Heat shock proteins HSPs are remarkably conserved
proteins in all living organisms. Their expression is
induced in response to a variety of physiological and
environmental insults. In the cytosol, these proteins play
an essential role as molecular chaperones by assisting
the correct folding of nascent and stress-accumulated
misfolded proteins, preventing protein aggregation, facil-
itating transport of proteins, and supporting antigen
processing and presentation. Following stress, intracellu-
lar HSPs fulfill protective functions and thus prevent
lethal damage. By contrast, membrane-bound or extra-
cellular HSPs act as danger signals and elicit immune
responses mediated by either the adaptive or innate
immune system.

HSPs 60 and 70 are two HSPs that elicit potent
inflammatory responses in cells of the innate immune
system, which are dependent on functional TLR4.
Mouse or human macrophages and endothelial or
smooth muscle cells elicit a pro-inflammatory response
when incubated with recombinant human HSP60. The
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response includes the upregulation of adhesion molecule
expression and the release of inflammatory mediators
such as IL-6 and TNF-a, as well as IL-12 and IL-15,
two cytokines that are essential in driving the T helper
(Th)1 response. Macrophages of C3H/HeJ mice carrying
a mutant TLR4 are unresponsive to HSP60. Similarly,
HSP70 can induce TNF-a production by human mono-
cytes, which is inhibited by anti-TLR4 [49]. These find-
ings suggest that HSP60 and HSP70 are endogenous
ligands of the TLR4 complex, and that there is a role
for TLRs in innate immune discrimination of normal
versus stressed or damaged tissue cells.

Saturated fatty acids Lipid A, which possesses most of
the biological activities of LPS, is acylated with saturated
fatty acids (SFAs). Removal of these acylated SFAs from
lipid A not only results in complete loss of endotoxic
activity, but also makes the deacylated lipid A act as an
antagonist to native lipid A, suggesting that the FAs that
are acylated in lipid A play a crucial role in ligand
recognition and receptor activation for TLR4.

Lee et al. [11,46] showed that an SFA (lauric acid), but
not unsaturated FAs, could induce NF-xB activation and
COX-2 expression. This effect is mediated through the
TLR4-PI3K-AKT signaling pathway, as the induction of
inflammatory markers was also inhibited by a dominant-
negative mutant of TLR4, MyD88, IRAK-1, TRAF6 or
IkBa in macrophages (RAW?264.7) and 293T cells trans-
fected with TLR4 and MD2, and the NF-xB activation
was inhibited by the AKT inhibitor LY294002, and by
dominant-negative PI3K or AKT. Lauric acid also upre-
gulates the expression of co-stimulatory molecules
(CD40, CD80 and CD86), major histocompatibility com-
plex (MHC) class II molecules, and cytokines (IL-12p70
and IL-6) in bone marrow (BM)-derived dendritic cells
(DCs). The dominant-negative mutant of TLR4 or its
downstream signaling components can inhibit lauric
acid-induced expression of a CD86 promoter reporter
gene. By contrast, an n-3 polyunsaturated FA (docosa-
hexaenoic acid), inhibits TLR4 agonist (LPS)-induced
upregulation of the co-stimulatory molecules, MHC
class II molecules, and cytokine production. Similarly,
DCs treated with lauric acid show increased T-cell acti-
vation capacity, whereas docosahexaenoic acid inhibits
T-cell activation induced by LPS-treated DCs [62]. Stu-
dies using a co-culture system of adipocytes and macro-
phages (C3H/HeN and C3H/He] peritoneal
macrophages, RAW264 macrophages) showed that SFA
released from hypertrophied adipocytes via the macro-
phage-induced adipocyte lipolysis serve as a naturally
occurring ligand for TLR4, thereby inducing the inflam-
matory changes in both adipocytes and macrophages
through NF-xB activation [63,64].

These results imply that TLR4 is involved in sterile
inflammation and immune responses induced by non-
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microbial endogenous molecules. These findings shed
new light on how different types of dietary FAs differen-
tially modulate immune responses that could alter the
risk of many chronic diseases [11,46,62-64]. However,
controversy exists about whether FA-induced TLR4 acti-
vation might be due to artifacts such as contamination
by LPS of the FA preparations [65]. In addition, several
lipoproteins such as low-density lipoprotein might be
shuttle molecules for LPS; thus, it is possible that TLR4
activation in the in vivo models of obesity is stimulated
by LPS bound to FFAs.

TLR4 signaling in liver cells

Compared with other organs, healthy liver contains low
mRNA levels of TLRs and signaling molecules such as
MD2 and MyD88, which may account for the high tol-
erance of the liver to TLR ligands from the intestinal
microbiota, to which the organ is constantly exposed.
Damaged liver has increased expression of TLR4 and its
co-receptors, which sensitize the inflammatory cascade
mediated by TLR4 signaling in the injured organ [66].
In liver, TLR4 is expressed by both the hepatocytes and
non-parenchymal cells (NPCs), including liver sinusoidal
endothelial cells (LSECs) and Kupffer cells (KCs). NPCs
display a cell type-specific activation profile in response
to the stimulation by TLR ligands [67].

Hepatocytes

Hepatocytes fulfill metabolic and detoxifying functions
in the liver, and are important mediators of the acute
phase response. Hepatocytes express TLR4, and respond
to LPS by inducing serum amyloid A, cytochrome P450,
superoxide dismutase activity, adhesion molecule, TNF-
o, IL-6 and LBP. However, this response is fairly weak,
with only twofold elevated levels of serum amyloid A
and a less than twofold induction of most upregulated
genes in a microarray after administration of LPS. More-
over, LPS doses of 100 ng/ml and higher are required to
elicit significant effects in hepatocytes.

Hepatocytes play a major role in the uptake of LPS and
its removal from the systemic circulation, by secreting
LPS into the bile. The uptake of LPS by hepatocytes in
vivo is through a CD14-TLR4-MD2-dependent mechan-
ism, and is mediated by B2-integrin-induced p38 MAPK
activation [32,68]. Endogenous TLR4 ligands such as
extracellular HSP72, a strongly stress-inducible 72-kDa
protein that is released during ischemia-reperfusion
injury (IRI), can stimulate hepatocytes to produce MIP-2,
IL-6 and TNF-a via TLR4-NF-xB-dependent signaling
[69]. Studies of KC depletion in transgenic mice expres-
sing the hepatocyte-specific hepatitis C virus (HCV) non-
structural protein NS5A suggest that hepatocytes can be
the primary cellular site of both TLR4 upregulation and
its pathologic consequences in HCV infection [70].
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Kupffer cells (KCs)

KCs are the resident macrophages of the liver. They play
a crucial role in host defense, which is linked to the
ability of these cells to phagocytose, process and present
antigen. KCs also secrete various pro-inflammatory
mediators including cytokines, prostanoids, nitric oxide
and reactive oxygen intermediates.

KCs are among the first cells in the liver to be
exposed to gut-derived toxins such as LPS, and they
orchestrate the inflammatory responses within the liver.
KCs express TLR4 and respond to LPS by producing
pro-inflammatory cytokines (for example, TNF-a, IL-1f,
IL-6) and ROS (for example, superoxide and nitric
oxide) [67]. Notably, KCs mediate the majority of cyto-
kine and chemokine expression in liver after LPS injec-
tion. LPS stimulates TLR4 on KCs to enhance
hepatocyte damage, increase leukocyte infiltration and
secrete pro-fibrogenic cytokines. Moreover, KCs stimu-
lated by TLR1, 2, 4 and 6 can activate allogenic T cells.
By contrast, freshly isolated human KCs secrete the
anti-inflammatory cytokine IL-10 in response to stimu-
lation with LPS, which contributes to the downregula-
tion of pro-inflammatory cytokines. Thus, KCs may
have a higher LPS tolerance to adapt to the special cir-
cumstances in their anatomical location, in which they
frequently encounter low levels of LPS even under nor-
mal conditions.

Hepatic stellate cells (HSCs)

HSCs are the predominant ECM-producing cell type in
the liver. Apart from the important fibrogenic activity of
HSCs, the cells have emerged as key effectors of the
liver’s inflammatory response, rather than being simply
targets of inflammation.

Another important property of activated HSCs is their
resistance to pro-apoptotic stimuli. Induction of HSC
apoptosis has been proposed as a strategy to treat liver
fibrosis. Activated human HSCs express LPS-recognizing
receptors such as CD14, TLR4 and MD2, and they have
intact TLR4 signaling. Activated HSCs respond to even
low concentrations of LPS with the activation of IKK-
NF-xB and JNK, secretion of pro-inflammatory cytokines
(IL-6, IL-8 and TNF-a.), chemokines (MCP-1, MIP-2,
ICAM-1, RANTES (regulated upon activation, normal T
cell expressed and secreted) and C-C chemokine receptor
(CCR)5), and expression of adhesion molecules [10,71].
In addition, an anti-apoptotic effect of TLR4 signaling
has been reported in macrophages, cancer cells and
HSCs. NF-xB, MAPK and PI3K/Akt signaling and down-
stream cytokines (for example, IL-6) and anti-apoptotic
proteins (for example, Bcl-2) elicited by TLR4 activation
play an active role in HSC survival [72]. Moreover, TLR4
signaling in HSCs may be more important than in KCs in
mediating fibrogenesis, in part by downregulation of the
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inhibitory TGF-$1 pseudoreceptor, BAMBI [20,31]. Chi-
meric mice with TLR4 mutant KCs show the same
degree of hepatic inflammation and fibrosis as their wild-
type counterparts, whereas mice with TLR4 mutant
HSCs, but wild-type TLR4 KCs, show a similar resistance
to experimental fibrosis as do TLR4 mutant C3H/He]
mice, indicating the crucial role of TLR4 expression on
HSCs. HSCs, in addition to KCs, may be a target for
LPS-induced liver injury, and provide a direct link
between inflammatory and fibrotic liver injury. The direct
regulation of HSC gene expression by LPS represents a
novel mechanism for hepatic injury and fibrosis.

Liver sinusoidal endothelial cells (LSECs)

Similar to liver macrophages, LSECs are highly respon-
sive to acute endotoxemia, with induction of iNOS,
COX-2, IL-1B, TNF-a and 5-lipoxygenase genes. This
activity is largely dependent on TLR4 [73]. In culture,
LSECs respond to ligands of TLR1, 2, 3, 4, 6, 8 and 9 by
producing TNF-a, to ligands of TLR3 and 4 by produ-
cing IL-6, and to TLR3 ligands by producing IFN-B [67].
LPS decreases vitamin K-dependent protein (P)S expres-
sion in hepatocytes and LSECs, which is mediated by
MEK-ERK signaling and NF-xB activation, with the
involvement of membrane-bound CD14 and TLR4 [74].

Biliary epithelial cells

The biliary tract directly communicates with the intest-
inal tract, and is therefore directly exposed to microor-
ganisms from the gut. Human cholangiocytes or (biliary
epithelial cells; BECs) express all 10 known TLRs, and
activation of TLRs triggers an array of epithelial defense
responses, including production and release of cytokines
or chemokines (for example, TNF-a,, MCP-1, IL-6 and
IL-8) and anti-microbial peptides [75-77]. TLR2 and
TLR4 signaling mediate cholangiocyte responses, includ-
ing production of human B-defensin 2 against C. parvum
via TLR-associated activation of NF-xB. Human cholan-
giocytes express members of the let-7 miRNA family, at
least one of which, let-7i, directly regulates TLR4 expres-
sion via a MyD88-NF-xB-dependent mechanism. Follow-
ing microbial insult, cholangiocytes decrease let-7i
expression and consequently upregulate TLR4 expression
via translational suppression in infected cells, which con-
tributes to epithelial immune responses to microbial
infection [37]. Endotoxin tolerance is present within the
intrahepatic biliary tree, which is important in maintain-
ing innate immune biliary homeostasis. The tolerance is
possibly induced by the expression of IRAK-M in the
intrahepatic biliary epithelium [78].

Hepatic dendritic cells (DCs)
DCs are classic antigen-presenting cells that present
peripheral antigens to T cells in lymph nodes, regulate
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T cell differentiation (tolerance or immunity, Thl or
Th2 polarization) and initiate specific immune
responses. Their maturation is vital for the induction of
antigen-specific T-lymphocyte responses. DCs express
TLRs, and as a result of TLR triggering, DCs upregulate
co-stimulatory molecules, secrete immunomodulatory
cytokines such as IL-12, and increase antigen processing
and presentation to B and T lymphocytes. Thus, TLRs
function to alert the immune system to infection by sti-
mulating DCs, which act as a bridge between the innate
and adaptive immune systems.

Liver DCs exhibit a comparatively high threshold for
stimulation by LPS, which may be explained by their
low expression of TLR4. This unresponsiveness can be
at least partially overcome by high LPS levels that
exceed those encountered in the absence of clinical
infection [79]. LPS-mediated TLR4 signaling leads to
maturation of DCs [80]. Hepatic DCs respond to TLR1,
2, 4 and 9 ligands by both upregulation of CD40 and
activation of allogeneic T cells. TLR3 and TLR4 stimula-
tion in DCs induces co-stimulatory molecules and cyto-
kines [67]. In a mouse model of diabetes, HMGBI1
upregulates CD40 expression and enhances IL-12 pro-
duction by DCs, leading to natural killer (NK)T cell acti-
vation and subsequent NKT cell-dependent
augmentation of IFN-y production, with the early loss of
transplanted islets [81]. AM3, a mixture containing
immunoregulatory glycoconjugates, induces functional
maturation of monocyte-derived DCs from patients with
chronic HCV infection and healthy donors, and stimu-
lates the secretion of molecules with antiviral properties
in a TLR4-dependent manner [82].

Lymphocytes

Lymphocytes constitute 25% of the non-parenchymal
resident cells in the normal human liver, and the sub-
populations differ numerically according to normal con-
ditions or the existence of stresses such as inflammation
and steatosis [83]. TLRs are widely expressed by
immune cells, including T and B lymphocytes. Conven-
tional CD4+ T helper cells, cytotoxic T lymphocytes
(CTL) and naturally arising regulatory T cells (Tregs) all
express TLRs. TLR triggering on innate immune cells
results in the induction of pro-inflammatory cytokines,
phagocytosis and subsequent innate effector mechan-
isms, including an oxidative burst [84].

CD4+ CD25+ Foxp3+ Tregs, a key player in maintain-
ing peripheral T cell tolerance [85], express TLR4 and
other TLRs. Direct engagement of TLR4 by LPS on
Tregs upregulates several activation markers, and
induces Treg proliferation or survival without the need
for TCR ligation. More importantly, LPS-treated Tregs
exert enhanced function in vitro and remain suppressive
in vivo [86]. Regulation of Treg function via TLRs
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constitutes an important immunosuppressive cellular
mechanism to curtail TLR hyperactivity, thereby avoid-
ing sepsis and autoimmune diseases [87].

TLR4 signaling in liver injury
TLR4 signaling is a ‘good’ response in promoting pathogen
eradication and initiating liver regeneration. It is essential
in the generation of both innate and adaptive immune
responses against pathogens (for example, salmonella)
[88]. TLR4-deficient C3H/He] mice have an increased
microbial burden and mortality after infection [88].
However, TLR4 also plays a deleterious role in hepatic
inflammation and injury arising from many causes (Fig-
ure 2). TLR activation induces pro-inflammatory cyto-
kine cascades, which contribute to the pathophysiology
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and clinical outcome of severe liver injuries. Genetic
deletion or mutation of TLR4 reduces macrophage infil-
tration and liver injuries in animals with experimentally
induced liver damage.

Drug-induced liver diseases

TLR4 is involved in the generation of steatosis, conges-
tion and necrosis from paracetamol (acetaminophen;
APAP) [89] through release of inflammatory cytokines
(TNF-a), induction of iNOS and peroxynitrite, and
depletion of glutathione. These events occur in response
to LPS and possibly endogenous ligands released from
the ECM during chemical or mechanical injury. Such
injuries can further amplify systemic inflammatory
immune responses by enhancing TLR4 reactivity, and
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can also result in leukocyte sequestration along with
increased pro-inflammatory cytokine and chemokine
levels. Serum hyaluronic acid is elevated in APAP-
mediated liver injury in humans, and has been proposed
as a prognostic indicator of survivability after APAP
overdose [90,91].

Viral hepatitis

Components of hepatitis viruses are ligands for TLR3,
TLR7, TLR8 and TLR9, but not for TLR4. However,
innate immune responses induced by TLR4 signaling
may antagonize anti-hepatitis B virus (HBV) infection in
vivo through the induction of IFN-a/B, iNOS and HBV-
specific immune responses.

Several TLRs, including TLR4, block HBV replication
through their ability to upregulate IFNs [92]. Similarly,
in vitro studies indicate that activation of TLR3 and
TLR4 by their ligands in non-parenchymal liver cells (in
particular KCs and LSECs) is able to induce IFN-B- and
IFN-stimulated genes, which leads to potent suppression
of HCV replication [67,93]. TLR4 is upregulated in the
hepatocytes of patients with chronic HBV, indicating a
potentially important interaction. TLR4 and TLR6 are
downregulated in HBV-infected peripheral blood mono-
cytes, and these cells also have a decreased cytokine
response to TLR2 and TLR4 ligands. By contrast, TLR4
expression is increased in the peripheral blood mono-
cytes of patients with chronic HCV, along with
increased cytokine production, including that of IFN-f3,
TNEF-a, IL-6 and IL-8. The number of Tregs is signifi-
cantly higher in these patients, which correlates with
HCV genotype and viral load [94,95]. The HCV non-
structural protein (NS)5A and alcohol synergistically
induce hepatocellular damage and transformation via
amplified and/or sustained activation of TLR4 signaling,
with the induction of Nanog downstream of TLR4 sig-
naling. Induction of this stem cell marker may contri-
bute to HCV-induced liver oncogenesis enhanced by
alcohol [70].

Non-alcoholic fatty liver diseases

Obesity, insulin resistance (IR) and oxidative stress are
major pathogenetic determinants of non-alcoholic fatty
liver disease (NAFLD). Insulin receptor-mediated tyro-
sine phosphorylation of insulin receptor substrates (IRS)
leads to the activation of downstream pathways (PI3K/
AKT and MAPK) responsible for insulin action on glu-
cose uptake and suppression of gluconeogenesis, cell
growth and differentiation. Inflammatory cytokines such
as TNF-a and IL-1 interfere with insulin signaling by
provoking IRS serine phosphorylation and thus inacti-
vate its activity in insulin signaling, causing IR [96]. Pro-
duction of IL-6 or TNF-a also blunts insulin signaling
in hepatocytes and muscle by increasing suppressor of
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cytokine signaling (SOCS)1, SOCS3 and nitric oxide
(NO).

There is a vicious circle of aggravating IR based on
hepatic steatosis and inflammation. IR leads to increased
circulating FFA concentration and ectopic fat accumula-
tion, which impede insulin-mediated glucose uptake in
skeletal muscle and elevate glucose production in liver.
By contrast, TLR4 on adipocytes and macrophages is a
sensor of elevated FFA concentrations, which initiates
inflammatory and thus insulin-desensitizing processes,
leading to the development of NAFLD. Fatty acids, in
particular SFAs, utilize TLR4 to induce NF-«B activa-
tion and pro-inflammatory cytokine expression in
macrophages, adipocytes, vascular endothelial cells and
liver.

TLR4 is a molecular link between nutrition, lipids and
inflammation [97]. Triglycerides potentiate the inflam-
matory response of KCs to LPS in producing inducible
NOS, TNF-a, IL-1B, IL-6 and granulocyte colony-stimu-
lating factor in vitro [98]. Dietary fructose intake is also
associated with NAFLD. Intake of high levels of fructose
results in high triglyceride levels in plasma and their
deposition in liver, as well as intestinal bacterial over-
growth and increased intestinal permeability, leading to
elevated endotoxins and activation of TLR4 signaling
[99,100].

Alcoholic steatohepatitis

In alcoholic liver disease, endotoxemia may play a pri-
mary role in the induction of liver damage as a conse-
quence of activating TLR4 signaling, thereby initiating
an inflammatory cascade in liver cells [101]. Ethanol
increases the circulating levels of gut-derived endotoxin,
as a result of alteration of gut permeability, modification
of the gut flora and changes in the rates of endotoxin
clearance [102]. Alcohol induces LBP and TLR4, and
increases responsiveness to gut-derived endotoxin. Bind-
ing of LPS to CD14/TLR4 on KCs activates production
of cytokines and oxidants, primary mediators of early
ethanol-induced liver injury. Furthermore, cytokine and
oxidant production lead to T cell recruitment, HSC acti-
vation and collagen production in the liver of patients
with alcoholic steatohepatitis [103]. Antibiotics and lac-
tobacilli reduce liver injury in animals chronically fed
alcohol.

Autoimmune liver diseases

In primary biliary cirrhosis, TLR4 is expressed in bile
duct epithelial cells and periportal hepatocytes, and may
be involved in the inflammation and tissue destructive
process of bile ducts and the interface hepatitis of pri-
mary biliary cirrhosis (PBC) [104]. These findings indi-
cate that bacterial pathogens and TLR4 may contribute
to the inflammatory response in PBC.
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Stimulation of BECs with primary sclerosing cholangi-
tis IgG, but not control IgG, induces expression of
TLR4 and TLRY, and specific phosphorylation of both
ERK, and the transcription factors ELK-1 and NF-xB. In
BECs, a specific inhibitor of ERK1/2 abrogates phos-
phorylation of ELK-1 and protein expression of TLR4
but not TLRY [105].

Ischemia-reperfusion injury (IRI)

IRI occurs in solid organ transplantation, hemorrhagic
shock, diverse surgical procedures, and heart failure. It
is defined as an ischemic insult that induces delayed
dysfunction and damage due to activation of inflamma-
tory pathways, in which the TRL4 signaling pathway
appears to be crucial. IRI induces a biphasic pattern of
liver injury, with an acute phase occurring within the
first 6 hours of reperfusion, characterized by a burst of
pro-inflammatory cytokines and formation of ROS. This
is followed by a late phase from 6 to 24 hours after
ischemia, characterized by sequestration of neutrophils
into the liver.

IRI is a tightly coordinated and sequential process
mediated by the integration of both innate and adaptive
immune reactions. TLR4 signaling by non-parenchymal
cells is required for initiation of hepatic IRI [106,107].
Analysis of TLR4 chimeric mice with hepatic IRI indi-
cates that mutation of TLR4 within either BM-derived
or non-BM-derived TLR4 reduces hepatic IRI in the late
reperfusion stage via reduced cytokine release and neu-
trophil infiltration, whereas non-BM-derived TLR4 regu-
lates the expression of ICAM-1 on hepatocytes and
LSECs, exacerbating the injury [108]. TLR4 signaling is
also a putative repressor of heme oxygenase-1, which is
cytoprotective and antioxidative in hepatic IRI [109].

Allograft rejection after liver transplantation

Although continuous improvements in immunosuppres-
sion and clinical management have contributed to
increased graft survival, acute rejection remains com-
mon after liver transplantation (25 to 49% of cases). The
innate immune response, which is important in regulat-
ing the quality of the adaptive immune response, plays a
prominent role in immune recognition of solid organ
allografts. The family of TLRs is expressed on a variety
of cell types, including antigen-presenting, epithelial and
endothelial cells.

TLRs are a crucial link in activating dendritic cell
maturation programs that induce adaptive immune
responses. TLRs may be activated by some endogenous
agonists, thereby participating in allograft responses. Sig-
nificantly higher TLR4 and TLR2 expression is present on
circulating monocytes in recipients of liver transplantation
with acute rejection, compared with those who are clini-
cally stable with normal liver function. Thus, elevated
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TLR2 and TLR4 may be candidates for early prediction of
acute rejection after liver transplantation [110].

There are differential effects of donor and recipient
TLR4 signaling in human liver transplantation. Donor
TLR4 contributes to sterile injury after cold preserva-
tion, whereas the recipient TLR4 genotype is linked to
poor allograft survival among HCV-infected recipients
[111]. Myeloid dendritic cells (MDCs) of donor origin
detached from liver grafts that migrate into the recipient
express higher levels of TLR4 than do blood or splenic
MDCs. These MDCs are sensitive to stimulation with
physiological concentrations of LPS, produce pro-
inflammatory and anti-inflammatory cytokines, and are
capable of stimulating allogeneic Thl responses. Thus,
MDCs may contribute to liver graft rejection rather
than tolerance [112].

Cirrhosis

TLR4 regulation is altered in monocytes from patients
with cirrhosis. Under normal conditions, monocytes
release pro-inflammatory mediators such as TNF-a, IL-
1 and IL-6 in response to LPS stimulation, which pro-
mote systemic inflammatory reactions including fever
and leukocytosis. Patients with cirrhosis have chronic
endotoxinemia, with elevated serum levels of TNF-a,
IL-1B and IL-6 due to activated KCs and decreased
hepatic clearance. Patients with cirrhosis also lack both
LPS-mediated upregulation of pro-inflammatory cyto-
kines by peripheral blood mononuclear cells and sys-
temic reactions such as fever and leukocytosis, whereas
bacterial infections are extraordinarily frequent. Patients
with cirrhosis also have a higher basal level of TLR4
expression, which is induced upon LPS stimulation and
is persistently upregulated after 24 h of incubation with
LPS [113].

TLR4 signaling and liver fibrogenesis

Important link between TLR4 signaling and enhanced
fibrogenesis

Fibrosis is characterized by an excessive deposition of
ECM protein, impairing normal liver function, and ulti-
mately leading to cirrhosis and organ failure. Inflamma-
tion and tissue injury are important factors that initiate
and promote liver fibrosis [114-116]. Chronic inflamma-
tion and fibrogenesis are a dynamic aggregate of lym-
phocytes, macrophages and stromal cells linked by
autocrine and paracrine interactions [117]. Inflammatory
cells belonging to the innate (for example, NK cells and
macrophages) and adaptive immune response (T and B
cells) participate in liver injury and fibrogenesis. TLR
signaling in the course of liver injury by hepatitis viruses
and other etiologies contributes significantly to the acti-
vation and interaction of inflammatory cells, myofibro-
blasts and the matrix microenvironment.
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TLR4 signaling is activated in acute infection to clear
the pathogen, but contributes to liver scarring in
chronic disease. TLR4 and its ligands mediate their
effects in liver fibrosis through different mechanisms.
First, TLR4 downregulates the TGF-B1 pseudoreceptor
BAMBI to sensitize HSCs to TGF-B1-induced signals
[20]. Second, TLR4 activation also upregulates cytokine
and chemokine secretion from cells with inflammatory
phenotypes such as KCs and HSCs [10,72,88,118]
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(Figure 3). HSCs act as important effectors of the liver’s
inflammatory response by regulating leukocyte traffick-
ing and KC recruitment and activation via secretion of
cytokines and chemokines [119,120].

TLR4 was identified as one of seven genes associated
with increased risk of developing cirrhosis in patients
with chronic hepatitis C [72,121]. LPS and endogenous
TLR4 ligands are increased in the serum and livers of
patients with liver cirrhosis and of animals with
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experimental chronic liver disease. CD14- or LBP-defi-
cient mice are resistant to the liver injury and fibrosis
induced by bile duct ligation [122]. Studies using TLR4
mutant C3H/HeJ] mice have demonstrated that hepatic
inflammation and fibrosis are strongly decreased in the
TLR4 mutant C3H/HeJ strain after bile duct ligation or
carbon tetrachloride administration [20]. The cellular
mechanisms underlying the fibrosis-promoting effects of
TLR4 in the liver are not yet elucidated.

TLR4 polymorphisms and the functional consequences on
liver fibrosis

SNPs of TLRs influence the vigor of immune responses
in bacterial, viral and parasitic infections. More than 100
SNPs have been identified in human TLR4 genes, of
which the TLR4 T399I and D299G are two common
(frequency 0 to 20% across different ethnicities), highly
co-segregated (80% co-segregation rate), non-synon-
ymous polymorphisms within the extracellular domain
of the TLR4 protein. These SNPs may affect the
strength of interactions with either agonist(s) and/or co-
receptors, leading to decreased recognition of ligands in
an agonist-independent manner [123-125]. These TLR4
SNPs are primarily associated with a blunted response
to inhaled LPS in humans [126]. Many studies report
the association between these TLR4 genetic polymorph-
isms and disease risk. They are associated with suscept-
ibility to infectious diseases including Gram-negative
bacterial infection [127,128], severe malaria [129], bron-
chitis [130-132], and diseases as disparate as inflamma-
tory bowel disease [130], early onset pre-eclampsia
[133], Helicobacter pylori infection, and gastric cancer
[134]. TLR4 SNPs reduce the risk of early acute allograft
rejection. They are not associated with the risk or sever-
ity of either rheumatoid arthritis or systemic lupus
erythematosus [135-138]; multiple sclerosis [139,140].
spondylarthropathies [141], cerebral ischemia [142],
juvenile idiopathic arthritis [143]; and outcome of angio-
graphy [144].

In contrast to the reduced risk of early acute allograft
rejection [111,145], TLR4 SNPs are associated with
delayed progression of hepatic fibrosis [121,146]. A gene-
centric functional genome scan in patients with chronic
hepatitis C yielded a Cirrhosis Risk Score (CRS) signature
consisting of seven SNPs that may predict the risk of
developing cirrhosis [121]. Of these seven SNPs, the
major CC allele of TLR4 encoding p.T399 is the second
most predictive SNP. This allelle confers a threefold
increased risk of fibrosis progression over carriers of the
T399I variant, indicating a protective role in fibrosis pro-
gression of the c.1196C—T (rs4986791) variant at this
location (p.T399I), along with another highly co-segre-
gated SNP, c.896A—>G (rs4986790), located at coding
position 299 (p.D299G). Absence of TLR4 or expression
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of the TLR4 T399I and/or D299G SNPs confers reduced
LPS responsiveness in cultured human or mouse
HSCs [72]. These SNPs reduce NF-xB activation and
pro-inflammatory cytokine expression, and attenuate
downregulation of the TGF-B pseudoreceptor BAMBI in
HSCs after LPS stimulation. These SNPs also reduce cell
growth and lower the apoptotic threshold in mouse hepa-
tic stellate cells after apoptotic stress [72]. In addition to
these two missense variants, other variants of the TLR4
gene have also been independently associated with the
risk of fibrosis by dense genotyping and association test-
ing, findings that warrant further mechanistic studies
[146]. Thus, although specific SNPs confer LPS hypo-
responsiveness and increased susceptibility to infection,
they reduce the likelihood of end-organ damage due to
progressive scarring. Further studies are needed to
explore if these SNPs also affect fibrogenesis through
responses in other cell types and if they affect the
response of TLR4 to endogenous ligands (Figure 3).

Future prospects

Because TLR4 signaling has been identified as a key
inflammatory and fibrogenic signal in injured liver and
HSCs, interventions to inhibit the intracellular signaling
associated with TLR4-IL-1R might be effective in redu-
cing the inflammatory actions of TLR4-mediated liver
injury and dampening liver fibrogenesis [147]. A peptide
termed P13 limits the LPS-induced inflammatory
response and enhances survival in murine models of
inflammation [148]. Pharmacological inhibition of endo-
toxin responses has also been achieved by targeting the
TLR4 co-receptor, MD2 [149]. Several small molecule
inhibitors of TLR4 are currently being tested, including:

(1) Lipid A mimetics (for example, E5564 and CRX-
526 [150,151]) which bind to the TLR4-MD2 complex
but lack intrinsic activity and thus prevent binding of
the lipid A portion of LPS and subsequent TLR4
activation

(2) TAK-242, which exerts its inhibitory effects at the
intracellular domain of TLR4 [152]. Both E5564 and
TAK-242 are currently being tested in phase III clinical
trials in patients with septic shock.

(3) Soluble fusion proteins of the extracellular domain
of TLR4 and MD2 or TLR4/MD2/IgG-Fc fusion protein
that bind LPS. They specifically inhibit LPS-induced
NF-xB and JNK activation, and abolish LPS-induced
secretion of chemokines (MCP-1) and cytokines (IL-6)
from HSCs [153]. This soluble receptor might provide a
new biologic agent in the prevention and therapy of
liver fibrosis and other diseases in which TLR4-mediated
signal transduction plays a pathological role, such as in
alcoholic liver injury and non-alcoholic steatohepatitis.

(4) Fc/fusion protein or antagonists of TREM-1 (trig-
gering receptor expressed on myeloid cells-1), which
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belongs to another pattern recognition receptor family.
This molecule synergizes with TLR4, and mediates the
inflammatory responses of hepatic macrophages and
endothelial cells to LPS. Blockage of TREM-1 limits
LPS-induced inflammatory responses and injury [154].

By contrast, synthetic TLR4 agonists may boost the
protective innate immune responses against infection
[155]. Examples include alpha-1 acid glycoproteins,
which are a class of lipid A mimetics composed of a
monosaccharide unit with an N-acylated aminoalkyl
aglycon spacer arm. Increasing evidence suggests that
immune modulators such as TLR4 ligands or agonists
could also be successfully used as therapeutic agents in
infectious liver diseases, such as HBV and HCV
[93,156].
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