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Gaussian Light Model in Brightfield 
optical projection tomography
olli Koskela  1,2, Toni Montonen  1, Birhanu Belay  1, Edite figueiras  3, Sampsa pursiainen  4 
& Jari Hyttinen  1

This study focuses on improving the reconstruction process of the brightfield optical projection 
tomography (OPT). OPT is often described as the optical equivalent of X-ray computed tomography, 
but based on visible light. the detection optics used to collect light in opt focus on a certain distance 
and induce blurring in those features out of focus. However, the conventionally used inverse Radon 
transform assumes an absolute focus throughout the propagation axis. In this study, we model 
the focusing properties of the detection by coupling Gaussian beam model (GBM) with the Radon 
transform. the GBM enables the construction of a projection operator that includes modeling of the 
blurring caused by the light beam. We also introduce the concept of a stretched GBM (SGBM) in which 
the Gaussian beam is scaled in order to avoid the modeling errors related to the determination of the 
focal plane. Furthermore, a thresholding approach is used to compress memory usage. We tested the 
GBM and SGBM approaches using simulated and experimental data in mono- and multifocal modes. 
When compared with the traditionally used filtered backprojection algorithm, the iteratively computed 
reconstructions, including the Gaussian models GBM and SGBM, provided smoother images with higher 
contrast.

The imaging of samples in the mesoscopic size range of few millimeters to a centimeter is important for under-
standing the processes of a biological system, such as embroyos, organs or organoids of a small animal. One 
prominent imaging technique for imaging these mesoscopic samples natively in 3D is optical projection tomog-
raphy1,2 (OPT), which has been successfully applied in the examination of zebrafish3–5, gene expression6–8, small 
organs9–12, tissue structures13–16, cells17–19 and hydrogels20,21. OPT can be used also to complement selective plane 
illumination microscopy3,22. To further enhance the information content acquired from OPT, the focus of this 
study is the inverse problem of reconstructing the sample from the image data.

In brightfield OPT, a wide-spectrum light beam propagates through a semi-transparent sample and projection 
images (shadowgrams) are recorded from a number of angles around the sample. OPT could be described as the 
optical equivalent of X-ray computed tomography (CT), and the associated analytic inversion algorithm of X-ray 
CT, filtered backprojection (FBP), has been used to reconstruct brightfield OPT images with reasonable success. 
There is, however, one major difference between X-ray CT and OPT concerning the detected ray geometry. The 
X-rays that penetrate the sample are considered to be straight lines but, in contrast, the focusing objectives in the 
OPT detection path shape the light beam to a Gaussian bell-shaped intensity profile23–25. The Gaussian shape has 
a certain focal distance, and in the projection images, blurring is induced into particles depending on their dis-
tance from the focus. This blurring is further seen in a decrease of radial resolution in the reconstructions. Hence, 
this paper focuses on incorporating the Gaussian shape, i.e., the Gaussian beam model (GBM), into the forward 
model of brightfield OPT with the aim of increasing the reconstruction accuracy through inversion of this 
enhanced model. The combined forward model is a nested convolution of type R B= ⋅y ( )K  where inner func-
tional K describes the blurring. In standard Radon transform there is no blurring and  = idK .

The blurring properties of the objective can be parametrized using numerical aperture (NA)26. The NA 
describes a trade-off between lateral resolution and longitudinal resolution and is directly related to the Rayleigh 
range of the imaging system, which describes the elongation of the Gaussian shape. In our analysis, blurring is 
considered to be a continuous function, symmetric to both sides of the focal distance, and GBM is represented by 
equation τ π τ= −K z w z w z( , ) 2/( ( )) exp( 2 / ( ))L L L

2  with w(zL) = w0(1 + ((zL − z0)/zr)2) where NA and Rayleigh 
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range are related through NA = w0/zr. This approach does not consider the focality as a discrete value as com-
monly used depth-of-field (defined as twice the Rayleigh range1). Traditionally, objectives with low NA are used 
in OPT to cover at least half of the sample into depth-of-field at once. Long depth-of-field attempts to create 
conditions as close as possible for the assumed detection of straight lines, but also limits the lateral resolution.

Previously, decreasing the effects of the Gaussian beam shape have also been studied using image 
post-processing2,27,28, Fourier beam propagation with regularized inversion29, and multifocal acquisition19,30–32. In 
multifocal acquisition, several projection images are taken from each imaging angle and then fused into a single 
image. The fusion algorithm is chosen so that the focal parts should be preserved in the fused image. A practical 
implementation of multifocal acquisition is helical scanning3,33. In this study, multifocal acquisition is considered 
and compared with the results of the GBM.

Regarding fluorescence OPT, which detects the emission of excited fluorescent molecules instead of atten-
uation shadowgrams, several approaches to counter the blurring of particles in the reconstruction have been 
published. These include modified FBP and probabilistic inversion with weights based on light properties34,35. 
In addition, research on fluorescent OPT reconstruction problem includes the deconvolution of reconstructions 
using point spread function36 and adaptation of fluorescent X-ray reconstruction method37. Furthermore, the 
GBM has already been successfully applied to fluorescence OPT38. In contrast to brightfield OPT, which is the 
transmission of light through a domain, fluorescence is an emission-sources inside a domain problem, and there-
fore motivating a validation study in the brightfield case.

When coupled with the Radon transform, the GBM enables both the focal and blurred parts of a detected 
light beam to be included into a single projection operator38. As a result, the projection data can be used for an 
extended angular aperture. Consequently, the GBM can be expected to improve the reconstruction quality when 
compared with the inversion of the plain Radon transform. The incorporation of the GBM, however, leads to 
increased memory consumption and longer computation times during the inversion stage. Furthermore, as a 
deblurring method, the GBM-based inversion approach can be sensitive to measurement inaccuracies, such as 
focusing errors.

To decrease the consumption of memory, we used a thresholding approach where low values of beam intensity 
profile are set to zero based on the on-axis value along the propagation, i.e., the profile is enveloped. Furthermore, 
we introduce the concept of a stretched Gaussian beam model (SGBM), where the Gaussian beam is scaled in 
order to avoid the modeling errors related to the error of positioning the sample’s center of rotation in the focal 
plane. Scaling is achieved by multiplying the Rayleigh range zr with a constant we call strecthing constant cS, i.e., 
z c zSr r, while keeping w0 in its original value. Analysis on choosing cS is discussed in the Methods section. 

Another essential computational improvement in using the SGBM approach is that it allows a significant reduc-
tion in the memory consumption when compared with the GBM due to the faster decay of the off-axis values. For 
computing a reconstruction with the GBM or SGBM, we used a steepest descending minimization method that 
has already been described in our previous work39. The minimization is regularized with total variation (TV)40 to 
increase the robustness of the computation. The use of the GBM and SGBM in the reconstruction process was 
tested in simulated and experimental studies using both mono- and multifocal projection modes. The reconstruc-
tions are compared with standard FBP reconstructions.

Figure 1 illustrates the different properties of GBM and SGBM imaging in 2D plane. Depicted with a dashed 
line, the ideal shape of detected GBM light has a Gaussian shape, centered at the focal point. In practice, how-
ever, plain hydrogel or cell culturing samples have no known point in the center to focus on. For this reason, it 
is likely that even an experienced technician would be unable to place the sample center into the focal point, 
and thus induces a modeling error in the direction of propagation, depicted in the figure with a solid black line. 
Misplacement orthogonal to propagation can be corrected easier during the imaging41 or by processing projec-
tion data before reconstruction42–45. However, the light model requires center of rotation to be at focal point in 
both coordinates. An SGBM beam (marked in the figure with gray solid color) can be interpreted in two ways: 
firstly, the physical relation is with Rayleigh limit, which is elongated without altering the beam width at focal 
point; and secondly, in a numerical sense, GBM and SGBM can be thought of as a weighting of the Radon trans-
form beam, where the SGBM is thus a balance of Gaussian details and the plain Radon transform.

To analyze the performance of GBM and SGBM, we used both simulated and experimentally acquired 
data. In the simulations, we computed monofocal data with different focal offsets and also multifocal data. 
Reconstructions were computed with standard FBP, and iterative solution TV with GBM and SGBM, where dif-
ferent strecthing constant were applied when using SGBM. The experimental data was imaged from two samples: 
one including sparse population of beads and the other a zebrafish embryo which is a large continous object. In 
both samples, the base volume was a hydrogel suspension. Reconstructions from experimental data were com-
puted with FBP, GBP and SGBM with stretching constant 5. In both simulated and experimental multifocal 

Figure 1. Illustration of GBM light propagation along axis zL. Dashed line: a GBM beam with focus at zL = 0. 
Solid black line: a true Gaussian imaging beam with unknown focal offset. Gray line: SGBM beam, centered 
at zL = 0, has Gaussian form and the same beam waist as GBM, but does not underweigh the values at zL = 0 as 
much as misplaced GBM.
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cases, the multifocal projections were flattened into single all-in-focus projections before reconstructing. The 
experiments in this work are summarized in Table 1 and labeled with letteres (A)–(X). In total, we present ten 
reconstructions from monofocal, simulated data, (A)–(J); four reconstructions from multifocal, simulated data, 
(K)–(N); four reconstructions from monofocal zebrafish data, (O)–(R); and five reconstructions from multifocal 
bead data, (S)–(X), one of which, (X), is monofocal by using only one focal plane.

Results
Results with simulated, mono- and multifocal data. Concerning the simulated experiments (A)–(J), 
we concentrated on the effect of focal offset, i.e., the unknown distance of focal point from the center of the sam-
ple. The effect was analyzed by simulating projection data with different offset and comparing the reconstructions 
of inverse methods that assumed no offset in the projection data. The forward model in simulations was a GBM 
without the hard thresholding of the beam.

The relative error measure (REM) and total variation error (TVE) values of (A)–(J) are presented in Table 2 
and visualized in Fig. 2. The reconstructions (A)–(J) are shown in Fig. 3. With respect to REM, FBP was found to 
perform generally better than GBM. In both FBP and GBM, the reconstructed particles were blurred tangentially 
corresponding with the projection directions parallel to the light beam. The inversion errors increased as the 
offset was increased from 0 μm to 75 μm and further to 225 μm. For these offsets, the REM of GBM was 1.6 and 
2.6 times that of the no-offset case, and the REM of FBP was 1.3 and 4.9, respectively. TVE, on the contrary, did 
not provide a clear difference between the monofocal approaches. As the focal offset was increased, the overall 
contrast of the reconstruction and tangential blurring decreased, but FBP yielded more prominent streaking 
artifacts as seen in cases (A) to (C) to (E). Using the SGBM, a trade-off between roundness and smoothing was 
achieved. The REM decreased, and the contrast of the reconstructions increased along with the stretching, as 
seen in Table 2. However, the shape of the particles seems to have been slightly better maintained with moderate 
stretching.

In the multifocal simulations, the reconstructions (K)–(N) presented in Fig. 3 had particles with less elon-
gation and with less prominent streaking. In terms of the REM values presented in Table 2, the reconstruction 
approaches GBM* (L), SGBM (M) and (N) and FBP (K) were all roughly of the same order, although FBP pro-
vided the lowest REM and GBM* the best contrast. Moreover, compared with the monofocal REM values, multi-
focal reconstructions were on the lower end of the error value scale. The TVE values, however, were relatively high 
for reconstructions from multifocal data.

Results with experimental, monofocal data from the zebrafish. The reconstructions (O)–(R) of the 
experimental monofocal data from the zebrafish embryo are presented in Fig. 4. As shown by the visual analysis 
of region of interest, the GBM reconstruction (P) provided the best contrast, but was smoother than any of the 
other methods. In the case of SGMB using the kernel K5 (Q), a balance between tangential blurring was achieved, 

ID Focal Offset (s) (μm) Algorithm
Gaussian 
model β1 β2 Data acquisition mode

(A) 0 FBP

monofocal, synthetic

(B) 0 TV GBM: K1 1E-10 1E-10

(C) 75 FBP

(D) 75 TV GBM: K1 1E-10 1E-10

(E) 225 FBP

(F) 225 TV GBM: K1 1E-8 1E-10

(G) 225 TV SGBM: K5 1E-8 1E-10

(H) 225 TV SGBM: K10 1E-8 1E-10

(I) 225 TV SGBM: K20 1E-8 1E-10

(J) 225 TV SGBM: Kδ 1E-8 1E-10

(K) −300, 0, 300 FBP

multifocal, synthetic
(L) −300, 0, 300 TV GBM*: ⁎K1 1E-10 1E-10

(M) −300, 0, 300 TV SGBM: K5 1E-10 1E-10

(N) −300, 0, 300 TV SGBM: Kδ 1E-10 1E-10

(O) Not specified FBP

monofocal, zebrafish 
embryo

(P) Not specified TV GBM: K1 1E-8 1E-10

(Q) Not specified TV SGBM: K5 1E-8 1E-10

(R) Not specified TV SGBM: Kδ 1E-8 1E-10

(S) Not specified FBP

multifocal, beads
(T) Not specified TV GBM*: ⁎K1 1E-8 1E-10

(U) Not specified TV GBM*: K5 1E-8 1E-10

(V) Not specified TV GBM*: Kδ 1E-8 1E-10

(X) Not specified FBP monofocal, beads

Table 1. The identifiers and descriptions of the reconstructions.
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ID
Focal 
offset

Inversion 
kernel

Dynamic range

REM (%) TVE Data acquisition modemin max

(A) 0 μm FBP −0.01 0.82 180 323.0 monofocal simulations

(B) 0 μm K1 −0.07 1.13 440 778.1

(C) 75 μm FBP −0.01 0.33 229 323.0

(D) 75 μm K1 −0.05 0.42 723 774.3

(E) 225 μm FBP −0.04 0.25 888 323.0

(F) 225 μm K1 −0.00 0.04 1157 387.7

(G) 225 μm K5 0.00 0.07 721 403.2

(H) 225 μm K10 0.00 0.08 652 405.5

(I) 225 μm K20 0.00 0.08 622 406.6

(J) 225 μm Kδ 0.01 0.13 463 432.0

(K) FBP 0.01 0.29 246 323.0 multifocal simulations

(L) ⁎K1 −0.03 0.46 404 806.8

(M) K5 −0.02 0.38 428 754.4

(N) Kδ −0.02 0.37 350 862.8

Table 2. The numerical errors of the reconstructions (A)–(J) obtained with the numerical phantom and 
simulated Data.

Figure 2. Scatter plot of (a) REM and (b) TVE values of the reconstructions (A)-(N); and (c) a bar chart 
showing the respective dynamical ranges. The REM values of the SGBM reconstructions are lower than GBM K1 
and TVE values at the same level. Controversially, with multifocal data, REM values are relatively low but TVE 
values high.
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but with a subsequent decrease in contrast. FBP (O) and the Radon kernel Kδ SGBM (R) provided very similar 
reconstructions with the sharpest details of (O)–(R), but with also imminent streaking and halo artifacts.

Results with experimental, multifocal data from the bead sample. In Fig. 5, the multifocal (S)–(V) 
and monofocal (X) reconstructions are compared using the experimental data of the bead sample. Consistent 
with the above reported results of multifocal simulations, the multifocal data provided more details in the 
reconstructions in all cases. When compared with the monofocal FBP reconstruction (X), some particles were 

Figure 3. The reconstructions (A)–(J) obtained with the numerical phantom and simulated monofocal data. 
The region of interest shown below each reconstruction (rows 2 and 4) is from the bottom left part of the 
sample. Focal offset is 0 μm in (A) and (B), 75 μm in (C) and (D) and 225 μm in (E)–(J). The reconstructions 
(K)–(N) obtained with the numerical phantom and simulated multifocal data. The region of interest shown 
below each reconstruction is from the bottom left part of the sample. The scalebar length is 500 μm in rows 1, 3 
and 5 and 50 μm in rows 2, 4 and 6.
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reconstructed only from the multifocal data. SGBM reconstruction (U) with the kernel K5 provided the same 
effect of trade-off as in monofocal case. Reconstruction (U) is sharper than blurry GBM* (T), and also shows less 
streaking and halo artifacts around the particles. Additionally, (U) has a smoother background compared with 
the Radon inversions FBP (S) and Kδ SGBM (V).

Figure 4. The reconstructions (O)–(R) obtained with the experimental zebrafish embryo sample and 
monofocal data and limited to the regions of interest. The location of the region of interest are marked in the 
top-left image. Scale bar in upper row is 250 μm and in lower row 25 μm. Region of interest has a width and 
height of 250 μm.

Figure 5. The reconstructions (S)–(V) obtained with the experimental bead phantom and multifocal data. (X) 
For comparison, the reconstruction obtained with the experimental bead phantom and monofocal data. The 
regions of interest are marked in image (S) and have a width and height of 500 μm. The scale bar length in row 1 
is 500 μm and 50 μm in rows 2 and 3.
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computational times and memory consumption. Computing one reconstruction of the 
TV-regularized iteration using a single processor thread took approximately 7 minutes CPU time and required 
9.7 GB of RAM. With parallel computing using the Lenovo P910 workstation, computing times were in the order 
of 10 to 60 seconds, mainly depending on the used kernel. Using the present hard-thresholded SGBM approach, 
the memory consumption during the inversion stage is 5 to 15 times that of the plain inverse Radon transform. 
However, with GBM, the relative system size is 60 to 100 times that of the plain inverse Radon transform.

Discussion
This study focused on the mathematical modeling of the brightfield version of optical projection tomography 
(OPT). We introduced the stretched Gaussian beam model (SGBM) and investigated its effect on imaging accu-
racy and artifacts. SGBM uses an elongated blurring kernel compared with the conventional Gaussian beam 
model (GBM) in order to provide more robustness with respect to forward errors and measurement noise. 
Additionally, similar to GBM, it also enables the exploitation of a larger projection aperture than the classical 
model of one-dimensional light beams. SGBM was evaluated with both numerical and experimental data as 
well as for both monofocal and multifocal measurements. As reconstruction techniques, we used total variation 
regularized (TV) iterative solutions for GBM and SGBM. We compared these reconstructions with filtered back-
projection (FBP) computed reconstructions.

SGBM was found to be an efficient and robust surrogate for the GBM with significantly lower memory con-
sumption, which enabled computations for larger image resolutions. The SGBM with the kernel K5 seemed to 
provide a sought-after trade-off between the image sharpness and the reconstructed object shape, when the for-
ward modeling errors were large. This was observed to be the case for the large 225 μm focal offset in numerical 
experiments (E)–(J) and, especially, with the experimental data of the bead sample for which the reconstruction 
(T) based on GBM were overly smooth. Based on the region of interest comparisons, the streaking artifacts and 
halo effects were reduced in the SGBM reconstructions (Q) and (U) using K5 when compared with the respective 
FBP reconstructions (O), (S) and (X) or Kδ reconstructions (R) and (V). Preliminary tests with alternative regu-
larization parameter values suggested that some artifacts could also be diminished by changing the regularization 
parameter values, but the major structural differences observed between the methods remained the same.

In addition to the gains in computational efficiency, a further motivation to use SGBM instead of GBM is the 
uncertainty related to the model parameters. In practice, the accurate positioning of the focal plane to the center 
of the sample is difficult if there is no reference point in the center of the sample. In this study, we tested several 
values of stretching factor cS and of the focal offset. The results indicate, that the choice of cS seems to be stable as 
the difference between K5, K10 and K20 was quite small in simulations in terms of relative error measure (REM) 
and total variation error (TVE).

The monochromatic light beam assumption used in this study included some errors because the Rayleigh 
range varies according to the wavelength of the light. We used only a single wavelength of 600 nm in our compu-
tations, but in reality, the white LED light has a spectrum in the order of 400 to 750 nm, which affects the Rayleigh 
length by up to ±25%. The GBM might benefit from having a spectral kernel, but in the case of SGBM, the elon-
gation of the kernel already decreases the effect of spectral mismatch.

In multifocal imaging, a higher numerical aperture (NA) objective can be used to decrease the focal spot size, 
and thereby improve resolution close to the focal spot30. The cost of this is an increased overall level of blurring. 
However, to tackle the blurring, several methods can be employed to create a composite image with only focused 
details. In this study, we applied averaging which we consider a valid, although not necessarily the best, approach 
for multifocal data32,46,47. Alternatively, a so-called all-in-focus projection image can be formed by combining the 
focal parts of multiple projection images for a single angle and different focal plane distances. The final recon-
struction can then be obtained via a standard inversion approach, such as FBP. Examples of all-in-focus fusion 
methods include3,48,49. In this study, we applied multifocal imaging without changing the objective, and hence the 
same NA throughout. The reconstructions computed from multifocal data provided finer details than reconstruc-
tions from monofocal data in all cases, even with the simplifying assumptions regarding creation of the composite 
image and the choice of objective.

A recent study compared several reconstruction techniques in fluorescence OPT50. They concluded that a 
reconstruction method based on point spread function analysis, which GBM and SGBM are, is good for non-
sparse objects, such as the zebrafish embryo. On the other hand, for sparse objects, such as the bead sample, a 
different approach based on deconvolution produced better results. Our results seem to indicate that same might 
hold in brightfield OPT as well: visually more benefits are seen using GBM or SGBM with the zebrafish embryo 
when compared with the bead sample.

For practical applications, further quantitative verification is required and also motivated by the results of this 
study. The regularization weights in our reconstruction were minimal to make the effects of GBM and SGBM 
visible. In practice, moderately higher regularization should be applied, especially with the SGBM since visible 
streaking artifacts and halos were present in the TV reconstructions. The artifacts occurred because the optical 
and linear beam projections for a given image detail did not match in the directions where optical the beam was 
out of focus. Therefore, without an enhanced beam model, the OPT has a similarity to a limited-angle or sparse 
data imaging problem (see, e.g.39). Consequently, in addition to the regularization, the applied beam model was 
found to be essential to reduce the artifacts. The beam model might also turn out a valuable addition for upgrades 
of existing instrumentation, such as presented in51, where non-telecentric performance of low magnification 
lenses may turn out problematic. Furthermore, implementation of the blurring kernel in three dimensions would 
be a natural continuation of this work. This might, however, be difficult due to the already relatively large 2D 
system sizes obtained in this study. For example, inversion of the multifocal model with three different focusing 
kernels was not possible due to memory constraints. Therefore, it will be necessary to develop methods other than 
hard thresholding to compress the kernel.
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Using different NA objectives, also the balance between actual lateral imaging accuracy and numerical com-
pensation of the longitudinal resolution should be studied. To date, mostly low NA objectives with higher longi-
tudinal resolution have been used. However, appropriate modeling, as shown here, will enable the use of higher 
NA objectives and take advantage of their higher lateral resolution.

conclusions
We have reported the use of Gaussian light beam model (GBM) in the reconstruction process of brightfield 
OPT. Using simulations, we studied the effect of focal offset, i.e., the difference of rotational center to the focal 
plane along the propagation axis. We found that the model was more robust to the focal offset via stretching the 
Rayleigh range artificially. This stretched Gaussian beam model (SGBM) was further tested with experimental 
data where, similarly to the simulations, the standard GBM produced overly smooth reconstructions while SGBM 
was able to balance between sharp details and a lower number of streaking artifacts.

Materials and Methods
Radon transform and blurring functional. The standard Radon transform52   →: 2  is a line integral 
of a target function f along a given line L. Points (x, y) along L can be parametrized as

α α
α α

= +
= − +

x z z s
y z z s
( ) sin cos
( ) cos sin (1)

L L

L L

where s is the distance of L from the origo, α is the angle between normal n of L and x-axis, and zL is the arclength 
along L. The geometry of the Radon transform is presented in Fig. 6(a). With respect to the pair (α, s), the Radon 
transform of the function  →g: 2  is given by

 ∫α = .
−∞

∞
g s f x z y z dz( , ) ( ( ), ( )) (2)L L L

The function f typically represents the image to be reconstructed. In this study, we consider f to be a blurred 
image of the form f fK , where   × →: 2 2  is a linear blurring operator following from the GBM, 
similarly as already introduced to florescence OPT38. The source space of K is composed by the Cartesian prod-
uct  ×2  between the image space and the viewing angle. The operator K is determined by a parameter we call 
blurring kernel  →K: 2 , i.e., a function from the image space to a light intensity distribution. Illustrated in 
Fig. 6(b), the kernel is an axi-symmetric function in the coordinates (xL, zL) in which xL is the distance to L. The 
kernel can also be interpreted as the shape of the individual light beams L propagating through sample. The focal 
spot of the beam, zL, is the position of the narrowest part of L. The blurring increases along with the value of |zL|.

In Fig. 6(b), the blurring kernel and the Radon transform are superimposed. The line LK is orthogonal to L, 
and it intersects L at zL. In the coordinates (1), the blurred image =g fK  is given by

 ∫α τ τ τ τ= − −
−∞

∞
f s z K z f x s y s d( )( , , ) ( , ) ( ( ), ( )) , (3)K L L K K

where (xK(zK), yK(zK)) are the coordinates along line LK and can be expressed similar to (1) as follows:

Figure 6. Schematic images for the Radon transform and the related Gaussian beam model (GBM). (a) The 
Radon transform integrates its target distribution along the line L. (b) The GBM describes a blurring process 
corresponding to an integral along the line LK perpendicular to L. The hourglass-shaped contours illustrate the 
blurring kernel of the Gaussian beam.
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The blurring operator described in Eq. (3) is a convolution between the blurring kernel K and the image f 
computed at the point (x(zL), y(zL)). In other words, for each point in line L, the image function f is convoluted 
orthogonally along the line LK with respect to the blurring kernel K.

To have a physical meaning, the blurring kernel τ ∈K z( , ) 2. corresponds to the normalized intensity profile 
of an axi-symmetric Gaussian beam23,24 and it is given by
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here, zL is the axis of the propagation and τ is the radial distance from the zL-axis. The focal spot is placed at z0, and 
w0 is the width of the beam waist, i.e., the beam width at the focal spot. The Rayleigh range is zr = πw0

2/λ, where 
λ is the wavelength of the beam. The Rayleigh range and numerical aperture (NA) of the objective are related 
through NA = w0/zr. NA describes the focusing properties of the objective.

Stretched gaussian beam model. To reduce the forward modeling errors related to practical detection 
of the focal plane, we introduce the stretched Gaussian beam model (SGBM) in which the Rayleigh range zr is 
stretched, i.e., substituted with an expanded value zr → cSzr with cS ≥ 1.

The SGBM can be interpreted as a surrogate forward approach in which the beam width is narrower when 
compared to the exact GBM. The motivation for using the SGBM is the ill-conditioned nature of the image 
deblurring task, because the SGBM allows the use of beam specific parameters in the forward model while ensur-
ing that errors, such as the focal offset, will not be amplified in the inversion process.

The blurring kernel stretched by the factor cS is denoted with KcS
. For cS = 1, the beam is non-stretched, i.e., 

K1 = K. Furthermore, for cS → ∞ the beam approaches an intensity profile that is constant in the direction of 
propagation. If w0 → 0 simultaneously with cS → ∞, then K∞ → δ with δ denoting the Dirac’s delta53. We denote 
the case K = δ with Kδ and it corresponds to no blurring, i.e., the standard Radon transform.

As previously mentioned and illustrated in Fig. 1, the choice of value for cS depends on knowledge of the imag-
ing system. In this paper, we assume that the shape of the detected beam is several orders more accurate than the 
focusing distance, i.e., the values of NA, λ and w0 depend on the components of the system, and uncertainty of 
their values is not discussed here. Instead, the placement of the sample, and thus the focusing distance z0 depends 
on the operator of the image acquisition, and its value is more prone to errors.

In the Gaussian model, the width of the beam is described by the Eq. 6 with respect to propagation coordinate 
z. Including the stretching of the Rayleigh range zr, we can use the Eq. 6 to formulate an expression to the stretch-
ing factor cS, which is

=
−

.

−( )
c

1 (7)
S

z z
z

w z
w

2

( )
r

0

0

In Eq. 7, the expression z − z0 can be used to estimate the discrepancy between of true, unknown focal distance 
and the range by which the focal distance is assumed to vary. For example, let us consider the case where the 
desired focal distance is in the center of the sample (z0 = 0), and we assume that the furthest possible true place-
ment has a maximum 225 μm offset, yielding z − z0 = 225 μm. For NA = 0.14 and λ = 600 nm, the Rayleigh range 
has the value zr = 9.7 μm. To have the maximum weight on the reconstruction on the focal plane at the extreme 
offset, the beam width of the stretched beam at z = 225 μm should match w0, in which case cS → ∞ since w(z) = w0 
(this is natural, since w(z) was supposed to be of Gaussian shape and stretching is trying to force a straight line, 
i.e., the Radon transform). Thus, the relation w z

w
( )

0
 describes the weighting of the uncertainty. A smaller fraction 

means more stretching, and that the focal offset is assumed to be in the extreme of its supposed range. A higher 
fraction, i.e., less stretching supposes that the real focal offset is likely to be close to z0 = 0. Further, assuming that 
the focal offset is likely closer to the extreme offset; and weighting the extreme offset to be quite likely and thus 
allowing the stretched offset to only double the initial beam width at z0, that is, w(225 μm) = 2w0; stretching factor 
should have the value of cS ≈ 23.2 Similarly, the choice of w(225 μm) = 7w0 yields cS ≈ 9.5, or the choice of 
w(75 μm) = 2w0 gives cS ≈ 7.7.

forward operator and inversion algorithm. Our forward operator describes the image information 
collected by the lens from the light propagating through the sample. The forward operator combines the Radon 
transform  with the GBM and SGBM via the blurring functional K. In the following analysis, we additionally 
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assume that the light beams are parallel. The measurement (projection) data y for a given image I, is assumed to 
obey the following linear model with an additive noise term n:

R B ∫ ∫ τ= + = + .
−∞

∞

−∞

∞
y I n Kf d dz n (8)K L

We emphasize that the operators  and  cannot be commuted — blurring depends on the depth, but the 
Radon transform suppresses information in the direction of the light propagation. Hence, physically interpreted, 
it is a single operator that describes the portion of light propagation collected by the lens. If K(τ, z) = δ(τ) with δ 
denoting the Dirac’s delta, then the operator of (8) corresponds to the Radon transform, i.e., = f fKR R B .

For reasons of practical memory consumption, the kernel entries below a given (hard) threshold value were 
set to zero in all computations. We used a threshold value of e−2KcS

 (0, zL), i.e., e−2 times the on-axis value along 
propagation.

To compute a reconstruction, we use the following iteration:
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Here, Pi denotes the i-th image pixel. The first term penalizes the jumps over the edges and the second one 
the norm of f and β1 and β2 are the regularization parameters, i.e., weights given for the respective terms. If this 
iteration converges, it minimizes the regularized objective function

= − +F x x y x( ) L 2 D (12)2
2

1

in which the latter norm is the total variation of x, if β2 = 039,40. We used a low value for β2 to ensure the invertibil-
ity of D and thereby the converge of the algorithm. L is the matrix formulation of the combined transform R B, 
formed by inserting the Gaussian shape along each detection line. A detailed analysis of the algorithm is pre-
sented in39. The MATLAB code used in this article is provided at54 with example data. Another, complete data set 
imaged by us is available at55.

numerical experiments. In estimating the blurring kernels, we approximated the brightfield with a single 
wavelength λ = 600 nm in air, further adjusted for sample immersion liquid, in this case water with a refractive 
index of 1.33. The Rayleigh range had the value zr = 9.7 μm following from the experimental setup objective of 
NA = 0.14. For forward solution, we used standard Gaussian kernel K1 with the focal offsets 0, 75, and 225 μm. 
Zero-offset K1 is shown in Fig. 7(a). In order not to commit an inverse crime, the forward solutions in the simu-
lations were computed with non-thresholded K1. All of the inverse solutions were computed using thresholded 
kernels: K1 without focal offset for GBM, and K5, K10, K20 and Kδ for SGBM. K5 and K20 are shown in Fig. 7(b,c), 
respectively. For comparison, FBP52 reconstructions were computed using MATLAB’s built-in function iradon 

Figure 7. (a) The Gaussian beam kernel K corresponding to NA = 0.14 and λ = 600 nm. (b) Extended kernels 
K5 and (c) K20. (d) A multifocal kernel K* = (K(1) + K(2) + K(3))/3 in which NA = 0.14 and λ = 600 nm and the 
focal offsets of K(1), K(2) and K(3) are −300, 0 and 300 μm, respectively. NNZ is the number of non-zero elements 
in the kernel. Horizontal axis is the propagation axis zL and vertical axis is the radial distance τ.
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with Hamming filter. Figure 7 also includes the number of non-zero elements of the kernels as they relate directly 
to the system inverted system sizes.

In multifocal experiments, the projection data of each angle was averaged into a single projection for the 
inversion. The multifocal kernel is referred to as GBM*, and it consists of averaging three K1 kernels with different 
offsets, i.e., = ∑ =

⁎K N K(1/ ) i
N i

1 1
( ) where K(1), K(2), K(3) of the individual focal offsets i = 1, 2, 3. The multifocal 

kernel K* is shown in Fig. 7(d). For reconstructions in simulated cases, we used the GBM with kernel K1 without 
focal offset, and the SGBM with kernels K5, K10, K20 and Kδ; and FBP. The kernels K1, K5 and K20 are shown in 
Fig. 7.

Figure 8(a) shows our numerical phantom that was a square of 512 × 512 pixels with a side length corre-
sponding to 1 mm and particle diameter to 10 μm (approximately 19 pixels). The background had the attenuation 
coefficient of zero (i.e., that of the void) and the particles had the attenuation coefficient of one. The numerical 
projection data comprised 400 projections in the range [0.9°, 360°] with 0.9° angular increment. Projection data 
were simulated using kernels K1 with no focal offset (shown in Fig. 8(b) and with 75 and 225 μm focal offsets 
(the 225 μm offset data are shown in Fig. 8(c)). In total, we present 15 simulated studies labeled with the letters 
(A)–(N) and combinations of these are presented in Table 1 showing the forward and inverse parameters used.

As the measurement noise, we used additive normal distributed noise with standard deviation 0.01 relative to 
the maximal noiseless data entry. For the GBM and SGBM reconstructions, we used three iteration steps. After 
trying different iteration lengths up to ten steps, three steps were found to be sufficient.

The numerical accuracy was analyzed via the relative error measure (REM) which we defined as the relative 
1-norm ∫=f f dxdy1  between the phantom and the reconstruction frec with its minimum shifted to zero and 

maximum scaled to one. We expressed REM in percentages as =
−

REM 100 ,
f f

f

relative phantom 1

phantom 1

 where 

= −
−

f f
f

f frelative min
rec

max min
. The 1-norm was chosen because it is known to be small for sparse distributions with 

only a few non-zero values56,57, such as the cell phantom distributions used here. REM value measures the general 
quality of the image without penalizing the change in dynamic range. To analyze the dynamic accuracy, we eval-
uated the following relative total variation error (TVE):

∫=
−

= ∇ .
f f

f
f fTVE 100 with dxdy

rec phantom TV

rec TV
TV

experimental data. The experimental data were obtained from two experimental samples, one being a 
zebrafish embryo and the other composed of hydrogel with small polymer beads as cell phantoms. We used 
the in-house OPT20,21 where the projection images were captured using an sCMOS camera (ORCA-Flash 4.0, 
Hamamatsu, Japan) with an infinity-corrected long working distance objective lens of either 5X for bead sam-
ple (Edmund, USA, NA = 0.14) or 10X for zebrafish embryo (Edmund, USA, NA = 0.28). The instrumentation 
included an iris diaphragm (Thorlabs, USA) and a filter wheel (Thorlabs, USA) between the objective and the 
camera, but these were not in use for the data used in this article, i.e., the iris was fully open, and there was no 
filter in the filter wheel. The projection data of both samples were acquired with a 0.9° interval from 0° to 359.1°, 
400 images in total. Before imaging, both samples were manually centered in the x-coordinate using horizontally 
symmetric rotation and along the y-coordinate using the tube walls as a visual aid.

The zebrafish embryo was a two days post fertilization Tg(fli:1a:eGFP) prepared in 1.5% agarose (Sigma 
Aldrichm, Finland) hydrogel with added Tricaine (Sigma Aldrichm, Finland) for anesthetizing the fish. From the 
hydrogel, the fish was then sucked into a fluorinated propylene ethylene (FEP) tube with a syringe. The FEP tube 
had an inside diameter of 2 mm. The sample was imaged after mounting using a 10X objective with an exposure 

Figure 8. (a) The numerical 512 × 512 phantom with the side length of 1 mm and particle diameter of 10 μm. 
(b) The numerical sinogram without focal plane offset and (c) with 225 μm offset in kernel K1. (d) A projection 
image from the zebrafish embryo data set. Reconstruction shown in this article are from a height of 1600 (pixel 
row illustrated with a black line). Image contrast has been adjusted for printability.
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time of 8 ms. Only one focal plane was used for this image set. A single projection from the zebrafish embryo data 
is shown in Fig. 8(d). The reconstructions are computed from a height (pixel row) of 1600.

The keeping and raising of zebrafish stocks was performed with permission of the State Provincial Office of 
Western Finland (permission ESAVI/10079/04.10.06/2015). Care and experimental use of zebrafish embryo was 
carried out in accordance with EU Directive 2010/63/EU on the protection of animals used for scientific pur-
poses; the Finnish Act on the Protection of Animals Used for Scientific or Educational Purposes (497/2013); and 
the Government Decree on the Protection of Animals Used for Scientific or Educational Purposes (564/2013).

The bead sample was prepared from gellan gum (GG) with physical crosslinking via 0.6% (w/w) spermine 
crosslinker, both dissolved in a 10% (w/v) sucrose solution (Sigma Aldrichm, Finland)58. Spherical, black poly-
styrene beads (0.5% v/v) with a 10 μm diameter (Polysciences, USA) were mixed in the hydrogel during gelation. 
For the image acquisition, the sample was placed inside a FEP tube, which had an inside diameter of 2 mm. Two 
additional acquisitions were performed after translating the sample to 600 nm either closer or further to the 
objective lens than the original placement. The multifocal data were then processed by averaging through all three 
projections in each angle. An exposure time of 6.50 ms and 5X objective were used in imaging.

For computations, the data were linearized by scaling the values to interval [10−10, 1] and taking the 10-based 
logarithm (−log10(·)). The center of rotation was corrected manually by shifting the sinogram with different off-
sets and choosing the offset with visually the least amount of circular effects caused by center of rotation offset42,44. 
For memory reasons, the reconstructions were computed on a 512 × 512 pixel grid, and hence the width of the 
sinogram was average downscaled to 512 pixels from the original 2048.

From the experimental data, we present nine reconstructions labeled with the letters (O)–(X) the details of 
which are presented in Table 1. The reconstructions (O)–(R) from the monofocal data of the zebrafish embryo 
were computed using FBP, GBM with kernel K1 and SGBM with kernels K5 and Kδ. Reconstructions (S)–(V) were 
computed from the multifocal data of the bead sample with FBP, GBM with kernel K* and SGBM with kernels 
K5 and Kδ. For comparison, one reconstruction (X) was computed from the bead sample with monofocal data 
using FBP. In GBM and SGBM reconstructions, we used three iteration steps. The values of β1 and β2 are shown 
in Table 1. In the SGBM cases, we report only cS = 5 cases.

Hardware and software used. The computations were performed using a high-end Lenovo P910 
Workstation equipped with two Intel Xeon E5-2697 processors and 256 GB RAM. As the computation platform 
we employed MATLAB version R2016b 64-bit (The MathWorks, Inc.). The MATLAB scripts written for the blur-
ring kernels, Radon transform and the inversion routine (9) have been included in54.

Data Availability
MATLAB codes and data related to this article are shared through Zenodo at https://doi.org/10.5281/zeno-
do.1469361.
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