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Abstract: A massive amount of chalaza with nearly 400 metric tons is produced annually as waste
in the liquid-egg industry. The present study aimed to look for ways to utilize chalaza as a natural
emulsifier for high internal phase emulsions (HIPEs) at the optimal production conditions to expand
the utilization of such abundant material. To the author’s knowledge, for the first time, we report
the usage of hen egg chalaza particles as particulate emulsifiers for Pickering (HIPEs) development.
The chalaza particles with partial wettability were fabricated at different pH or ionic strengths by
freeze-drying. The surface electricity of the chalaza particles was neutralized when the pH was
adjusted to 4, where the chalaza contained a particle size around 1500 nm and held the best capability
to stabilize the emulsions. Similarly, the chalaza reaches proper electrical charging (−6 mv) and size
(700 nm) after the ionic strength was modified to 0.6 M. Following the characterization of chalaza
particles, we successfully generated stable Pickering HIPEs with up to 86% internal phase at proper
particle concentrations (0.5–2%). The emulsion contained significant stability against coalescence
and flocculation during long term storage due to the electrical hindrance raised by the chalaza
particles which absorbed on the oil–water interfaces. Different rheological models were tested on the
formed HIPEs, indicating the outstanding stability of such emulsions. Concomitantly, a percolating
3D-network was formed in the Pickering HIPES stabilized by chalaza which provided the emulsions
with viscoelastic and self-standing features. Moreover, the current study provides an attractive
strategy to convert liquid oils to viscoelastic soft solids without artificial trans fats.

Keywords: food waste; high internal phase emulsions; egg; microstructure

1. Introduction

In egg processing plants, chalaza cords are filtered off before the pasteurization step
during liquid egg yolk or liquid egg white processing. Over 450 metric tons of chalaza by-
products was produced annually after the egg-processing, most of which are disposed. Such
abundant resource attracts the attention from researchers to seek for potential utilization
for chalaza such as sources for bioactive compounds (Acid, hydrolysates, ovomucin, and
lysozyme) [1–3]. The protective effects of antioxidant egg-chalaza hydrolysates against
chronic alcohol consumption-induced have been demonstrated in mice [4]. However, until
now, no works have been carried out about considering chalaza as a valuable source for
industrial applications.

Recently, we found that the chalaza’s formation mechanism might show that it is a
potential particulate stabilizer, similar with the protein micro-gel [5]. Chalaza contains
gelatinous structures appearing at the presumptive sharp and blunt ends along the long axis
of the avian egg. At their outer ends, they merge with the outer thick white. Chalaziferous
layer touching the vitelline membrane constructs the inner ends [5,6]. The blastoderm is
forced into an oblique position, and the embryo will develop perpendicularly to the long
axis with its head in the direction of rotation [7]. This unique formation mechanism and the

Foods 2021, 10, 599. https://doi.org/10.3390/foods10030599 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-6616-2828
https://doi.org/10.3390/foods10030599
https://doi.org/10.3390/foods10030599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10030599
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods10030599?type=check_update&version=3


Foods 2021, 10, 599 2 of 17

rotation provide chalaza with dual-wettability and insolubility which are crucial features
for Pickering emulsifiers [8,9]. Besides, chalaza possesses a lot of advantages to be used as
emulsifiers, such as high availability, high nutritional value, outstanding thermodynamic
stability, and strong antibacterial properties. Also, chalaza is an egg-originated material
that will not be excluded by consumers when it is used in mayonnaise or other food
production. Therefore, it is of great value to study this protein particle as an emulsifier to
expand the utilization of such material with the abundant source.

Increasing intake of artificial trans fats sourced from lipid products has been recog-
nized as a risk of cardiovascular disease in the medical community [10–12]. Briefly, the
chance of getting coronary heart disease increase by up to 29% with an increase intaking
of 2% in caloric intake from artificial trans fats [13]. Meanwhile, the excessive intake of
artificial trans fats was reported to be responsible for causing diabetes and cancers [14]. The
dietary intake of trans fats is mainly sourced from partially hydrogenated oils (PHOs) [15].
Recently, the U.S. Food and Drug Administration (FDA) stated to ban the utilization of
PHOs in processed food [16]. To meet the new requirements, an effective alternative of
PHOs which could mimic the rheology and sensory features of the PHOs are the new
challenges for food scientists [17–21]. Oleogelation, which uses the three-phase emulsion
system to physically fabricate the artificial butter-like product, is a promising way to
meet the increasing demand for healthier food. The formation of oleogels is achieved
by trapping the oil drops in the self-assembled gelators to form a 3D-network structure.
Unfortunately, most of the gelators reported exhibited improper features such as high cost
and low biocompatibility [16,22–24]. Therefore, utilizing olegels to secure bioavailable
substitutes for PHOs is seriously restricted in the food industry. Another possible routine
for developing substitutes for PHOs is the water-in-water emulsion template [24–26]. The
shortcoming of such a system is the flavor and commercial acceptance. Alternatively, the
fabrication of high internal phase emulsions (HIPEs) is a promising strategy to address this
challenge via physically transforming liquid oil into solid-like fats without PHOs. This
strategy might be achieved by using the full biomass-based chalaza [27,28]. Several food
grade materials including gliadin, whey protein microgel, chitosan, cellulose, and zein
have been reported to be HIPEs stabilizers. These food biomass-based materials exhibit
decent features to be used as Pickering emulsifiers to for the stabilization of HIPEs [29–34].
New strategies have also been employed to generate novel Pickering emulsions. Okara
dietary fiber particulate obtained via Maillard reaction and protein Hydrolysates showed
great efficiency in building the split-new emulsion systems [35,36]. Moreover, the HIPEs
stabilized by these particles have also been declared to be a promising template for the
constructing of biocompatible scaffold for 3D cell culture. Another feasible routine to utilize
the emulsion system is constructing lipid-soluble drug delivery system [37]. The ultra-high
oil content in HIPEs system provides itself an excellent drug delivery efficiency. The poros-
ity and biocompatibility provide the food-HIPEs with a promising future. However, most
of the raw materials compromise complex preparation progress and need several rounds
of modification. A full natural stabilizer that exhibits excellent emulsifying ability is in
urgent need.

In this study, we developed a novel approach to fabricate o/w Pickering HIPEs (up to
86% internal phase) using chalaza as a sole particulate emulsifier. The HIPEs stabilized by
such particles exhibited features that corresponding to soft solids. The morphology, particle
size, and zeta potential of chalaza particles were characterized. Then, chalaza particles
were used to develop Pickering HIPEs with different oil fraction. Importantly, the current
work opens a hopeful route to create Pickering HIPEs with food-grade status using chalaza
as potential delivery carriers of functional ingredients as well as food texture modifiers. In
the present study, chalaza was isolated and proved to be eligible to stabilize the HIPEs at
different pH values or ionic strengths.
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2. Material and Method
2.1. Material and Chemicals

Hen Eggs and sunflower oil (100% purity) were sourced from Tesco supermarket.
Fluorescent dyes, i.e., Nile Blue A, Nile Red, and isothiocyanate (FITC), were sourced
from Sigma–Aldrich, Inc. (Shanghai, China). Florisil (60–100 mesh) was obtained from
Sigma-Aldrich (Kansas City, MO, USA). MilliQ water was used for all the experiments. All
other chemicals were of analytical quality.

2.2. Preparation of Chalaza Powders

The eggshell was broken split evenly in half. Then, the whole egg was filtered using
a sieve to firstly remove most of the egg white. Subsequently, the integrated chalaza
was separated from yolk by tweezers. The chalaza strings were dispersed in 5 mL avian
Ringer solution and the dispersion was centrifuged at 1000× g for 10 min at 4 ◦C. The
precipitate was washed three times before being re-suspended in Ringer solution followed
by centrifugation. The whole procedure was repeated three times and the sediment was
collected for freeze-drying. The collected powders were used as chalaza material in the
following experiments.

Chalaza suspensions were obtained by adding the different weights of chalaza powder
in aqueous solutions. For example, 1 g chalaza powder diluted in 100 mL will be calculated
as a 1 wt% chalaza suspension.

2.3. Electrophoresis

After the separation of chalaza, it was carefully rinsed three times by ringer solu-
tion to remove any substances that come from the egg white. The chalaza was then
centrifugated and freeze-dried into powders. We used 0.3 wt% chalaza suspensions for
the SDS-Page. Chalaza materials were separated by 7.5% SDS-PAGE (sodium dodecyl
sulfate-polyacrylamide gel electrophoresis;) or 3–10% gradient gel “PAGEL” (Atto, Tokyo,
Japan). The gels were stained with 0.05% Coomassie Brilliant Blue R-250 (CBB; Nacalai
Tesque, Kyoto, Japan). The molecular weight was estimated from a calibration curve
obtained by SDS-PAGE molecular weight standards (Bio-Rad, Hercules, CA, USA) or
Hi-Mark pre-stained high-molecular protein standards (Invitrogen, Carlsbad, CA, USA).

2.4. Particle Size Measurement

Zetasizer Nano ZS (Malvern Instruments, Malvern, UK) and Malvern MasterSizer
3000 were employed to characterize the particle size (Dz). Samples were diluted with
purified water to an appropriate particle concentration (e.g., 100 times of dilution, in the
present work) before being plotted into the chamber for testing. All measurements were
performed at room temperature with three repeats. The results reported are averaged from
the three repeats

2.5. Optical Microscope Observation

The microstructure of these chalazae at different NaCl concentration values or pH
values was firstly analyzed using an optical microscope (OLYMPUS BX51). Samples have
different water-immersion objectives. Thirty microliters Chalaza dispersions containing
different concentrations of NaCl or at different pH values were shifted and spread onto a
glass slide and then covered by glass covers. The observations were carried out at ambient
temperature (25 ◦C).

2.6. Emulsion Preparation and Characterization

To generate emulsions, 20 mL of 1.5% chalaza dispersion at different ionic strength
(0 M, 0.2 M, 0.4 M, 0.6 M, 0.8 M, and 1.0 M) or pH levels (2, 3, 3.5, 4, 4.5, 5, 6, 8.3) was
dispersed into a glass vial. Then different volume of sunflower oil was slowly added to the
glass vial where the mixtures were homogenized using Ultra Turrax 25 at 13,500 rpm for
1.5 min. For long term monitoring of the emulsion, the collected emulsions were stored in
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the fridge set at 5 ◦C. The microstructure of the freshly formed (1 h) or stored (7 days) emul-
sions was firstly analyzed using an Olympus microscope (BX51; Leica Microsystems AG,
Wetzler, Germany) equipped with different water-immersion objectives. Creaming stability
of the emulsions at varying conditions was visually evaluated photographed by Canon
5DII. 10 mL of each emulsion was filled into a glass test tube (1.5 cm internal diameter ×
12 cm height) and subsequently stored in a refrigerator (placed in a perpendicular state).

2.7. Preparation of HIPEs

HIPEs stabilized by chalaza, formed at different ionic strength (0 M, 0.2 M, 0.4 M,
0.6 M, 0.8 M, 1 M) or pH levels (2, 3, 3.5, 4, 4.5, 5, 6, 8.3), were generated by shearing the
mixtures of soy oil and the chalaza suspensions at various ratios of ϕ (0.75–0.86) and/or
particle concentration (0.5–2 wt%) for 120 s using an Ultra Turrax T25 homogenizer (10 mm
head) operating at 13,500 RPM. The type (O/W, or W/O) of the resultant HIPEs was
evaluated by carrying out the conventional drop test. Briefly, one drop of the emulsion
was dispersed in the aqueous phase. Emulsion that could be well dispersed in the aqueous
phase was defined as O/W type.

2.8. Fluorescence Microscope and Confocal Laser Scanning Microscope Observation

A fluorescence microscope and CLSM were employed to observe the microstructure
of the emulsions. Nile red (492/520 nm), The sunflower oil phase was stained with Nile
red (492/520 nm), and the chalaza was labeled with FITC (560 nm). The fluorescence
microscope was carried out on an Olympus BX51 implemented with a fluorescence burner.
Images for confocal observations were obtained with a Zeiss LSM 510 Meta on an Axiovert
200 M microscope (Zeiss, Gottingen, Germany). Regarding high-resolution images, a 63×
water-immersion laser technique was used.

2.9. Rheology

T HAAKE RS600 rheometer (Thermo Electron Inc., Langenselbold, Germany) equipped
with parallel plate geometry (d = 27.83 mm, 1 mm gap) was utilized to measure the rhe-
ological measurements of the HIPEs. The viscoelastic parameters were investigated by
different frequency sweeps (0.1–10 Hz). Shear rates range from 1 to 50 s−1 were set for
flow measurements. All these rheological measurements were performed within the linear
viscoelastic region and carried out at 25 ◦C.

2.10. Scanning Electron Microscope Observation

SEM was used to detect the emulsion droplets morphology. One milliliter of the
emulsion samples were fixed using an equal volume of 0.5 wt% glutaraldehyde solution.
After fixation, the samples were rinsed 3 times with deionized water. The samples were
then coated in 10 nm Carbon and imaged using the cryo-scanning electron microscope
(Zeiss Evo-60 Cryo-SEM, Jena, Germany Cyro-SEM) system

2.11. Statistical Analysis

Three replicates were made for emulsion stability, oil droplet size, protein content,
and zeta potential. Confidence profiles of these experiments were conducted on single
intervals set at 95% (p < 0.05).

3. Results and Discussion
3.1. Schematic Models of Chalaza Particles

As shown in Figure 1A,B, chalaza existed as a stabilizer for the yolk to help the yolk
maintain its steady form. Consumers frequently find chalaza disgusting, and some even
consider that chalaza is a bacterium that cannot be eaten. Consequently, the removal of
chalaza before egg processing is generally in industrial production, which can be mainly
achieved by clipping tools. In this study, we easily removed the chalaza from the egg with
tweezers. The chalaza is in the insoluble state and performed like fibers before they are
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suspended in an aqueous solution (Figure 1C). The collected chalaza was rinsed several
times using ringer solution and then freeze-dried into powders. The powders were plotted
in the water phase to make chalaza suspension before being used in various experiments
(Figure 1D).

Figure 1. Chalaza at different stages: (A) Un-separated chalaza in the hen egg. (B) Schematic model of the chalaza in fresh
egg. (C) Dry powder of chalaza obtained by freeze-drying. (D) Separated fresh chalaza samples from hen egg.

3.2. Protein Composition of Chalaza

We employed SDS-PAGE to analyze the protein contents in the separated chalaza.
The bands were identified according to their molecular weight, which was compared with
previous studies [2]. Eight major bands in chalaza were identified (Table 1). Densitometric
analysis of the bands enabled us to estimate the relative proportion of ovomucin proteins
in the peptide profiles of chalaza (Figure 2 and Table 1). The protein analysis was corre-
sponded to the former works [1,7], indicating that our separation method of chalaza was
successful. The principal proteins are ovalbumin (54% of total protein), ovotransferrin
(12%), ovomucoid (11%), and lysozyme (3.4%). The protein content of chalaza is similar
to egg white. The two fastest migration proteins are α1-and α2 ovomucin, which are
considered to be the carbohydrate-poor components of ovomucin. The slow migration one
is carbohydrate-rich protein—β ovomucin. Overall, chalaza exhibits a very similar protein
composition compared to egg white.
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Table 1. Protein profile of hen egg chalaza obtained from the SDS-PAGE.

Molecular Weight (kDa) Identification

400 β-ovomucin
220 α2-ovomucin
150 α1-ovomucin

78–80 ovotransferrin
43–45 ovalbumin

23 ovomucoid
14.4 lysozyme

Figure 2. Protein profile of chalaza obtained from SDS-page analysis.

3.3. Particle Size, ζ-Potential, and Microstructure of Chalaza Particles

The preparation of the chalaza was conducted using the centrifugation method. The
behavior of the collected aqueous dispersions of chalaza at various pH or ionic strengths
were discussed to help understand the stability of such particles. Briefly, with increasing
ionic strength, the height of sediment in chalaza suspensions slowly increased (Figure 3A)
at ionic strength lower than 0.6 M, which could be attributed to the result of the gaining
insolubility. Correspondingly, the ζ-potential of chalaza soared from −12 mV to −5 mV
with low amount of salt addition (<0.6 M). A steady increase with further salt addition
could be observed (Figure 3B).

The particle size characterization was then conducted. The results (Figure 3C) indi-
cated that the size of the particles reached a peak of 700 nm with 0.6 M salt addition where
the electricity of particles were mostly neutralized. The results of particle size corresponded
to the results in ζ-potential section. To further investigate the performance of the chalaza
particles, the microscope observation was carried out. The results (Figure S1) clearly in-
dicated that chalaza particles do not remain uniform at various ionic strength. Plots like
particles could be detected at low (<0.2 M) or high (>0.6 M) ionic strength. However, with
medium salt addition (between 0.2 M and 0.6 M), the particles performed more like curled
clusters, which could show that the salt addition changed the surface electricity of chalaza
and thus, altering their size and shape (Figure 3C). Similar set of characterizations were
also carried out to chalaza at different pH levels.
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Figure 3. Characterizations of chalaza suspensions at pH 6.5: (A) Appearance of chalaza suspension
at different ionic strength. (B) ζ-potential of chalaza suspension at different ionic strength. (C) Particle
size of chalaza at a different ionic strength.

The suspensions of the chalaza at different pH levels were concerning similar turbidity
and sediment height (Figure 4A). The ζ-potentials of the aqueous dispersion obtained from
Zeta Nano ZS were set as a function of the pH (Figure 4B). When the pH was reduced to
2.0, the particles became highly positively charged (z > +13 mV). The electricity of chalaza
was nearly neutralized when the pH was increased close to 4.0. With further pH increasing,
the particles could contain strong negative electricity when the pH is higher than 5 (z <
−12 mV).

Figure 4. Characterizations of chalaza suspensions: (A) Appearance of chalaza suspension at different pH levels. (B)
ζ-potential of chalaza suspension at different pH levels. (C) Particle size of chalaza at different pH levels.

The particle size of the chalaza (Figure 4C) at any pH level conformed to a narrow
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range. At rather low or high pH levels, the size of the chalaza was of the smallest, around
300 nm. The strong repulsion force sourced from high surface charging at pH far away
from the isoelectric point significantly reduce the particle aggregation. When the pH
was close to the isoelectric point of chalaza (pH 4), where the electricity was neutralized
and the electrostatic repulsion was inhibited, the particle became relatively unstable and
aggregated severely.

3.4. Emulsion Characterization
3.4.1. Effect of pH and Particle Concentration

Surface charging and colloidal stability were strongly affected by pH levels. In the
present study, highly positive surface charging and negative charging were detected at pH
< pI and pH > pI, respectively (Figure 4B). With pH close the isoelectric point of chalaza
particles, the electrical repulsion was neutralized. The chalaza lost its hydrophilicity na-
ture and aggregated severely (Figure 4). Accordingly, a constant chalaza concentration of
1.5 wt% was set to investigate the emulsions’ stability against coalescence and flocculation
at different pH levels. Typically, the pH of the aqueous Chalaza-containing phase varied,
and all values (including 2.0, 3.0, 3.5, 4.0, 4.5, 5, 6, and 8.3) were selected to be sufficiently
far from the isoelectric point of chalaza (pI 4). As a result, chalaza particles from strongly
positively charged to negatively charged could be utilized to stabilize oil-in-water emul-
sions. Additionally, similar experiments were also conducted to chalaza with different
salt addition. Particle concentration has a profound effect on emulsion stability against
coalescence as well as on the droplet size of the HIPEs. To firstly select an adequate particle
concentration to stabilize the HIPEs, four different sets of 5 mL chalaza suspensions were
prepared (0.5 wt%, 1.0 wt%, 1.5 wt%, and 2.0 wt%) at pH 4 and then mixed with 15 mL
sunflower oil to generate 75% oil phase. The collected HIPEs emul-gels were plotted into
oil or water to check whether they were O/W type emulsions (Figure 5B,C). The emulsions
which could be diluted and dispersed in water were O/W type emulsion. A long term
storage of the HIPEs witnesses no water phase at the bottom after 7 days when the particle
size exceeded 1 wt% (Figure 5A), demonstrating that the chalaza particles were sufficient
to stabilize emulsions with 75% oil phase beyond such concentration. Consequently, all the
following experiments were conducted with 1.0 wt% chalaza suspensions.

Figure 5. Appearance of chalaza stabilized high internal phase emulsions (HIPEs) with 75% oil: (A)
HIPES stabilized by different chalaza particle concentrations. (B) Comparing observations on the
O/W or W/O type of the 75% HIPEs stabilized by 1.0 wt% chalaza particles. (C) Appearance of the
formed HIPEs emul-gel with 75% oil stabilized by 1.0 wt% chalaza particles.
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3.4.2. Development and Appearance of Pickering HIPEs

Using a T10 basic Ultra Turrax homogenizer, the mixtures containing sunflower oil
and the chalaza aqueous dispersion was sheared to produce the Pickering HIPES. The
appearance of Pickering HIPEs after 2 h and 15 days as a function of pH levels could
be seen in Figure 6A,B. In these series, 75% internal phase(dispersed phase) was set as a
fixed value (Figure 6A). To satisfy the increasing demand on healthier food, surfactant-
free emulsion-based food attracts more researchers working on it. In the emulsions with
internal phase fractions of 75% are all surfactant-free o/w Pickering HIPEs. In contrast,
HIPEs stabilized by surfactants are usually w/o [26] and extensive surfactants (5–50%)
are frequently demanded to effectively produce stable HIPEs [20]. Our emulsions did
not undergo creaming of dispersed phase fractions at pH around the isoelectric point (3,
3.5, and 4) after 15 days’ storage. For these three pH levels, the stability of emulsions
could overcome coalescence and creaming, further revealing that chalaza is a potential
Pickering stabilizer for HIPEs. The novel chalaza particles could attach and anchored on
the interfacial layer, compressing deformed droplets to densely pack into a 3D percolating
network. The network enabled the emulsions to remain stable against creaming and
coalescence with oil phase lower than 85% at pH 3 and 3.5 (Figure 6C). Unfortunately, the
emulsion system would collapse with internal phase volume factions higher than 86%,
except the set of pH 3 (Figure 6D). The microscopic observation could demonstrate that the
HIPEs formed at pH 3 could remain stable after days of storage (Figure 6E). Additionally,
the full sets of experiments were also done to chalaza at different ionic strengths. The HIPEs
with an oil fraction of 75% could only be formed at an ionic strength of 0.6 M, which was
consistent with the highest particle size in our former experiment (Figure S3A). Besides,
the percolating net-work in HIPEs also ensured the emulsions’ stability against creaming
with oil content lower than 85% with 0.6 salt addition (Figure S3B).

Figure 6. Appearance of HIPEs stabilized by 1.5%wt chalaza suspension at different pH levels with various oil volume: (A)
75%, (B) 80%, (C) 85%, (D) 86%, and (E) Microscopic observation of 86% HIPES stabilized by 1.5%wt chalaza at pH 3. (F)
Microscopic observation of HIPES stabilized by 1.5%wt chalaza at pH 3.5 with 86% oil content showing the phase inversion
of the system.

Briefly, we developed a novel edible Pickering HIPEs stabilized by chalaza particles
which contains internal volume fraction up to 86%. Such high internal fraction provide
itself with the possibility to be labelled as a PHO alternative. The volume fraction of
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the chalaza dispersion ranged from 0.1 wt% to 2 wt%. Besides, we also characterized
the size distributions of Pickering HIPEs. The HIPEs showed a nearly monodispersed
droplet size distribution, and the maxima of the profiles shifted towards a lower size when
particle concentrations increase. The mean particle size quantitatively reflect the size of
Pickering emulsions. Besides, the D4,3 of Pickering HIPEs increased gradually from 20
± 0.5 µm to 145.1 ± 0.5 upon increasing salt addition before the ionic strength reached
0.6 M, which could confirm that the more concentrated the initial dispersion was, the
bigger the drops were (Figure 7A). Differently, with increase in pH levels before reaching
the isoelectric point, the size of emulsions decreased from 54 ± 0.5 µm to 32 ± 0.5 µm.
Then, the emulsion size dramatically increased to 59 ± 0.5 µm (Figure 7B). The result
combined with our observation in the appearance of HIPEs could reveal that the emulsions
were in the most stable state around the isoelectric point of chalaza. This would help to
industrially produce mayonnaise-like emulsions using chalaza since the commercially used
mayonnaise were commonly of acidic pH [38,39]. Besides, the chalaza transformed the
liquid sunflower oil into a solid state by stabilizing the three phases (W/O/particles) into
HIPEs, which contained self-standing feature after the cups were inverted. In principle, the
droplet-droplet interaction through the emul-gel in Pickering HIPEs formed a percolating
network architecture and provided additional stabilization against coalescence.

Figure 7. Characterization of HIPEs stabilized by 1.5%wt chalaza with 75% oil at different conditions: (A) Average diameter
of emulsion droplets at different ionic strength at pH 6.5. (B) Average diameter of emulsion droplets at different pH
levels without salt addition. (C) Appearance of the HIPES’ stability at different pH levels without salt addition before
centrifugation. (D) Appearance of the HIPES’ stability at different pH levels without salt addition after centrifugation.

3.4.3. Centrifugation Stability

Emulsion creaming would be significantly accelerated using centrifugation since the
water was drained from the Pickering emulsions [40,41] (Figure 7C,D and Figure S3C).
To characterize their stability, the CI value of the emulsions after the centrifugation was
recorded. HIPEs stabilized by chalaza suspension at all pH levels remained stable after
severe centrifugation. The CI values were decreased from 51.5% to 21.5%, 23.5%, and 29.5%
when the pH levels were increased from 2 to 3, 4, and 5 respectively. The CI values slowly
decreased after the pH exceeded the isoelectric point. Similarly, the HIPEs stabilized by



Foods 2021, 10, 599 11 of 17

chalaza at different ionic strengths only remained stable with 0.6 M salt addition. The
creaming index slightly decreased from 51.5% to 26.5%. The above results indicated that
the water (continuous phase) that existed in the 3D emulsion network was drained out
from the Pickering HIPEs during centrifugation. No oil emersion was detected in both
Pickering emulsions and HIPEs after centrifugation, indicating that the emulsions were
resistant to the high stress of centrifugation. Chalaza at adequate pH levels or ionic strength
were proved to be resistant to coalescence during the centrifugation.

3.4.4. Microscopic Observation of HIPEs

Storage stability is a key indicator of any formula because it determines to some degree
whether or not a product is suitable for the intended use [42,43]. This could be also be
shown from the microscopic observations (Figures 8 and 9). Stable HIPEs with 75% or 80%
oil could be formed at pH levels range from 2–8.3, indicating the strong emulsifying nature
of the chalaza material. The fluoresce microscope (Figure 9) demonstrates that the chalaza
particle may worked as a particle stabilizer anchoring on the emulsion droplet to fight
against coalescence. With increasing oil fraction, only at pH levels (3, 3.5, 4, 4.5) around
isoelectric point, uniform stable emulsions could be observed. pH levels of 3 and 3.5 are the
two ideal conditions for fabricating chalaza stabilized-HIPEs with 85% oil. These results are
in correspondence to our result obtained from size distribution and appearance observation
confirming the effectiveness of chalaza as a solid emulsifier to stabilize Pickering HIPEs.

Figure 8. Microscopic observations of HIPEs stabilized by chalaza with the different oil phase. The bar is 50 µm.
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Figure 9. Bright field and fluorescence microscopic observations of HIPEs stabilized by chalaza with different oil phase ((A–
D): 75%) ((E–H): 80%) ((I–L): 85%) at pH 6.5 with 0.6 salt addition (C,D,G,H,J,K) or pH 3.5 without salt addition(A,B,E,F,H,I).
The bar is 100 mm.

3.4.5. CLSM

The microstructure of the emulsion including interfacial structure and coalescence
state of droplets could be detected using CLSM, which were key features related to the
physical performance of the Pickering HIPEs [43,44]. Nile Red (green) and FITC (red)
were used to stain sunflower oil and chalaza, respectively. Figure 10 shows the CLSM
micrographs of representative Pickering HIPEs samples in overlap (C and D) field. In brief,
green fluorescence resided in spherical droplets while the red fluorescence emerged mainly
at the perimeter of the droplets in Pickering HIPEs, further demonstrating that the formed
Pickering HIPEs were o/w emulsions where the chalaza interface layer appears around
dispersed droplets. The previously reported protein or polysaccharide particles stabilized
HIPEs exhibited similar interfacial behavior when the particles were anchored [44]. The
particles would form a fort against coalescence on the droplets outer layer and the excessive
particles may existed in the continuous phase to work as a network helping the emulsion
stable. In combination with these results and microscopic observation (Figure 9A,B), we
propose that the chalaza particles existed as particle hindrance between droplets to prevent
coalescence. CLSM and Microscopic observation trials also reflected that the adjacent
droplets were closely packed with each other to form percolating network structure which
endowed the Pickering HIPEs viscoelastic solid-like feature and stability against creaming
and coalescence. These results could show that the isolated chalaza particle could remain
in its original form after attaching on the interface, behaving like a solid barrier to avoid
droplets flocculation.
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Figure 10. Microscopic observations (A,B) and CLSM (C,D) of HIPEs stabilized by chalaza at pH 4 with 80% oil volume.
The bar is 50 µm.

3.4.6. Scanning Electron Microscope Observation

To address the morphology of the emulsion droplets. The cryo-SEM was employed
after sample mixing. As shown in Figure 11, at high oil content, the droplets remained
uniform in structure and size. The protein particles could be observed packaging around the
oil droplets in the Figure 10B. This indicates the obvious Pickering stabilization mechanism
of the chalaza particles. More importantly, the excess of the particles was observed in the
continuous phase, acting as a hindrance against the coalescence and forming a percolating
network.

3.4.7. Rheological Property of Pickering HIPEs

Besides the size distribution and microstructure, the rheological property is also
treated as a major role in the performance of the emulsions, e.g., appearance and stability.
We characterized the amplitude sweep profiles of Pickering HIPEs (Figure 12). Similar
amplitude sweep profiles were observed for Pickering HIPEs at pH4 (Figure 12B,D) with
different oil content. With increasing oil content from 75% to 85%, both of the G’ and G”
increased, which could demonstrate the increasing viscosity brought by oil addition. For
all of the samples, G” was always slightly lower than G’ at relatively lower amplitudes,
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the HIPEs could still maintain the stability at 100 Pa which strongly indicates its excellent
rheology performance. For the HIPEs stabilized by chalaza particle at 0.6 M with different
oil addition, high oil content contained weaker performance in both of the modules. Further
increasing amplitudes could a cause distinct fall (after 55 Pa), revealing the yielding of the
structure at higher stress, which could be attributed to the collapse of the structure at high
stress.

Figure 11. SEM image of emulsion droplets at different oil contents: (A,B) 75%, (C,D) 80%. The bar is 20 mm in (A,C),
10 mm in(B,D).

Pickering HIPEs were subjected to fixed stress (1 Pa) to study their response to
frequency sweep in the linear response region. As expected, the corresponding G” was
always lower than G’ throughout the frequency range at pH4 (Figure 12D). Rheological
data corresponded to the results in visual appearance and storage stability which indicated
the viscoelastic and self-supporting features of HIPEs. Interestingly, the G” and G’ were not
reduced at high oil content. The interfacial behavior of the chalaza particles played a crucial
role in altering the viscoelastic property of Pickering HIPEs. The chalaza-coated droplets
in HIPEs system contributed to the stiffness of formed solid-like materials. The G” and G’
are not consistent with 0.6 M salt addition at low oil content (75%). Both modules were
bumping severely with the frequency increasing but were still stable overall. The Pickering
HIPEs stabilized by chalaza possess a promising potential to be used as a substitute for
PHOs, which was thought to increase the risk of cardiovascular diseases.
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Figure 12. Evolution of storage (G’) and loss (G”) moduli with the stress (A,B) and frequency (C,D) sweeps for the Pickering
HIPEs with different oil content with 0.6 M salt addition (B,D) or at pH3.5 (A,C).

4. Conclusions

To conclude, we report firstly the usage of chalaza particles, arepresentative of natural
egg waste materials, as a potential Pickering particulate emulsifier for HIPEs stabiliza-
tion. Using a facile route, the sub-micron chalaza with the suitable physical–chemical
performance were generated at different pH or ionic strength. We successfully prepared
stable Pickering HIPEs with internal phases of up to 86% with low particle concentrations
(0.5 wt%). The chalaza particles were effectively adsorbed and anchored at the oil–water
interface, best at pH 3 and ionic strength of 0.6 M, exerting electrical hindrance between the
droplets. Concomitantly, the compressed droplets in Pickering HIPEs formed a percolating
3D-network framework endowing the emulsions viscoelastic and self-supporting features.
The rheology performance of the chalaza stabilized HIPEs shows that this strategy could
potentially transform liquid oils into viscoelastic solid-like gels without artificial trans fats.
Besides, these HIPEs open a new window for the utilization of such abundant food waste
material. Moreover, the current work is conducive to the construction of bio-available
chalaza base-emulsion formulation with widespread applications in cosmetics, food, and
pharmaceuticals.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-8
158/10/3/599/s1, Figure S1: Microscopicobservation of 0.3 wt% chalaza suspension at different
pH levels. A: 2.0; B: 3.0; C: 4.0; D: 5; E: 6.5; F: 8. The corresponding bar is 10 µm, Figure S2:
Microscopicobservation of 0.3 wt% chalaza suspension at different ionic strength. A: 0 M; B: 0.2 M;
C: 0.4 M; D: 0.6 M; E: 0.8 M; F: 1.0 M. The corresponding bar is 10 µm, Figure S3: A: Appearance of
emulsions stabilized by 1 wt% chalaza at different ionic strength with 75% oil after 7days’ storage;
B: Appearance of emulsions stabilized by 1 wt% chalaza at different ionic strength with different
oil fraction after 7 days’ storage; C: centrifugation stability of HIPEs stabilized by 1 wt% chalaza at
different ionic strength with 75% oil.

https://www.mdpi.com/2304-8158/10/3/599/s1
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