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Abstract: Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the
endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate
receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with
the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these
receptors derives from mammalian systems that possess three genes for each receptor. These studies
have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the
current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+

channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of
RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their
potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities,
they are phylogenetically distinct, have their own structural organization, regulatory mechanisms,
and expression patterns, which explains their functional distinction. Nevertheless, both have great
potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide,
the diamides.

Keywords: ryanodine receptor; inositol 1,4,5-trisphosphate receptor; calcium channel; endoplasmic
reticulum; pest control; diamide

1. Introduction

Calcium (Ca2+) is a key second messenger that plays important roles in numerous
cellular and physiological processes, including cell motility, membrane transport processes,
gene expression and regulation, nuclear pore regulation, vesicle fusion, neurotransmission,
muscle contraction, hormone biosynthesis, and apoptosis [1]. Similar to other animals, Ca2+

is also essential for insects [2] where it is involved in development and metamorphosis [3],
reproduction [4], sex pheromone synthesis [5], cold sensing [6], neurotransmitter release [7],
olfactory responses [8], carbohydrate [9] and lipid metabolism [10], and diapause [11]. Due
to these essential roles, it is critical to maintain cellular Ca2+ homeostasis [12].

In animal cells, Ca2+ homeostasis is coordinated through channels, transporters and
pumps located in the plasma membrane, the endoplasmic reticulum (ER) [13], as well as
other organelles, such as the Golgi apparatus [14], mitochondria [15], and lysosomes [16].
Calcium binding proteins in the cytosol or organelles are also involved in the maintenance
of Ca2+ levels by functioning as calcium buffers [10,11]. Extracellular Ca2+ concentrations
are relatively high (1–2 mM), while the cytoplasm of most cells contains much lower
resting Ca2+ concentrations (in the 100 nM range) [17]. Calcium entry via the plasma
membrane is a major route to supply Ca2+ needed for the cell; however, cellular organelles,
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in particular the ER (sarcoplasmic reticulum—SR for muscle cells) (100–500 µM), supply
Ca2+ and trigger Ca2+ signals rapidly when the intracellular levels of Ca2+ are low [17].
This occurs through the activation of intracellular Ca2+ channels associated with the ER.
The two major Ca2+ release channels are the inositol 1,4,5-trisphosphate receptor (IP3R),
activated by the secondary messenger inositol 1,4,5-trisphosphate (IP3), Ca2+, and the
ryanodine receptor (RyR), named after its high affinity for the plant alkaloid ryanodine,
which is mainly activated by Ca2+ and possibly by other secondary messengers [18–22].
The IP3R and RyR are both members of a family of tetrameric intracellular Ca2+-release
channels and are encoded by single genes in insects, whereas humans possess three IP3R
(IP3R1–3) and RyR (RyR1–3) genes with distinct tissue expression patterns and subcellular
localization. Both receptors activate Ca2+ release from the ER/SR to the cytosol or other
organelles; therefore, they serve as major links between extra- and intracellular stimuli,
leading to regulation of various cellular processes [13,21]. It is noteworthy that they can
also be associated with mitochondria [23–25] or membrane contact sites [26,27].

It is an ongoing question as to why animals possess two similar biochemical tools (RyR
and IP3R) associated with the ER for the coordination of intracellular Ca2+ homeostasis [28].
Studies on the structure and localization of these channels together with expression, mu-
tation, recombination, and functional genomic studies have provided important clues in
distinguishing the functional attributes of RyR or IP3R channels in mammalian models.
The two receptors also share structural and functional features in insects. Studies on insect
IP3Rs and RyRs have been limited but have increased significantly in the last decade.
Cloning of the genes encoding these receptors together with structural and functional
analyses have provided important insights into our understanding of the role of these
receptors in intracellular Ca2+ homeostasis, lipid metabolism, muscle function, neuronal
signaling in relation to photoreceptors, olfaction, locomotor activities, and development in
insects. The discovery of the diamide group of insecticides, which selectively target insect
RyRs and affect Ca2+ homeostasis, has focused attention on these receptors and IP3Rs. In
the current review, we first introduce the RyRs and IP3Rs from mammalian models that
inspired the discovery of their insect counterparts (Section 2). We then present insect IP3Rs
and RyRs from a comparative perspective according to their structure (Section 3), their
involvement in the Ca2+ metabolic pathways (Section 4), functions (Section 5), and their
potential as targets in pest control (Section 6).

2. Discovery of RyRs and IP3Rs

The first RyR gene (RyR1) was first isolated from rabbit skeletal muscle [29], followed
by isolation of the rabbit cardiac muscle isoform (RyR2) [30]. A third isoform (RyR3), dis-
tinct from both the skeletal and cardiac muscle isoforms, was isolated from rabbit brain [31].
In contrast to mammals, insect genomes encode only one RyR. The first insect RyR was iden-
tified from Drosophila melanogaster (Diptera: Drosophilidae) [32,33]. The D. melanogaster RyR
shows approximately 45%–47% amino acid identity with the three mammalian RyRs. RyRs
have since been identified from the lepidopterans Heliothis virescens (Noctuidae) [34,35],
Bombyx mori (Bombycidae) [36], Cnaphalocrocis medinalis (Crambidae) [37], Plutella xylostella
(Plutellidae) [38,39], Ostrinia furnacalis (Crambidae) [40], Helicoverpa armigera (Noctu-
idae) [41], Pieris rapae (Pieridae) [42], Chilo suppressalis (Crambidae) [43,44], Spodoptera exigua
(Noctuidae) [45], Grapholita molesta (Tortricidae) [46], Tuta absoluta (Gelechiidae) [47],
and S. frugiperda [48], the dipteran Bactrocera dorsalis (Tephritidae) [49], the coleopter-
ans Tribolium castaneum (Tenebrionidae) [50] and Leptinotarsa decemlineata (Chrysomeli-
dae) [51], and the hemipterans Laodelphax striatellus (Delphacidae) [43], Bemisia tabaci (Aley-
rodidae) [43], Nilaparvata lugens (Delphacidae) [52], Sogatella furcifera (Delphacidae) [53],
Myzus persicae (Aphididae) [54], Toxoptera citricida (Aphididae) [55], Dialeurodes citri (Aley-
rodidae) [56] (Table 1).

The IP3R was first purified from rat cerebellum [57] and the gene encoding the first
isoform (IP3R1) cloned from mouse cerebellum tissues [58]. This was followed by cloning
of the IP3R2 isoform from rat brain [59] and IP3R3 from a rat insulinoma cell line [60].
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Not surprisingly, the first insect IP3R was also identified from D. melanogaster [32,61]. The
D. melanogaster IP3R has approximately 60% amino acid identity with the three mam-
malian IP3Rs, indicating a closer relatedness between mammalian and insect IP3Rs than
to RyRs [32,61]. Compared to insect RyRs, an only limited number of studies on the iden-
tification of insect IP3Rs are available. IP3Rs have been identified from the coleopterans
T. castaneum [50] and L. decemlineata [Doğan and Toprak, unpublished], from the hemipter-
ans B. tabaci [62] and M. persicae [63] and the hymeopteran Bombus terrestris (Apidae) [63]
(Table 1).

Table 1. Insect ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) identified to date.

Receptor Species Amino Acid
(residue)

cDNA Size
(bp)

Molecular Weight
(kDa) Reference

RyRs

Lepidoptera
Bombyx mori (Bombycidae) 5084 15,255 * 575 [36]

Cnaphalocrocis medinalis (Crambidae) 5087 15,773 574 [37]

Plutella xylostella (Plutellidae) 5123 15,748 579 [38]
5164 16,113 584 [39]

Ostrinia furnacalis (Crambidae) 5108 16,211 577 [40]
Helicoverpa armigera (Noctuidae) 5142 16,083 581 [41]

Pieris rapae (Pieridae) 5107 15,540 578 [42]

Chilo suppressalis (Crambidae)
5133 16,392 581 [43]
5133 16,102 581 [44]
5128 15,402 580 [64]

Spodoptera exigua (Noctuidae) 5118 15,748 579 [45]
Grapholita molesta (Tortricidae) 5133 16,299 580 [46]

Tuta absoluta (Gelechiidae) 5121 16,431 579 [47]
Spodoptera frugiperda 5109 15,330 578 [48]

Diptera
Drosophila melanogaster (Drosophilidae) 5134 15,405 * 581 [65]

Bactrocera dorsalis (Tephritidae) 5140 15,750 582 [49]
Coleoptera

Tribolium castaneum (Tenebrionidae) 5094 15,308 577 [50]
Leptinotarsa decemlineata (Chrysomelidae) 5128 15,792 582 [51]

Hemiptera
Laodelphax striatellus (Delphacidae) 5115 15,910 579 [43]

Bemisia tabaci (Aleyrodidae) 5139 15,763 581 [43]
Nilaparvata lugens (Delphacidae) 5140 15,735 581 [52]
Sogatella furcifera (Delphacidae) 5128 15,985 579 [53]

Myzus persicae (Aphididae) 5101 15,306 * 580 [54]
Toxoptera citricida (Aphididae) 5101 15,639 580 [55]
Dialeurodes citri (Aleyrodidae) 5126 15,538 579 [56]

IP3Rs

Diptera
Drosophila melanogaster (Drosophilidae) 2833 9558 319 [61]

Coleoptera
Tribolium castaneum (Tenebrionidae) 2724 8175 * 309 [50]

Leptinotarsa decemlineata (Chrysomelidae) 2736 8211 * 312
Doğan and
Toprak, un-
published

Hemiptera
Bemisia tabaci (Aleyrodidae) 2733 8202 * 311 [62]
Myzus persicae (Aphididae) 3790 11,373 * - [63]

Hymenoptera
Bombus terrestris (Apidae) 2727 10,966 309 [63]

* Translated region.
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3. Structure of RyRs and IP3Rs

Both RyRs and IP3Rs are members of the voltage-sensitive ion channel (VIC) su-
perfamily and form homomeric tetramers resembling a square mushroom. In mam-
malian RyRs, each monomer (~5000 amino acids) has a molecular weight of around
550–580 kDa, while each IP3R monomer (~2700 amino acids) has a molecular weight of
around 260 kDa [22,66,67]. Several high-resolution structures of mammalian RyR [68–73]
and IP3R domains [28,74–78] have been determined by X-ray crystallography, NMR, and
cryogenic electron microscopy. RyRs and IP3Rs share 30–35% homology at the amino acid
level and primarily consist of a large, N-terminal, hydrophilic domain (a.k.a. the “foot
structure”), a dissimilar central modulatory domain, and a small, conserved, C-terminal do-
main with 6 transmembrane regions forming the Ca2+ conducting channel pore [73,79,80]
(Table 2). Notably, the large N-terminal hydrophilic domain and the small C-terminal
hydrophilic domains both face the cytoplasm. The N-terminal domain of IP3R forms the
binding pocket for the native ligand IP3 and includes three subdomains, the IP3-binding
core β (IBC-β) and α (IBC-α) which interact with IP3, and the suppressor (inhibitory)
domain (SD) which reduces the affinity for IP3 [81–85]. Notably, IP3Rs without an SD bind
IP3 with high affinity, but do not release Ca2+, suggesting the SD is essential for IP3-induced
channel gating [82,84,86]. RyRs, although N-terminal domain does not bind IP3, have a sim-
ilar arrangement as the N-terminal domain of IP3R and includes three subdomains termed
A, B and C corresponding to the SD, IBC-β and IBC-α, respectively [28,87]. These lead to
modulation of the gating of the Ca2+ pore that occurs between the fifth and sixth transmem-
brane segments in the carboxy-terminal domain [81,88]. The structural domains common
to both RyRs and IP3Rs in mammalians are the MIR (Mannosyltransferase, IP3R and RyR,
pfam02815), RIH (RyR and IP3R Homology, pfam01365), and RIH-associated (pfam08454)
domains [89] (Table 2). However, repeats termed the “SPRY domain (pfam00622)”, origi-
nally identified from Dictyostelium discoideum tyrosine kinase spore lysis A and the mam-
malian RyRs, and the “RyR domain (pfam02026)” are unique to RyRs [71,90–92]. The MIR
domain is proposed to have a ligand transferase function [93], while the RIH domain might
form the IP3 binding site together with the MIR domain in IP3Rs [94]. On the other hand,
SPRY domains are typically known to mediate protein-protein interactions [95,96], while
the function of RyR domain is unknown. The ryanodine-binding site is also localized to
the carboxy terminus of both proteins within or close to the pore region [97]. Notably, the
primary Ca2+ binding protein, calmodulin, interacts with RyRs in lipid bilayers [98] and
binds to the RyR channel cytoplasmic assembly around 10 nm from the putative entrance to
the transmembrane pore [99–101]. The N-terminal ligand-binding region of IP3R1 contains
a calmodulin-binding domain that binds calmodulin independently of Ca2+ and mediates
the inhibition of IP3 binding to IP3R1 [102].
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Table 2. Comparison of structural and functional features of mammalian and insect RyR and IP3Rs.

Receptor Mammalians Insects

# of
Genes

Basic
Structure

Primary
Exp. Site

Phosphoryl.
Status

CaM
Binding

Alternative
Splicing Function # of

Genes
Basic

Structure
Primary
Exp. Site

Phosphory
Status

CaM
Binding

Alternative
Splicing Function

RyRs 3

N-terminal domain
including the A, B, and

C subdomains, MIR,
RIH, RIHA.

SPRY and RyR domains,
C-terminal regions with

transmembrane
domains and EF-hands.

• Skeletal and
cardiac muscles

• Central nervous
system

• PKA
• CaMKII + +

• Muscle contraction
• Neurotransmitter

release
• Hormone secretion

1

N-terminal region
including MIR, RIH,

three SPRY, RyR
repeat, RIHA domains,

and a
carboxy-terminal
region including
transmembrane

domains and
calcium-binding

EF-hand domains.

• Body wall and
visceral muscles

• Central nervous
system and
neurons

• Antenna, eye, and
optic lobe

• Legs
• Alimentary canal

• PKA

Putative
binding
sites are
present.

+
• Muscle contraction
• Locomotor activities
• Development

IP3Rs 3

N-terminal domain
including the

suppressor (inhibitory)
domain (SD) and

IP3-binding core β
(IBC-β), α (IBC-α)
with MIR domain;
central modulatory

domain including RIH
and RIHA domains,

C-terminal region with
transmembrane

domains.

• Cerebellum
• Brain
• Insulinoma cells
• Neurons
• Endothelial, ovary,

microvillous and
contractile
myocardial cells

• PKA
• PKB
• PKC
• CaMKII

+ +

• Gene expression
• Development
• Learning
• Memory
• Neuronal signaling
• Sensory

transduction

1

N-terminal domain
including MIR

domains, a regulatory
and transducing

region with RIH and
RIHA domains, and a

carboxy-terminal
region including
transmembrane

domains.

• Central nervous
system and
neurons

• Fat body
adipocytes

• Ovaries
• Appendages

containing mainly
legs, antennae,
wings, and seta.

• PKA (–)
• PKB (?)
• PKC (?)
• CaMKII (?)

? +

• Locomotor activities
• Development
• Visual and olfactory

sensory transduction
• Muscle development
• Lipid metabolism
• Hormone secretion

Primary exp. site: primary expression site; phosphoryl. status: phosphorylation status; CaM binding: calmodulin binding.
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Insect RyRs are commonly composed of 5084–5164 residues with a molecular weight
of 574–582 kDa. Crystal structures of the P. xylostella RyR N-terminal domain [103], Re-
peat34 domain [104] and SPRY2 domain [105], and the N-terminal domain of Apis mellifera
RyR [106] are the only ones available. Therefore, the entire structural domain organization
and key regions of insect RyRs are based on limited X-ray crystallography predictions and
comparative modeling studies using the mammalian counterparts [107]. These studies
revealed that the basic structure of insect RyRs is similar to their mammalian counterparts
(Table 2). Insect RyRs are commonly composed of a large amino-terminal region including
a MIR domain, two RIH domains, three SPRY domains, four RyR repeat domains, one
RIH-associated domain, and a carboxy-terminal region including six transmembrane do-
mains and two calcium-binding EF-hand domains [49,50,53,55,56] (Figure 1). Recently,
Lin et al. [107] generated multiple structural models of P. xylostella RyR based on the
rabbit RyR1 cryo-EM structure. This revealed that PxRyR is highly modular and consists
of 20 individual domains, including 3 N-terminal domains, 3 SPRY domains, 3 insect
divergent regions (IDR), 2 RYR repeat domains, 3 solenoid [SOL] domains, a shell-core
linker peptide (SCLP) domain, an EF-hand domain (EF1&2), a thumb and forefinger (TaF)
domain, a pseudo voltage-sensor domain (pVSD), a pore-forming (PF) domain and a
C-terminal domain (CTD) with six transmembrane helices. There is evidence indicating
the N-terminal cytoplasmic domain modulates the gating of the channel pore located
in the C-terminus similar to that in mammalian RyRs [49,53,56,103,106]. The proposed
pore (loop), including the characteristic “GXRXGGGXGD” motif [108], is located between
the C-terminal helices 5 and 6 [37,39,41,109]. Notably, the loop is proposed to act as a
selectivity filter for ions in both mammalian RyRs and IP3Rs, suggesting it also likely to
enable the channels to discriminate between ions in insects. It is also worth noting that
mutagenesis of residues in this region of both RyR and IP3R impairs channel conduc-
tance in mammalians [108,110,111]. Residues I5023, R5039, and D5043 (numbering based
on P. xylostella RyR- GenBank accession number AET09964) [39] between TM5 and TM6
are conserved in insect RyRs [46,49,50,55,56] and the corresponding residues (I4897, R4913,
and D4917) in rabbit RyR1 play role in the activity and conductance of the Ca2+ release
channel [30,112]. A glutamate residue proposed to be involved in Ca2+ sensitivity in
rabbit RyR1 (E4032) [113] and RyR3 (E3885) [114] is also conserved in insect RyRs (E4201

in PxRyR) [46,50]. The lepidopteran RyRs show sequence divergence from other insect
RyRs in the carboxy-terminal region, especially in the region proximal to the pore-forming
segment [37]. Lepidopterans differ from the non-lepidopteran RyRs at 9 conserved posi-
tions: Q4594, I4790, N4999, N5001, N5012, L5027, L5058, N5090, and T5141 (numbering based on
P. xylostella RyR) [37,39,41,115,116]. Four of these (N4999, N5001, N5012, L5027) are clustered
near the pore-forming segment, while L5058 is located in transmembrane helix 6 [37,39,41]
and corresponds to I4862 in the mouse RyR2, which plays a crucial role in RyR channel
activation and gating [117]. Additionally, 8 of the 9 conserved residues (except Q4594

corresponding to K4536 in DmRyR, GenBank accession number NP_476991) corresponding
to M4748, D4957, K4959, H4970, I4985, I5016, G5048 and Q5099, respectively, in D. melanogaster
RyR are also conserved amongst non-lepidopteran or invertebrate RyRs [37]. Notably,
Q4594 is located in the insect divergent region (IDR) with several different amino acids
being found at this position, but mostly lysine in Coleoptera, Hymenoptera, and some
Diptera [63]. These residues might be involved in differences in channel properties between
lepidopteran and non-lepidopteran insect RyRs and in the species with selective toxicity of
diamide insecticides [37,41,116]; for further discussion see Section 6. However, the diver-
gence is similar to the two mammalian divergent regions, DR1 and DR2 [118]. The two
regions in insect RyRs also exhibit lower similarities to each other and have been defined
as insect divergent region 1 (IDR1, amino acids located at 1299–1522 in L. decemlineata RyR)
and 2 (IDR2, amino acids located at 4395–4721) [41,51,52]. These regions might also be
involved in the distinct channel properties of insect RyR isoforms [51]. In contrast, the two
EF-hand Ca2+ binding motifs originally reported in the lobster RyR [119] are conserved
in the carboxy-terminus of insect RyRs (4250–4261 and 4285–4296 in P. xylostella RyR) [39].
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However, the structural model of PxRyR by Lin et al. [107] revealed that the Ca2+ is co-
ordinated by the negatively charged side chains of E4062 and E4136 in the RIH-associated
domain, and the backbone carbonyl of T5127 in the C-terminal domain. A relatively recent
study on mammalian cardiac RyR2 revealed that the EF-hand domain was not necessary
for cytosolic Ca2+ activation but required for ER Ca2+ [120]. Nevertheless, EF-hand motifs
are required for regulation of RyRs by calmodulin [121]. Although this topic requires
investigation in insects, binding sites of calmodulin in rabbit RyR1 have already been
detected (amino acid positions 3614–3643) [122], and putative corresponding sites have
been proposed for insect RyRs (e.g., amino acid positions 3756–3785 in LdRyR) [51].

Figure 1. The conserved domains for RyR are listed as following MIR (Mannosyltransferase, IP3R, and RyR, pfam02815), RIH
(RyR and IP3R Homology, pfam01365), the SPRY (spIA and RyR domains, pfam00622), RyR domain (pfam02026) [71,90–92],
RIH A domains (RIH-associated, pfam08454) [89], EF-hands, and putative transmembrane domain (TM1-TM6). IP3R has
three putative functional regions: ligand binding, central regulatory, and channel forming sites. Ligand binding region
includes three subdomains, the IP3-binding core β (IBC-β) and α (IBC-α) that interact with IP3; and the suppressor domain
(SD) reducing the affinity for IP3 [81–85]. The conserved domains for IP3R are listed as following MIR RIH, RIH A, and
TM1-TM6. Arrow corresponding to TM5 and TM6 including the suppressor domain and ligand binding, which leads to
modulation of the gating of the Ca2+ pore in both channels.

Insect IP3Rs are commonly composed of 2724–2833 residues with a molecular weight
of 309–319 kDa (Table 1). No study has examined the crystal structures of insect IP3Rs yet.
Therefore, the entire structural domain organization and key regions of insect RyRs are
based on the predictions of sequence features and comparisons with their mammalian coun-
terparts. Nevertheless, predictions on the structural domain organization of IP3Rs reveal
differences and are limited to the IP3Rs from D. melanogaster [61,83], T. castaneum [50], and
B. tabaci [62] (Figure 1). The D. melanogaster IP3R is composed of a middle-coupling domain
(N651-W2359), a putative Ca2+-sensor region (G1986-S2354), and a carboxy-terminal channel-
forming domain (S2360-Q2829) with six transmembrane domains (TM1-TM6) and a pore-
forming region [83]. The B. tabaci IP3R contains an inositol 1,4,5-trisphosphate/ryanodine
receptor domain (residues 6–229), three MIR domains (residues 116–168, 298–333 and
237–420), two RIH domains (residues 460–664 and 1185–1366), a RIH-associated do-
main (residues 1918–2037), an oligosaccharide repeat unit polymerase domain (residues
2234–2450), an identity helices domain (residues 4925–5060), and a Sec2p domain (residues
2669–2708) [62]. Troczka et al. [63] conducted a pfam search of conserved domains from
insect IP3Rs which revealed the presence of six domains, including an IP3 binding region,
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a MIR domain, two RIH domains, a RIH-associated domain, and the transmembrane
ion transport domain. The MIR, RIH, RIH-associated regulatory domains at the amino
terminus, together with the six transmembrane helices including the GXRXGGGXGD
selectivity motif between TM5 and TM6 in the carboxy terminal region, appear to be
common to both insect IP3Rs and RyRs [50], similar to the mammalian RyRs and IP3Rs [91]
(Figure 1, Table 2). Notably, there are also functionally orthologous regions, such as the
N-terminal regions including the suppressor and ligand binding domains, which lead to
modulation of the gating of the Ca2+ pore at the carboxy terminus. The 11 residues in
the IBC core recognizing IP3 in mouse IP3R1 [67] are conserved in T. castaneum IP3R (R267,
T268, T269, G270, R271, R496, K500, R503, Y560, R561, K562) [50]. Additionally, seven residues
in the amino-terminal suppression domain of the mouse IP3R1 that were shown to be
critical for inhibition of IP3 binding [74], were also present in TcIP3R (L31, L33, V34, D35,
R37, R55, K128). It is noteworthy that aphid IP3Rs appear to create relatively larger channels
(around 1000 residues with a molecular weight of 100 kDa) compared to other insect IP3Rs
(Table 1) [63]. Nevertheless, the overall structural domain organization of M. persicae IP3R
does not change other than the additional amino acids scattered across the entire length of
the protein, including within the functionally important domains [63]. Larger IP3R-like
channels are also present in various protozoan species [123,124]. This raises the question
whether such divergence is present in other families, which will require identification of
more insect IP3Rs.

Alternative splicing of RyR mRNA [125–128] and IP3Rs [129] is common in mam-
malians, leading to differences in Ca2+ releasing patterns. The expression of splicing
variants of RyRs and IP3Rs is regulated both in a tissue-specific and developmental manner.
Alternative mRNA splicing was also detected for both insect RyR and IP3Rs in many
species, with several variants being specific to different tissues and/or developmental
stages [33,37,39,41,49–52,55,56,130], suggesting a functional diversity for RyRs and IP3Rs
in insect physiology. For example, B. dorsalis RyR mRNA possesses four alternative splice
variants (ASI-ASIV) [49], while G. molesta [46], D. citri [56], and T. citricida [55] RyRs were
found to have five, three, and one alternative splicing variant, respectively. Amongst these
sites, the splicing site located within the second SPRY domain in the N-terminal part of
the channel (amino acids 1135–1167 of the M. persicae RyR) appears to be quite common in
insects [37,40,52,54]. As the second SPRY domain is considered to be a protein–protein inter-
action domain involved in various biological functions [95,131], splicing variants generated
at this location might have different protein–protein interactions [37,63]. Toxoptera citricida
RyR alternate splicing has been shown to occur by intron retention, a rare splicing event in
animals [55]. In contrast, M. persicae RyR mRNA lacks an alternative splicing variant [54].
On the other hand, at least one alternative splicing site was detected in D. melanogaster [91]
and T. castaneum (located between amino acid residues 922–929) [50] RyR mRNA. This al-
ternative splice site is also conserved in the human IP3R1 [132]. The functional implications
of alternative splicing in insect Rys and IP3R mRNA has not been studied and requires
further investigation.

Phylogenetic analysis of RyRs and IP3Rs from a variety of vertebrate and invertebrate
species (Table S1) reveals two major clades, the RyR clade and the IP3R clade (Figure 2).
In each clade, invertebrate and vertebrate RyRs or IP3Rs are clustered separately. In
invertebrate isoforms of each clade, spider RyR or IP3R forms a subclade, while the insect
RyRs or IP3Rs form another subclade. In the vertebrate isoforms of RyRs, RyR1, and
RyR3 isoforms are clustered in one subclade, while RyR2 isoforms are clustered in another
subclade. In the vertebrate isoforms of IP3Rs, IP3R2, and IP3R3 isoforms are clustered in
one subclade, while IP3R1 isoforms are clustered in another subclade. Overall, one could
say that each receptor is formed through a gene duplication in invertebrates, which leads to
generation of vertebrate RyRs and IP3Rs. The three isoforms of each receptor in vertebrates
appear to derive via distinct gene duplication events.
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Figure 2. Phylogenetic analysis tree of IP3R and RyR, constructed by aligning amino acid sequences
from representative species of animal phyla using the MUSCLE algorithm of MEGA-X software,
version 10.0 (www.megasoftware.net) (accessed on 21 March 2021) [133]. Phylogenetic trees were
constructed by using the maximum likelihood method and Le Gascuel model [134]. The bootstrap
consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa
analyzed [135]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates
were collapsed. Representative proteins and their accession numbers are given in Supplementary
Table S1.

4. Pathway

Although RyRs and IP3Rs are closely related Ca2+ release channels, their regulatory
pathways are different [136]. Regardless, reduction in intracellular levels of Ca2+ leads to ac-
tivation of both channels and is primarily coordinated by a process called “Store-Operated
Calcium Entry (SOCE)”. Both IP3R and RyR are the major biochemical components of the
SOCE process and mediate release of Ca2+ from the ER into the cytosol or other organelles,
such as mitochondria [124,137,138], lysosomes [139–141], and the Golgi apparatus [142].
The other major component of this process is the Sarco/endoplasmic reticulum Ca2+-
ATPase [SERCA], which pumps Ca2+ from the cytosol into the ER lumen. There are other
players involved in SOCE, for example, the stromal interaction molecule (STIM)-Orai1
complex. STIM is normally located in the ER transmembrane and senses luminal Ca2+

depletion, which leads to its translocation to junctions between the ER and plasma mem-
brane where it couples with the plasma membrane Ca2+ channel protein Orai1 [143]. This
coupling activates Ca2+ release-activated Ca2+ (CRAC) channels in the plasma membrane,
allowing Ca2+ influx from the extracellular pools to the cytosol and then from the cytosol to
the ER through SERCA [144]. Notably, SERCA might associate with IP3R upon depletion of
ER Ca2+ resulting in enhanced SOCE activity [145–148]; however, this has not been shown

www.megasoftware.net


Biomolecules 2021, 11, 1031 10 of 47

in insect models. Elevation of cytosolic Ca2+ to certain levels inactivates CRAC channels
thereby terminating Ca2+ influx into the cell, a process known as Ca2+-dependent inactiva-
tion (CDI) [149]. It is noteworthy that the primary Ca2+-binding protein, calmodulin, is
involved in CDI by binding to STIM, leading to disruption of the STIM-Orai1 complex [150].
The activation of either RyR or IP3R is initiated by various external (e.g., light, pheromones,
allelochemicals, insecticides) or internal (e.g., neurotransmitters, hormones, growth factors,
feeding status, developmental stage, flight) signals that are adjusted based on the biology
of insects and associated physiological processes. Activation of the channels might be
specific to an organ or cell requiring either the RyR or the IP3R.

IP3Rs are expressed in most cells, in particular in the ER of neurons [151], fat body
adipocytes [Doğan et al., unpublished], and oocytes [152] (Table 2). IP3R signaling pathway
is integrated with several other signaling pathways, such as the insulin/target of rapamycin
(TOR) pathway [153,154]. Low concentrations of cytoplasmic Ca2+ activate IP3R, while
high concentrations (above 300 nM) inhibit channel activity [21,153]. Various receptors in
the plasma membrane of the cell, such as G-protein-coupled receptors (GPCRs), stimulate
phospholipase C (PLC) that hydrolyzes the phosphorylated plasma membrane glycolipid,
phosphatidylinositol 4,5-bisphosphate (PIP2), into secondary messengers diacylglycerol
(DAG) and IP3. IP3 binds to IP3-binding sites in the N-terminus of the tetrameric IP3R to
initiate conformational changes that are transmitted down to the transmembrane region
leading to opening of the Ca2+-permeable pore ~7 nm away from the IBC to release the
Ca2+ from the ER [155,156]. The IBC form a clam-shaped structure and residues in the
IBC required for IP3 binding are conserved in IP3Rs, but not in RyRs [28,81]. Notably,
studies on mammalian IP3Rs revealed that IP3 binding alone is not sufficient to activate
IP3Rs [153]. Indeed, IP3 binding primes IP3Rs to bind Ca2+ and Ca2+ binding triggers
channel opening [157,158]. Insect IP3Rs might also require binding of both IP3 and Ca2+

to open the channel; however, this has not been demonstrated. It is also noteworthy that
IP3 must bind to each of the four subunits of IP3R; the 4- and 5-phosphates of IP3 moiety
are essential for binding, while the 1-phosphate enhances affinity [159]. Activation of
IP3R propagates regenerative Ca2+ signals by Ca2+-induced Ca2+ release (CICR) leading
to generation of cell-wide Ca2+ spikes, oscillations or localized Ca2+ “puffs” arising from
simultaneous opening of a small cluster of IP3Rs [160–162]. Calcium spikes through IP3R
are the main event leading to differential gene expression [153,163]; however, oscillations
are also quite common and have been described in many insect cells, including those
from salivary glands [164], neurons [165,166], and oocytes [152]. Activity of the IP3Rs is
also regulated through post-translational modifications, primarily by phosphorylation
and dephosphorylation via protein kinases and phosphatases, respectively [167]. For
example, the 3′,5′-cyclic monophosphate (cyclic AMP:cAMP)-dependent protein kinase
(PKA) phosphorylates IP3R resulting in an increase in Ca2+ release in mammals [168].
However, D. melanogaster IP3R lacks PKA sites indicating that it is not regulated by PKA [61].
Other phosphorylation agents, such as the AKT kinase (PKB), protein kinase C (PKC),
or Ca2+/calmodulin-dependent protein kinase II (CaMKII), might be involved in the
phosphorylation of insect IP3Rs similar to that in mammalians [83,167,169,170]. IP3 is
deactivated by phosphorylation to IP4 or dephosphorylation to IP2 thereby terminating
the IP3R signaling pathway [171]. Proteins that have EF-hand Ca2+-binding motifs, such
as calmodulin, can also regulate the activity of the IP3Rs. Calmodulin has been shown
to inhibit the binding of IP3 to IP3Rs in mammals in a dose-dependent manner [102,172].
Endogenous calmodulin is essential for the proper activation of the IP3R [173]. The direct
effect of calmodulin has not been experimentally shown for insect IP3Rs; however, in
D. melanogaster, IP3R and calmodulin compete for binding to transient receptor potential
(TRP) proteins, which are known to form plasma membrane channels [174].

RyRs have a more restricted distribution compared to IP3Rs and are predominantly
found in the SR of muscle cells and the ER of neurons (Table 2). RyR activation occurs
through binding of Ca2+ to high affinity binding sites [142,175]. RyR is normally closed at
low cytosolic Ca2+ (100–200 nM); submicromolar levels of Ca2+ act on the RyR channel by
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increasing open channel probability [92,176–178]. A small amount of Ca2+ in the cytosol
near the receptor causes it to release even more Ca2+; however, as the concentration of
intracellular Ca2+ rises to millimolar concentrations, RyR channel activation becomes
inhibited, preventing the total depletion of SR Ca2+ [35,179–181]. Like cytosolic Ca2+,
adenine nucleotides also have a biphasic effect on (3H)ryanodine binding [182]; however,
this has not been demonstrated for insect RyRs yet. Mammalian RyR activity is regulated
by PKA, in particular via the residues in the Repeat34 domain of the channel [69,183].
This phosphorylation has been shown to increase the channel activity [184]. In P. xylostella
RyR, PKA phosphorylation sites have been detected in the Repeat34 domain, which might
regulate the interaction with the neighboring SPRY3 domain [104]. The phosphorylation
pattern is temperature-dependent with a lower thermal stability compared to the analogous
Repeat34 domain in mammalian RyR isoforms [104]. Notably, mammalian RyR function is
known to be modulated also by CaMKII; however, this topic requires investigation in insects
(Table 2). On the other hand, the primary Ca2+ binding protein, calmodulin has different
effects depending on the Ca2+ levels and the type of the RyR in mammalians. Calmodulin
activates (at low Ca2+ levels) or inhibits (at high Ca2+ levels) the RyR1 and RyR3 channels,
while only inhibitory effects were reported for RyR2 [98,99,185,186]. Although potential
calmodulin binding sites have been detected in insect RyRs [33,51], the direct effect of
calmodulin on RyR activity in insects has not been demonstrated; however, limited findings
provide a hint to calmodulin–channel interaction. Drosophila melanogaster calmodulin
mutants with a single amino acid change (V91G) were found to possess abnormal Ca2+

release in response to depolarization of muscles, which was linked to failed regulation
of the RyR [187]. Inhibition of calmodulin has been also shown to enhance the light-
induced Ca2+ release from internal stores in photoreceptor neurons, indicating calmodulin
is involved in the termination of the light response [188–190]. Calmodulin rescued the
inactivated photoresponse in the presence of ryanodine, suggesting a link between RyR
activation and calmodulin action [188,189]. As the activation of the D. melanogaster visual
cascade also includes the cation influx channels transient receptor potential (TRP) protein,
which also requires IP3R signaling [191], the interaction of calmodulin with both channels
in insects requires further investigation.

5. Functions

RyRs mediate many cellular and physiological activities, such as muscle contraction,
neurotransmitter release, and hormone secretion [17] (Table 2). In accordance with these
roles, RyRs are associated with the SR of muscles and the ER of neurons and many other
cell types. The mammalian RyR1 and RyR2 are predominately found in skeletal and cardiac
muscles, respectively, while RyR3 is relatively abundant in brain and certain skeletal tissues
but is also expressed at low levels in multiple tissues [192–194]. Neuronal expression of
RyR varies, but RyR2 is most abundant. Notably, RYR2 is the major cellular mediator
of CICR in animal cells. In contrast to mammalians, there is only one isoform of RyR in
insects. The initial studies on insect RyRs have been conducted on D. melanogaster. These
studies revealed RyR is expressed in muscles of the body wall, visceral muscles around
the gut, central nervous systems, and optic lobe and retina in the embryonic, larval, and
adult stages [32,33,195]. In D. melanogaster adults, RyR mRNA was detected in tubular
muscles and at a lower level in neuronal tissues [32,188] but not ovaries [196,197]. Among
head, eyes, antennae and legs, the highest expression was detected in legs [32]. Subsequent
studies have examined the site-specific and developmental expression of insect RyR genes
in insects other than D. melanogaster. For example, the highest expression level of RyR was
detected in the thorax compared with the head and abdomen in adult B. dorsalis [49] and
P. rapae [42], suggesting RyR is involved in the modulation of intracellular Ca2+ levels for
locomotory activities. Similarly, RyR expression was higher in the adult thorax compared
to the abdomen; however, the highest expression was detected in the head in D. citri [56].
Similar results were also found in H. armigera larvae [41], P. rapae adults [42], L. decemlineata
larvae [51], S. furcifera nymphs [53] and T. citricida adults [55] with higher expression in
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the head and/or thorax than the abdomen. In contrast, no significant difference in RyR
expression levels between the head, thorax, and abdomen were detected in the fourth
instar larva of P. xylostella [39]. A more specific analysis of different tissues in the third
instar L. decemlineata larvae indicated that RyR expression level was highest in foregut,
at moderate levels in the hindgut and epidermis, and to a lower extent in the fat body,
midgut, ventral ganglia, and Malpighian tubules [51]. In the the fourth instar larvae of
P. rapae, RyR was primarily expressed in the epidermis, at moderate levels in nerve cords,
hemocytes, the midgut, and least in the fat body and Malpighian tubules [42]. In the fifth
instar larvae of C. suppressalis, RyR was primarily expressed in the head (including brain
and muscle), at moderate levels in the integument and the haemolymph, and least in the
fat body, Malpighian tubules, the midgut, and the silk gland [64]. Such distribution of
RyR mRNAs is not unexpected considering that more muscles are distributed around the
foregut, the hindgut, and attached to the epidermis [51]. Nevertheless, the commonly
reported higher expression in the thorax and the head are in accordance with the lowest
expression in eggs and highest expression in juvenile or adult stages, considering that the
mobile stages, such as larvae or adults, require muscle activity. Thus, RyR expression was
highest in larval or adult stages and lowest in eggs in O. furnacalis [40], B. dorsalis [49],
H. armigera [41], L. decemlineata [51], and T. castaneum [50]. Similarly, RyR expression
was lowest in eggs; however, it was higher in nymphs than adults in D. citri [56]. In
another hemipteran, S. furcifera, RyR expression in the fifth instar nymph was significantly
higher than in the eggs or female adults; however, no significant difference was detected
between the eggs and female adults [53]. This trend is similar to that in C. suppressalis
with the highest expression in the third instar larvae, but with similar expression in
eggs, pupae, and adults [64]. In N. lugens, RyR transcript levels in female adults were
significantly higher than in first to fifth instar nymphs; however, the lowest expression
was still in eggs [52]. The expression level of RyR in T. citricida adults were also found
to be significantly higher than those in nymphs [55], while no significant difference in
the expression levels of RyR was found between nymphs and adults [54]. In contrast
to most studies, RyR expression levels in eggs, larvae, and adults were all found to be
similar in the lepidopteran P. xylostella [39]. In brief, these studies, except that by Wang
et al. [39], indicate that the expression of RyR is higher in adult or juvenile stages (larva or
nymph) than in eggs, suggesting involvement of RyRs in locomotory activities. Notably,
the immobile pupal stages can also have high expression of RyR [40,41,46]. Although
most larval muscles are histolyzed during the early-mid phase of pupal development, new
muscles are formed at the late pupal stage [198], suggesting that RyR expression might
fluctuate during pupal transition and be elevated depending on the timing of sampling [51].
It is noteworthy that upregulation of RyR expression in pupae might be related to factors
other than muscle formation. Notably, RyR expression patterns might also be different
between sexes. For example, RyR expression was found to be significantly higher in males
in S. furcifera [53], N. lugens [52], and G. molesta [46]. However, the reason for this sex-
dependent variation in insect RyR genes is not currently known. Nevertheless, the higher
RyR expression in the thorax compared to the abdomen is in accordance with the primary
function of RyRs in the mediation of excitation-contraction coupling in muscles, which is
primarily located in the thorax for mobility [198]. On the other hand, higher expression
of RyR in the head is in accordance with the involvement of this body part in nerve
conduction, hormone secretion and sensory activities, processes that are regulated by RyR
activity. It is noteworthy that expression levels of different RyR mRNA splicing variants
vary between different developmental stages and tissues [33,37,39–41,46,49,52,55,65]. In
contrast, M. persicae RyR mRNA lacks an alternative splicing event, which might be related
to its asexual reproduction phase [54]. Alternative splicing of RyR mRNAs is common
in mammalians with more than 12 distinct splice variants identified to date, leading to
important differences in their channel functioning [125,126,199,200]. Some splice variants
suppress Ca2+ release, while some contribute to distinct Ca2+ release patterns [126–128].
Interestingly, T. citricida RyR mRNA splicing occur by intron retention [55]. Such a splicing
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event is rare in animals, leading to generation of an optional exon. However, the inclusion
of this exon was shown to induce a premature stop codon in T. citricida RyR mRNA,
encoding a truncated protein [55]. Nevertheless, alternative splicing might be critical in
generating a diversity of RyRs, leading to subsequent phenotypic changes, in particular for
insects which have a single RyR gene.

IP3Rs are involved in the key events related to the gene expression, development,
learning, memory, neuronal signaling, and sensory transduction [129,136] (Table 2). In
accordance with these roles, genes encoding IP3R are expressed in many cell types, but
primarily associated with the ER of neurons. IP3R1 is the predominant neuronal isoform
and present in endothelial cells, while IP3R2 is the predominant isoform in contractile
myocardial cells and the sinoatrial node and IP3R3 in the intestinal crypt, ovary cells, villus
epithelial cells, and the microvillous cells in the olfactory system [201–204]. Insect genomes
possess a single IP3R gene. The first D. melanogaster IP3R gene was reported by Yoshikawa
et al. [61] and is expressed mainly in the central nervous system [151], but also other tissues,
such as fat body [205] and ovaries [196,197]. A confocal microscopic investigation revealed
that IP3R is present in all tissues of adult D. melanogaster and at more homogeneous in levels
than RyR [195]. However, the level of transcription in the appendages, containing mainly
legs, antennae, wings, and seta, was the highest among all the parts of adult flies [61].
IP3R mRNA was also abundant in the thorax. Among the head, eyes, antennae and legs,
the highest expression was detected at antennae [32]. Developmental expression of IP3R
revealed that the gene is expressed at the highest levels in adults, at moderate levels in eggs,
followed by early and mid stage pupa, and least in larvae [61]. Although many studies
have been conducted on insect RyRs, the studies on non-Drosophila IP3Rs are restricted to
only a few insects. Liu et al. [50] reported that the highest and lowest expression levels of
IP3R were detected in 1-day-old larvae and 3-day-old eggs, respectively, in T. castaneum. In
B. tabaci, IP3R was primarily expressed in larvae, unlike D. melanogaster, while expression
was moderate in pseudopupa and female adults, and least in eggs [62]. Nevertheless, the
higher expression in adults or larvae compared to eggs is similar to those reported for
insect RyR genes and is in accordance with the possible involvement of IP3R in locomotor
activities [61], sensory transduction [32] and muscle development [206]. Sex-dependent
differential expression of IP3R genes was reported from a single insect species. The trend
was in favor of females, contrasting to those reported for RyR genes [62]; however, further
studies are necessary to make a conclusion. As was reported for RyR mRNA, alternative
splicing of IP3R mRNA is also common in mammalians [129]. At least one of these splice
sites appears to be conserved in D. melanogaster [91].

As we already introduced the site-specific and developmental expression patterns
of both RyR and IP3R genes, their involvement in insect life processes highlighting lipid
metabolism, muscle excitation and contraction in locomotor activities, visualization and
olfactory responses, and development are summarized below.

5.1. Lipid Metabolism

Various studies in mammals revealed the involvement of Ca2+ in lipid metabolism [143,207–213].
These studies inspired those in insects, which confirmed the involvement of Ca2+ in lipid
metabolism in insects [214]. The center of the insect lipid metabolism is the fat body, which
is primarily composed of the adipocytes that are able to store tremendous amounts of
lipids in their cytosolic lipid droplets [214–216]. The data on the involvement of Ca2+ in
insect lipid metabolism is limited and derives mostly from the model insect D. melanogaster
where increased levels of cytosolic Ca2+ in adipocytes lead to fat reduction, whereas de-
creased cytosolic Ca2+ levels induce fat accumulation [217–223]. Several other studies on
non-Drosophila insects also demonstrated the involvement of Ca2+ in lipid metabolism,
which occurs via the primary Ca2+ signaling molecules calmodulin, calcineurin and regu-
calcin [10]. These studies together indicate that cytosolic Ca2+ levels correspond with the
levels of triglycerides in lipid droplets. This raises the question as to where RyRs and IP3Rs
stand in this interaction as the two major intracellular Ca2+ suppliers residing in the ER.
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Most of the data on the involvement of insect ER Ca2+ channels in lipid metabolism
are related to IP3Rs, which induce lipolysis in insect adipocytes. The loss of IP3R leads to
elevated levels of triglycerides with enlarged lipid droplets in the fat body and hyperpha-
gia in D. melanogaster adults [218]. In line with this, fat body-specific knockdown of IP3R
leads to an increase in lipid droplet size and triglyceride accumulation in adult flies [222].
The lipolysis is primarily under the control of the adipokinetic hormone (AKH) which
binds to AKH-receptor in adipocytes, leading to generation of the secondary messenger
cAMP and the PLC [224]. The cAMP induces PKA, leading to activation of the lipolytic
transcription factor foxO acting on lipase genes [219]. In parallel, PLC hydrolyzes PIP2 to
IP3, which binds to IP3R, leading to activation of the channel and an elevation in cytosolic
Ca2+ levels [214]. Therefore, AKH activity leads to lipolysis in parallel to the increase in
cytosolic levels of Ca2+ in adipocytes [214]. While the increase in cytosolic levels of Ca2+

transmits the AKH signal, the exact mechanism is not known [219,220,225]. Subramanian
et al. [218] reported that reduced insulin signaling in IP3R-mutants might be one of the
reasons for IP3R deficiency-related obesity. It is also noteworthy that knockdown of IP3R,
either in all neurons or in peptidergic neurons alone, mimics the IP3R mutant phenotype
with elevated lipid stores and hyperphagia [217]. IP3R-mediated Ca2+ release in neurons
is significantly reduced in these mutants, while the level of short neuropeptide F (sNPF),
which is involved in hyperphagia, is elevated [219,220,223] suggesting that IP3R-mediated
Ca2+ signals modulate neural circuits for feeding [218,226,227] and that sNPF is likely to
be involved in the activation of IP3Rs in neurons [228]. In brief, impaired lipid metabolism
derives primarily from peptidergic neurons. These neurons are also associated with the
stomatogastric nervous system. On the other hand, AKH-induced lipolysis has been re-
ported only in adults of D. melanogaster as manipulation of cytosolic Ca2+ levels in the larval
fat body does not have a significant effect on larval fat stores [219,229]. In contrast, insects,
such as L. decemlineata, accumulate greater amounts of lipid at the larval stage, which
show impaired lipid metabolism upon silencing Ca2+-signaling genes [10,216]. Therefore,
the dynamics of lipid metabolism in relation to Ca2+ might be different depending on
the species.

Knowledge on the involvement of RyRs in insect lipid metabolism is restricted to
a single study. In D. melanogaster adults, fat body-specific knockdown of RyR leads to
an increase in lipid droplet size and triglyceride levels, suggesting a lipolytic role for
RyRs [222]. On the other hand, loss of the fat body seipin gene in D. melanogaster adults
leads to reduction in triglyceride storage and lipid droplet size, which is linked to im-
paired SERCA activity, suggesting seipin and SERCA function together to promote fat
storage in adipose tissue [222,230]. Interestingly, adipose tissue-specific knockdown of
RyR partially restores fat storage in seipin mutants, while IP3R silencing did not rescue this
phenotype [222]. These findings indicate a complex interaction between the receptors with
other molecules involved in Ca2+ homeostasis in fat body adipocytes. It is noteworthy that
opposite effects were reported on the levels and cellular sites of Ca2+ on fat storage in hep-
atocytes compared to adipocytes in mammals. Increased cytosolic and reduced ER calcium
levels induce triglyceride accumulation leading to lipogenesis, whereas reduced cytosolic
and increased ER calcium levels reduce triglyceride accumulation leading to lipolysis in
hepatocytes and their orthologous cells in the insect fat body, oenocytes [214,222,231]. This
suggests that IP3R acts as an obesity gene in hepatocytes or oenocytes [222]. However, the
data is restricted to D. melanogaster and, therefore, this topic requires further investigation
in other insect species.

5.2. Muscle Excitation and Contraction in Locomotor Activities

Calcium is an essential element in the excitation and contraction of muscles [232,233].
ER-released Ca2+ is a major source for the stimulation of muscle cells in invertebrates
from nematodes towards insects [234–237]. Insect muscle contraction is similar to that in
vertebrate skeletal muscles as in both SR release Ca2+ that binds to troponin, a regulatory
protein on the thin filament. Troponin activate another regulatory protein, tropomyosin,
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which causes muscle contraction [238,239]. In contrast, relaxation occurs as the Ca2+ pump
on the SR membrane transports Ca2+ ions back into the SR lumen. This raises the question
as to whether RyR or IP3R or both are involved in Ca2+-related muscle excitation and
contraction in insects.

RyRs play a central role in the excitation/contraction (EC) coupling of cardiac and
skeletal muscles in mammals [17,240,241]. Studies in D. melanogaster indicated that RyR
is mainly expressed in the muscles of the body wall, visceral muscles around the alimen-
tary canal, as well as the central nervous system [33,65,242]. Similarly, high levels of
RyR expression in muscles have been also reported from non-Drosophila insects, such as
H. virescens [35] and L. decemlineata [51]. Partial loss of RyR led to impairment of hypo-
dermal, visceral, and circulatory muscles, indicating RyR is essential for proper muscle
function and EC coupling in larval body wall muscles [33,242]. Drosophila melanogaster
RyR mutants also have a severe defect in the ingestion and passage of food into the gut,
confirming that the head and visceral muscles are impaired [242]. On the other hand, mu-
tation calmodulin leads to specific impairment in muscle Ca2+ flux, which was found to be
related to failed regulation of RyR [187]. RyR activity is also necessary for the spontaneous
rhythmic contractions of the lateral oviduct muscles in the cricket, Gryllus bimaculatus (Or-
thoptera: Gryllidae) [237]. Similarly, proctolin induced Ca2+ release from the SR, via RyR,
plays a major role in hyperneural muscle contractions in Periplaneta americana (Blattodea:
Blattidae), while IP3R-induced Ca2+ release has little impact [243].

IP3Rs also play a role in the EC and regulation of skeletal, cardiac, and smooth
muscle cell functions in mammals [153,244]. Involvement of IP3R in insect muscle ac-
tivity has not been studied in detail. IP3R is expressed in D. melanogaster adult muscles,
particularly in legs which contain tubular muscles, but to a lesser extent in the thorax,
which contains the fibrillary muscles [32,61]. However, it is not known whether IP3R has
a possible role in tubular or fibrillar muscle function regulation in D. melanogaster. In
G. bimaculatus, IP3R regulates the amplitude of rhythmic contractions of lateral oviduct
muscles; however, the effect was considered minimal [237]. Notably, the inhibitor used in
that study, 2-aminoethoxydiphenyl borate, might also inhibit other SOCE molecules, such
as SERCA [245], or other volume-regulated anion channels independently from intracel-
lular Ca2+ signaling modulation [246]. Further investigation, possibly with other select
IP3R inhibitors, is required. The involvement of Ca2+ in EC of lateral oviduct muscles
via the action of several neurohormones was also reported in other studies. For example,
octopamine, via the intracellular messenger cAMP, inhibits contraction of the oviducts,
while proctolin, via the PLC/IP3R, stimulates contraction [247–251]. In Schistocerca gregaria
(Orthoptera: Acrididae), ryanodine had no effect on proctolin-stimulated foregut muscle
contraction, instead, gut muscle contraction was dependent on proctolin receptor-specific
activation of the PLC signaling cascade leading to generation of IP3 [252]. The authors
proposed that the potentiation of contractions by proctolin is mediated by activation of
IP3-induced Ca2+ release from the SR, in contrast to the model of proctolin action on
tonic muscle contractions of P. americana [243]. These findings support the notion that
neurohormones act on the muscles, therefore, their activity is indeed controlled by neu-
ronal signaling pathways [253]. There are various studies on the involvement of neuronal
Ca2+ levels leading to muscle action, in particular related to locomotor activities such as
flight, walking or climbing. For example, the mutations in IP3R resulted in strong flight
deficits in D. melanogaster [226,254]. Furthermore, pan-neuronal knockdown of the IP3R
leads to significant defects in wing posture in Drosophila, indicating IP3R in neurons is
necessary during pupal development for flight [227,255]. Examination of Ca2+ signals in
cultured pupal neurons in D. melanogaster IP3R mutants also revealed high spontaneous
Ca2+ influx and reduced SOCE, which might lead to loss of flight [256]. These defects
and deficits were indeed found to be related to impairment of the IP3R signaling induced
by neurohormones, primarily the amine-type, and their G-protein coupled receptors in
the neurons (e.g., aminergic neurons) [227,254,255,257–259]. IP3R in neurons can also be
induced by other signaling molecules, such as neurotransmitters [256,259], nevertheless,



Biomolecules 2021, 11, 1031 16 of 47

IP3R-dependent Ca2+ release is essential for neuronal activity. Thus, expression of IP3R in
aminergic neurons during pupal development was found to rescue the adult flight deficit
in D. melanogaster IP3R mutants, suggesting the involvement of IP3R in flight is related
to its role in development [227,254,256]. Other SOCE components, such as STIM-ORAI
involved in the extracellular Ca2+ influx, are also necessary for normal flight activity [226].
Insect leg muscles are also innervated by neuromodulatory octopaminergic DUM (dorsal
unpaired median) neurons or motor neurons [166,260–263]. In S. gregaria, the Ca2+ signal
in such neurons is dependent on IP3R and PLC activation, but not on RyR [264]. In brief,
intracellular Ca2+ stores in neurons are required for insect rhythmic motor functions which
leads to muscle activity and IP3R signaling plays a central role in this supply.

The contradictory results on RyR-induced muscle EC [237,243,265] or IP3R- [248,252]
still raises questions. The absence of functional genomic studies, such as RNAi, or sophisti-
cated visualization techniques makes it difficult to make conclusive statements on this topic.
Nevertheless, the maintenance of intracellular Ca2+ levels in muscle cells is a requirement
for muscle EC; this probably requires RyR and IP3R acting on neuronal pathways.

5.3. Visual and Olfactory Sensory Transduction

Visualization and olfactory responses play a crucial role in insect survival as they are
involved in accessing food sources, protecting insects from threats, and finding mates to
reproduce [266]. This occurs primarily via sensory systems in the eye and antennae; each
possesses a small region of tissue, called receptor cells, that are sensitive to a specific
stimulus [267,268]. Receptor cells are neurons or other specialized cells and convert
odor or light signals into an electrical response that is transmitted to the brain for the
processing, a mechanism commonly known as signal transduction [268]. This might be
named as “phototransduction” for visualization, and “olfactory sensory transduction” for
odor recognition.

Phototransduction starts in ommatidia, units of the insect compound eye that con-
tain sensory neurons known as retinal (visual) cells. The rhabdomere is the central
photoreceptive region in each retinal cell and contains photopigment molecules, called
rhodopsins [269,270]. Absorption of a photon by rhodopsin leads to activation of the
heterotrimeric Gq protein complex, which in turn stimulates PLC to hyrolyzes PIP2 to a
proton, and the secondary messengers hyrophilic IP3 and hyrophobic DAG [267]. The
released proton and the mechanical forces caused by PIP2 hydrolysis results in opening
of light-sensitive, relatively Ca2+-selective, “transient receptor potential” (TRP) channels
and TRP-like (TRPL) channels which mediate an ionic current responsible for generation
of a quantum bump, known as the bump current [271–275]. Calcium is involved in pho-
totransduction; however, studies on the involvement of IP3R and RyR are limited. High
expression of IP3R in retina of adult D. melanogaster suggested a potential role for IP3R in
visual transduction [32,61]. However, studies on D. melanogaster IP3R mutants revealed
that Ca2+ release via IP3R does not contribute to phototransduction [276,277], instead, PLC
activation leads to the opening of light-sensitive Ca2+ channels in photoreceptors [278].
A subsequent study in D. melanogaster proposed that Ca2+ release via IP3R might have a
critical role in light excitation. Silencing of IP3R specifically in adult photoreceptor cells
significantly reduced light-response amplitude in adult photoreceptor cells [279]. Kohn
et al. [279] also reported that IP3R silencing leads to a reduction in PLC catalytic activity,
while elevation of intracellular Ca2+ rescued the suppressed light responsiveness pheno-
type. These findings suggest that Ca2+ release from internal stores is necessary to increase
PLC activity required for bump current, and that functional cooperation between IP3R and
PLC is necessary for light responsiveness [279]. This study also posits that the reason for
lack of connection between IP3R and phototransduction in previous studies [276,277] was
due to leakage of trace amounts of Ca2+ from patchclamp recording electrodes, effectively
replacing the Ca2+ that would have been released from IP3-sensitive stores. However, a
more recent study using RNAi or IP3R-null mutants [280] challenged the work by Kohn
et al. [279] supports the the previous findings indicating that IP3R does not have a role in
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phototransduction. Bollepalli et al. [280] argues that phototransduction in D. melanogaster
is compromised by the Gal4 transcription factor used to regulate dsRNA in these experi-
ments, which is not the case for the IP3R knockdown or mutation in the study by Kohn
et al. [279]. These contradictory findings demand further examination on the possible role
of IP3R in phototransduction. The role of RyR in Ca2+ regulation photoreceptor via RyR is
equally ambiguous [188,189]. Localization of RyR close to the light-sensitive microvilli in
compound eyes of D. melanogaster suggested a possible role for RyR in Ca2+ dependent-
phototransduction [281]. However, analysis of mutants in which RyR expression was
selectively eliminated in the adult eye demonstrated that this channel does not play a role
in phototransduction [242].

Calcium is also involved in olfactory sensory transduction [282–285]. Insects perceive
odorants with sensory organs called sensilla which are mainly on their antennae. Olfactory
sensilla possess tiny pores that project towards olfactory receptor neurons (ORNs) [268].
The dendrites of these bipolar cells extend into a sensillar lumen, while their axons lie in
the second (antennal) lobe in the brain. Upon adsorption of an odorant molecule, such as a
volatile or an insoluble odorant like a pheromone, in the sensilla, it diffuses into the sensil-
lum via pores, binds to a specific odorant binding protein (OBP) or pheromone binding
protein (PBP) in the sensillar lymph and is transferred to olfactory receptors (ORs) on the
dendrites of OSNs [286–288]. ORs are both ligand-gated and cyclic-nucleotide-activated ion
channels and function as heterodimers consisting of a variable odor-specific ligand binding
receptor protein that defines their specificity, and a constant highly conserved co-receptor
protein, Orco [289–292]. Orco itself can also act as a non-specific, spontaneously-opening
ion channel permeable to Ca2+. Other types of receptors are located in different types of
sensilla (e.g., ionotropic glutamate-like receptors, gustatory receptors) [268,293,294]. There-
fore, both metabotropic and ionotropic signaling mediates odor transduction at ORNs
and binding of the odor molecules into ORs leads to cell depolarization and generation
of action potentials, which transmit the olfactory signal to the antennal lobe [295]. The
transduction mechanism in OSNs is mediated by cAMP relies on PKC instead of PKA,
and/or the PLC-linked IP3-signaling pathways [290,291,294,296–304]. Intracellular Ca2+

stores were found to contribute to the ORN responses [285,303,305], raising the question
whether IP3R and/or RyR are involved in odor transduction pathways. High expression
of IP3R in antennae in adult D. melanogaster suggests a potential role for IP3R in olfactory
transduction [32,61]. Additionally, the IP3R is present in the olfactory sensory neurons
of a variety of species [306–308]. However, olfactory responses to a number of different
odorants were found to be normal in hypomorphic combinations of D. melanogaster IP3R
mutant alleles [257,309]. On the other hand, a subset of these IP3R alleles, including a
null allele, were found to exhibit a faster recovery after a strong odor pulse, suggesting
that IP3R might be required for maintenance of olfactory adaptation in antennae [309].
In a subsequent study, the magnitude and duration of the odor-induced Ca2+ response
in ORNs was decreased upon targeting IP3R and RyR by RNAi, as well as by specific
blockers, such as thapsigargin or ryanodine [285]. Furthermore, flies expressing IP3R or
RyR dsRNA were defective in odor-adaptation [285,303,305]. The magnitude and duration
of the Ca2+-response was also found to be decreased in cAMP-defective flies based on si-
lencing of the adenyl cyclase gene “rutabaga” and the phosphodiesterase gene “dunce” [303],
in accordance with previous reports that demonstrated involvement of cAMP in olfactory
reception [310–312]. Furthermore, simultaneous knock-down of RyR or IP3R in combi-
nation with knock-down of rutabaga and/or dunce generated even stronger effects with
smaller amplitudes and a shorter duration of Ca2+ response to various odors [303]. It is
worth noting that when only IP3R or RyR expression is perturbed, perception of odor-
ants (odor-acuity) is not affected, but adaptation to odorants is defective [285]. When
cAMP-level is disturbed, odor-perception is affected and the amplitude of the second phase
(adaptation to odorants) is completely abolished [303]. Furthermore, in double mutant
flies, simultaneous perturbation of both cAMP and IP3-signaling severely affects both
the first and the second phase and they are unable to detect or adapt to odorants [303].
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Therefore, the first phase of olfactory response appears to be mediated by cAMP, which is
important for olfactory perception, while the second phase mediated by the intracellular
Ca2+-signaling pathway is important for odor-adaptation. Due to the limited number of
studies, the mechanisms of insect odor transduction are still controversial [298,304,313]. It
is also noteworthy that induction of either secondary messenger (cAMP or IP3) may be
odor-specific [303,311,312,314].

In conclusion, evidence as to the role of IP3R and RyR in phototransduction or olfactory
responses is limited, and further research is required.

5.4. Development

Both RyR and IP3R have essential roles in development. This is in accordance with the
fact that expression of either RyR [39–41,49–51,53,56] or IP3R [50,62] is up-regulated during
development in many insect species. Studies in D. melanogaster indicated that both genes
are also necessary for embryonal development, in particular for development of nervous
system and muscles [32,188,189,206].

Loss of IP3R in D. melanogaster leads to lethality in the second instar larvae accompa-
nied by delays in molting from the first to the second instar and lower 20-hydroxyecdysone
(20E) levels [205,276,315]. A lethal phenotype with a delayed molting is also observed in
PKA mutants [205,316]. Disruption of either the IP3R or cAMP pathway also delays second
to third larval instar, third larval instar to pupal, and pupal to adult transitions [205]. Fur-
thermore, PKA and IP3R mutant alleles have a synergistic negative effect on larval molting,
suggesting IP3R signaling acts in parallel with the cAMP pathway to regulate molting [205].
Exogenous 20E rescues the molting delays caused by disruption of either pathway, suggest-
ing both pathways control 20E levels during molting [205,315]. Indeed, 20E was shown
to induce both extracellular and intracellular Ca2+ release, leading to activation of PKC
and CaMKII that are both involved in 20E-directed gene expression [317–320]. Similar
to that in D. melanogaster, silencing of IP3R led to failures in molting and larval-pupal
and pupal-adult metamorphosis in the beetle T. castaneum [50]. A relatively recent study
investigated the larval to pupal switch under nutrient stress in D. melanogaster, which
revealed that the larval-pupal transition requires IP3R/Ca2+ signaling in glutamatergic
interneurons of the mid-ventral ganglion [321]. The nutrient stress sensed by multiden-
dritic cholinergic sensory neurons is conveyed first to glutamatergic interneurons via the
acetylcholine receptor, then to medial neurosecretory cells, and finally to the ring gland,
leading to stimulation of neuropeptides that induce ecdysteroid biosynthetic genes in the
ring gland via IP3R signaling to allow pupariation on a protein-deficient diet [321]. The
authors suggested that activity in this circuit is an adaptation that provides a layer of
regulation to help overcome nutritional stress upon protein deprivation during develop-
ment. Other studies on neurodevelopment in D. melanogaster larvae indicated that IP3R is
essential in particular in aminergic cells for development and survival, and IP3R-mediated
Ca2+ release is required to facilitate release of amine type hormones from aminergic cells or
serotonergic and dopaminergic neurons [254,257–259,322,323]. Thus, expression of IP3R
in aminergic neurons during pupal development rescues the onset adult flight deficit in
IP3R- D. melanogaster mutants [227,254]. As IP3R is also expressed in ovaries in contrast
to RyR [196,197] and is likely to be involved in Ca2+ oscillations in ovaries [152], it may
also be necessary for egg activation and ovary development. On the other hand, IP3R-
mediated Ca2+ oscillations also occur in wing imaginal discs that give rise to wings in
adults, conferring another role of IP3R signaling in development [324].

Several studies have examined the role of RyR in insect development. Mutation of
D. melanogaster RyR leads to formation of normal embryos that give rise to larvae with
growth defects that die four–seven days during their first instar [242]. Heterozygous
individuals containing one copy of the RyR mutant allele rescue the calmodulin-lethal
phenotypes, further indicating the vital role of RyR [187]. In T. castaneum, silencing of RyR
does not cause any failure in molting or larval-pupal and pupal-adult metamorphosis, in
contrast to IP3R silencing in the same beetle; however, abnormalities in the folding of the
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hind wings and crawling behavior in adults occur, which might be related to impairment
of muscle EC-coupling [50].

Developmental physiology also includes topics such as autophagy and the autophagic
programmed cell death that play key roles in development, morphogenesis, and regenera-
tion [325,326]. Intracellular Ca2+ levels are critical in this respect as lower Ca2+ concentrations
induce autophagy, while higher Ca2+ concentrations switch autophagy to apoptosis [327].
The role of RyR and IP3R in these processes is a topic for future investigation.

6. Potential of RyR and IP3R as Target Sites in Pest Control

Due to their essential roles, insect Ca2+ channels have great potential as target sites
for the development of insecticides [328–331]. As the divergence between mammalian
and insect RyRs are greater compared to IP3Rs, RyRs might be considered safer targets for
insecticidal molecules [332]. While the discovery of diamide insecticides has prompted
studies on insect RyRs, no insecticidal compounds targeting IP3Rs have been developed to
date. The idea of targeting RyRs goes back to the discovery of the plant alkaloid ryanodine
from the tropical American shrub, Ryania speciosa (Flacourtiaceae), which has high affinity
to RyR and interferes with Ca2+ signaling in muscles; there receptors are aptly named
RyR [333]. Ryanodine keeps the RyR channel partially open leading to Ca2+ depletion. The
insecticidal activity of R. speciosa extracts were first described by Rogers and co-workers in
1946 on a range of lepidopteran and hemipteran pests [334,335]. High toxicity of ryanodine
on mammalians was an obstacle to its use as an insecticide; however, it inspired the
development of more selective and safer insecticides targeting the operation of RyRs,
currently comprised of ryanodine receptor modulators in the Insecticide Resistance Action
Committee (IRAC) Group 28 [336]. Based on their common chemistry, these insecticides
are generally referred to as diamides.

Diamides are derivatives of benzenedicarboxamide or phthalic acid (flubendiamide,
Class I) and anthranilic acid (chlorantraniliprole, cyantraniliprole, and cyclaniliprole,
Class II), and selectively activate insect RyRs in the SR and ER in neuromuscular tissues.
This causes Ca2+ channels to remain partially open leading to an excessive and uncontrol-
lable release of stored Ca2+ ions from the ER into the cytosol of muscle cells [337–339] result-
ing in feeding cessation, uncoordinated muscle contraction, paralysis, and death [330,339].
The first diamide registered, flubendiamide, was co-developed by Nihon Nohyaku Co.
Ltd. (NNC) and Bayer CropScience [181,332,340,341] and registered in 2006 [340,342].
This was followed by the introduction of chlorantraniliprole [177] developed by DuPont
USA in 2007 and cyantraniliprole [343,344] that were co-developed by DuPont and Syn-
genta in 2008. A fourth chemical, the cyclaniliprole developed by ISK [336], was regis-
tered and introduced into the market in 2017, while the most recent one, tetraniliprole
developed by Bayer was approved in 2020 [345]. Both benzenedicarboxamide and an-
thranilic acid derivatives are active against a broad range of lepidopteran pests. The
anthranilic acid derivatives are also active sucking hemipterans and coleopterans. Clo-
rantraniliprole has contact, systemic and translaminar activity and exhibits extremely
high efficacy against lepidopterans and leaf beetles, as well several dipterans, such as
leafminers (Liriomyza spp.), isopterans, such as sugar cane termites (Microtermes obesi,
and Odontotermes obesus), and hemipterans, such as whiteflies (Bemisia spp.) [343,344,346].
Cyantraniliprole is mainly active against sucking and piercing insects, such as aphids,
whiteflies, leafhoppers, psyllids, and thrip due to its systemic properties [344,347–350].
Cyclaniliprole, is labeled for use against aphids, leaf-feeding caterpillars, mealybugs,
thrips, and whiteflies and has contact and translaminar activity [336], while tetraniliprole
is labeled for use against white grubs, annual bluegrass weevils, caterpillars, and bill-
bugs (https://www.environmentalscience.bayer.us/turf-and-ornamentals-management/
golf-course-management/portfolios-and-solutions/new-bayer-insecticide) (accessed on
4 April 2021).

Diamide insecticides have low mammalian toxicity and are considered safe for ben-
eficial insects and mites, which make them environmentally friendly [343,344]. These
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features, together with their efficacy, has led to extensive use. A survey on the global
insecticide market in 2013 revealed that diamides accounted around 1.2 billion U.S. dollars
of global insecticide sales, representing approx. 8% of the insecticide market [336]. The
current annual market value is predicted to be around $2.3 billion [351]. This ranks di-
amides third in the market, accounting for 12% of the global market after neonicotinoids
(Group 4A) and synthetic pyrethroids (Group 3A) which account for 24 and 15%, respec-
tively [351]. Additionally, at least three more diamide insecticides (cyhalodiamide, and
tetrachlorantraniliprole and unnamed); as well as a third class of diamides, “pyrrole-2
carboxamides” are currently under development, suggesting the use of diamides will con-
tinue to increase [345,351–353]. However, intensive and repetitive use of the diamides has
led to the development of high levels of insecticide resistance in the field, which requires a
better understanding of the mode of action of this class of insecticides.

Diamides act on RyR and induce Ca2+ release from intracellular Ca2+ stores in in-
sect muscle cells [36,42,338], but also elicit intracellular Ca2+ release in isolated insect
neurons [177,181,340,354]. Silencing RyR in S. furcifera [53] or L. decemlineata [51] greatly de-
creases chlorantraniliprole-induced mortality indicating that RyRs are targets of diamides.
On the other hand, flubendiamide stimulates SERCA activity, which is attributed to a
decrease in ER Ca2+ levels [341,355]. Efforts have focused on the binding sites of diamides
on RyR. Diamides are incorporated directly into the transmembrane domain of the RyR;
however, RyR activation also requires the N-terminus for flubendiamide sensitivity [36].
Deletion experiments on the carboxy-terminal region of the B. mori RyR revealed that
the binding region of flubendiamide is located in the transmembrane domain of the RyR
comprising amino acid residues 4111–5084, while the region in the N-terminal cytoplasmic
domain correspond to residues at 183–290 [36]. HEK cells expressing either ∆183–290 mu-
tants or a chimeric RyR in which amino acids 4111–5084 were replaced with the counterpart
sequence in rabbit RyR2, exhibit failure in Ca2+ mobilization in response to flubendi-
amide, but not to caffeine [36]. A similar study based on the replacement of a 46 amino
acid segment (S4610-A4655) in D. melanogaster RyR (GenBank accession number: D17389)
C-terminal domain with that of a nematode RyR led to insensitivity to diamides [356].
Notably, this shorter region corresponds to A4659-A4703 in PxRyR, which is within the larger
region examined by Kato et al. [36]. However, this region does not overlap with the the
highly conserved pore region in D. melanogaster RyR (aa 4973–4982), where ryanodine
binds, or the TM10, which plays a crucial role in human RyR channel activation and
gating [97,117,356,357]. A computational modeling approach based on rabbit RyR1 also
indicated that I4790 and G4946 (in P. xylostella RyR) are likely to be involved in forming the
diamide binding site [358]. On the other hand, radioligand displacement experiments
using microsomal membrane preparations of H. virescens and P. americana muscles indicate
that flubendiamide and chlorantraniliprole interact with a binding site that is distinct
from the ryanodine binding site [177,178,181,338,359]. Furthermore, radioligand binding
studies with house fly muscle membranes provided evidence that flubendiamide and
chlorantraniliprole bind at different, allosterically-coupled RyR sites [360]. Recently, a high
resolution (3.2 Å) cryo-electron microscopy structure of the rabbit RyR1 in complex with
chlorantraniliprole, together with mutagenesis studies revealed that twelve amino acid
residues (Y4697, K4700, Y4701, L4704, I4790, Y4918, S4919, Y4922, D4942, V4943, G4946, and F4947

based on P. xylostella RyR) comprise the putative chlorantraniliprole binding pocket [361].
Furthermore, a radioligand binding study also suggested that the anthranilic diamides
share a common binding site with the pyrrole-2 carboxamides [345]. In brief, despite exten-
sive structural and functional studies, there is not a consensus on the the exact binding site
of diamide insecticides. It is also possible that the amino acids in the diamide binding sites
of RyRs vary amongst species [56,107,115,116,360,362].

The main goal of identifying diamide binding sites in insect RyRs is related to the
development of insecticide resistance and whether there are mutations in these regions
that inhibit binding of diamides leading to resistance. Diamide resistance appears to
have developed very rapidly as a result of their extensive use due to the lack of alter-
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natives with similar efficacy [363,364]. The initial reports on the development of resis-
tance from field-collected populations have come from Adoxophyes honmai (Lepidoptera:
Tortricidae) against flubendiamide in Japan [365], Choristoneura rosaceana (Lepidoptera:
Tortricidae) against chlorantraniliprole in the U.S.A. [366], and Aphis gossypii (Hemiptera:
Aphididae) against cyantraniliprole in Italy [347], all collected from the field in 2007.
This was followed by reports of resistance developed by P. xylostella [367], S. litura [368],
and S. exigua against clorantraniliprole in China [369,370], as well as by B. tabaci against
both clorantraniliprole and cyantraniliprole in the U.S.A. [371], with field collection in
2008 and 2009 for all. In 2010, field-collected samples showed further cases of resistance
by P. xylostella against flubendiamide and/or clorantraniliprole in Thailand [372] and
China [373,374]. In the same year, resistance against clorantraniliprole was found in
A. honmai in Japan [365] and C. suppressalis in China [375]. Field populations of at least
six lepidopteran species (P. xylostella, C. suppressalis, T. absoluta, A. honmai, S. exigua, and
S. frugiperda) and two hemipterans (A. gossypii and B. tabaci) from 11 countries including
Brazil, China, Greece, Italy, Japan, Korea, Mexico, Phillippines, Puerto Rico, Spain, and
Thailand have developed moderate to significant levels of resistance (relative ratio ≥10)
to diamides (Table 3) [44,47,130,347,358,365,368–370,372–396]. The highest resistance ra-
tios (RRs) 519,157-fold for flubendiamide [387], 288,995-fold for clorantraniliprole [385],
18,423-fold for cyantraniliprole [385], and 11,250-fold for cyclaniliprole [390] (Table 3). The
highest resistance levels against flubendiamide were recorded for P. xylostella populations
in Brazil [387] and that against cyclaniliprole for S. exigua in Korea [390]. Resistance against
clorantraniliprole and cyantraniliprole developed in T. absoluta in Brazil [385] (Table 3). On
the other hand, lower levels of resistance (Relative Ratio≤10) have also been reported from
various pests, such as C. medinalis against chlorantraniliprole [397], Chrysodeixis includens
against flubendiamide and chlorantraniliprole [398], or by non-lepidopteran species, such
as B. dorsalis [399] or the aphids A. gossypii, and M. persicae [347] against cyantraniliprole
or whitefly B. tabaci against chlorantraniliprole and cyantraniliprole [371]. It is note-
worthy that cross-resistance within or between each class of diamides have been also
reported [384,400–403]. This is problematic for new diamides. An investigation on a new
diamide, tetraniliprole, in China, which has not been registered yet, revealed that RRs in
Chinese field populations of S. exigua compared to a susceptible strain were found to be
8.6–128.1, in parallel to the RRs obtained for chlorantraniliprole [394]. This suggests that
chlorantraniliprole has cross-resistance with tetraniliprole, as tetraniliprole has not been
used in China. Overall, inseciticide resistance management plans should avoid of rotation
of anthranilic and phthalic acid diamides [336,404].

Table 3. Resistance developed by field-populations against diamides to date.

Insecticide LC50 (95%) mg/L or
µg/mL RR# Year Pest Population Country Reference

Flubendiamide

0.16 (0.04–0.8) 1 2009 Plutella xylostella Tub Berg
(field susceptible) Thailand [372]

770.8 (123.3–26,336.8) 4817 2011 Plutella xylostella Tha Muang Thailand [372]

10.6 (3.8–22.8) 66 2010 Plutella xylostella Sai Noi Thailand [372]

65.1 (2.7–157.4) 407 2011 Plutella xylostella Sai Noi Thailand [372]

4256.6 (2690.1–9373.2) 26,603 2011 Plutella xylostella Lat Lum Kaew Thailand [372]

0.08 (0.06–0.11) 1 2011 Plutella xylostella Chiang Mai
(field susceptible) Thailand [376]

>60 >750 2011 Plutella xylostella Bang Bua Thong Thailand [376]

>200 >1300 2011 Plutella xylostella Sudlon, Cebu Island Phillippines [376]
0.11 (0.08–0.16) 1 2011 Plutella xylostella Roth (lab susceptible) China [130]
1.68 (1.14–2.35) 15 2011 Plutella xylostella Panyu, Guangdong F3 China [130]

1.92 (1.19–2.78) 17 2011 Plutella xylostella Zhuhai, Guangdong China [130]

88.5 (66.1–115) 805 2011 Plutella xylostella Zengcheng,
Guangdong China [130]
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Table 3. Cont.

Insecticide LC50 (95%) mg/L or
µg/mL RR# Year Pest Population Country Reference

Flubendiamide

0.9 (0.4–1.4) *** 1 2007 Plutella xylostella Susceptible strain China [381]

22.2 (9.3–35.4) *** 24 Plutella xylostella BY, BaiYun Int.
Airport, Guangdong China [381]

1639 (1016–2227) *** 1779 Plutella xylostella ZC, ZengChengi
Guangdong China [381]

0.029 (0.026–0.033) 1 2011 Plutella xylostella BCS-S (lab susceptible) Phillippines [358]
>1000 >10,000 2011 Plutella xylostella Sudlon, Cebu Island Phillippines [358]

0.05 (0.03–0.10) 1 2017 Plutella xylostella Susceptible strain Korea [390]
9.6 (2.8–19.4) 192 2017 Plutella xylostella PC, Pyeongchang Korea [390]

1.3 (0.6–2.9) 27 2017 Plutella xylostella GN, Gangneung Korea [390]
0.008 (0.005–0.011) 1 1998 Plutella xylostella RCF-Lab, Recife Brazil [387]

23.0 (7.2–270.1) 2893 2011 Plutella xylostella BNV1, Boas Novas I Brazil [387]

86.1 (23.4–189.7) 1843 2011 Plutella xylostella SPC, Sapucarana Brazil [387]

280.6 (12.9–1038.7) 35,316 2012 Plutella xylostella CGD, Cha Grande Brazil [387]

4111 (2211–8780) 519,157 2012 Plutella xylostella BZR, Bezerros Brazil [387]

0.09 (0.06–0.13) 1 2011/12 Chilo suppressalis Pooled
susceptible strains China [382]

1.09 (0.6–2.11) 12 2012 Chilo suppressalis JH12, Jinhua, Zhejiang China [389]

1.08 (0.63–2.11) 12 2013 Chilo suppressalis XS13, Xiangshan,
Zhejiang China [389]

1.3 (0.76–2.87) 14 2014 Chilo suppressalis XS14, Xiangshan,
Zhejiang China [389]

3.92 (3.02–5.07) 43 2014 Chilo suppressalis YY14, Yuyao, Zhejiang China [389]

0.98 (0.63–1.73) 11 2014 Chilo suppressalis HG14, Huanggang,
Hubei China [389]

0.98 (0.64–1.64) 11 2013 Chilo suppressalis SG13, Shanggao,
Jiangxi China [389]

0.038 (0.017–0.056) 1 2010 Tuta absoluta GBN, Guaraciaba do
Norte-CE Brazil [385]

0.41 (0.34–0.51) 11 2015 Tuta absoluta BZR, Bezerros-PE Brazil [385]

202.8 (153.2–259.9) 5405 2014 Tuta absoluta JDR1 João
Dourado I-BA Brazil [385]

221.48 (146.6–312.2) 5901 2014 Tuta absoluta JDR2, João
Dourado II-BA Brazil [385]

673.4 (391.3–989.0) 17,943 2014 Tuta absoluta LGD, Lagoa Grande-PE Brazil [385]
1045 (698–1525) 27,854 2014 Tuta absoluta GML2 Gameleira II-BA Brazil [385]

1398 (773–2215) 37,254 2014 Tuta absoluta PSQ Pesqueira-PE Brazil [385]

2178 (1422–3179) 58,044 2014 Tuta absoluta AMD América
Dourada-BA Brazil [385]

3018 (2226–3964) 80,413 2014 Tuta absoluta GML1 Gameleira I-BA Brazil [385]]
0.79 (0.3–1.5) 1 2014 Tuta absoluta Lab [383]

993 (384–1649) 1257 2014 Tuta absoluta IT-PACH-14-1
Siracusa, Pachino Italy [383]

1376 (792–2772) 1742 2014 Tuta absoluta IT-PACH-14-2
Siracusa, Pachino Italy [383]

1019 (500–2130) 1290 2014 Tuta absoluta IT-GELA-14-1
Caltanissetta, Gela Italy [383]

8.4 (3.6–17.0) 11 2014 Tuta absoluta GR-IER-14-3 Ierapetra,
Mpountoules Greece [383]

1.75 (1.36–2.23) 1 2007 Adoxophyes honmai Kanaya
(susceptible strain) Japan [365]

55.5 (49.1–63.7) 32 2008 Adoxophyes honmai Shimada-Yui Japan [365]

35.2 (30.1–42.0) 20 2009 Adoxophyes honmai Shimada-Yui Japan [365]

1174 (454 > 10,000) 671 2011
June Adoxophyes honmai Shimada-Yui Japan [365]
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196 (175–221) 112 2011
Aug Adoxophyes honmai Shimada-Yui Japan [365]

Flubendiamide

1.54 (1.03–1.97) 1 2007 Adoxophyes honmai Kanaya
(susceptible strain) Japan [365]

16.2 (12.9–20.6) 10 2007 Adoxophyes honmai Shimada-Yui Japan [365]

41.8 (37.1–47.2) 27 2008 Adoxophyes honmai Shimada-Yui Japan [365]

24.4 (21.4–28.0) 16 2009 Adoxophyes honmai Shimada-Yui Japan [365]

110 (80.8–173) 71 2010 Adoxophyes honmai Shimada-Yui Japan [365]

141 (119–176) 91 2011
June Adoxophyes honmai Shimada-Yui Japan [365]

161 (144–181) 105 2011
Aug Adoxophyes honmai Shimada-Yui Japan [365]

0.001 (0.0002–0.003) 1 2017 Spodoptera exigua Susceptible strain Korea [390]
>100 >100,000 2017 Spodoptera exigua CJ, Cheongju Korea [390]

>100 >100,000 2017 Spodoptera exigua JD, Jindo Korea [390]

9.6 (0.8–27.2) 9560 2017 Spodoptera exigua YG, Yeonggwang Korea [390]

0.66 (0.006–6.51) 660 2017 Spodoptera exigua MR, Miryang Korea [390]

6.5 (5–8.2) 6500 2017 Spodoptera exigua GC, Geochang Korea [390]
0.0007 1 Spodoptera exigua Susceptible strain Korea [395]

0.3 (0.2–0.5) 428 2019 Spodoptera exigua Anseong Korea [395]

10.5 (7.0–14.4) 14,957 2019 Spodoptera exigua Cheongju Korea [395]

210.1 (71.7–295.1) 300,143 2019 Spodoptera exigua Gangneung Korea [395]

52.31 (32.1–70.0) 74,729 2019 Spodoptera exigua Icheon Korea [395]

27.9 (24.1–32.2) 39,929 2019 Spodoptera exigua Jindo Korea [395]

90.4 (67.8–132.0) 129,186 2019 Spodoptera exigua Yeoju Korea [395]

0.003 (0.003–0.005) ** 1 Spodoptera frugiperda SUS, Monsanto
Company USA [391]

0.03 (0.02–1.5) ** 10 2015 Spodoptera frugiperda SIN2015,
Sinaloa—Los Mochis Mexico [391]

1.5 (0.8–5.2) ** 500 2016 Spodoptera frugiperda PR2016, Ponce Puerto
Rico [391]

Clorantraniliprole

0.225 (0.0535–0.587) 1 2009 Plutella xylostella Tub Berg
(field susceptible) Thailand [372]

8 (4.1–13.7) 35 2010 Plutella xylostella Sai Noi Thailand [372]

34.4 (12.1–60.6) 152 2011 Plutella xylostella Sai Noi Thailand [372]

19.7 (7.3–92.4) 87 2011 Plutella xylostella Tha Muang Thailand [372]

174.4 (137.1–219.8) 775 2011 Plutella xylostella Lat Lum Kaew Thailand [372]
0.13 (0.01–0.18) 1 2010 Plutella xylostella Roth (lab susceptible) China [374]

2.4 (1.8–3.7) 18 2010 Plutella xylostella Shenzhen, Guangdong China [374]

10.7 (6.6–26.6) 81 2011 Plutella xylostella Panyu, Guangdong China [374]

265 (184–444) 2000 2011 Plutella xylostella Zengcheng,
Guangdong China [374]

18.7 (10.9–28.62) 140 2011 Plutella xylostella Zhuhai, Guangdong China [374]
0.13 (0.09–0.19) 1 2011 Plutella xylostella Roth (lab susceptible) China [130]

2.3 (1.6–3.3) 18 2011 Plutella xylostella Panyu, Guangdong F3 China [130]

4 (2.8–5.5) 30 2011 Plutella xylostella Zhuhai, Guangdong China [130]

150 (105–240) 800 2011 Plutella xylostella Zengcheng,
Guangdong China [130]

0.30 (0.25–0.38) 1 2011 Plutella xylostella Chiang Mai
(field susceptible) Thailand [376]

>60 >200 2011 Plutella xylostella Bang Bua Thong Thailand [376]

>200 >4,100 2011 Plutella xylostella Sudlon, Cebu Island Phillippines [376]
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0.007 (0.004–0.012) 1 2011 Plutella xylostella BCS-S (lab susceptible) Brazil [380]
204 (176.9–236.4) 27,793 2011 Plutella xylostella Camocim Brazil [380]

0.006 (0.004–0.008) 1 1998 Plutella xylostella RCF-Lab, Recife Brazil [387]
43.3 (29.7–59.2) 7492 2012 Plutella xylostella BNV2, Boas Novas II Brazil [387]

77.2 (63.6–93.6) 13,365 2012 Plutella xylostella CGD, Cha Grande Brazil [387]

89.6 (75.3–105.9) 15,507 2011 Plutella xylostella SPC, Sapucarana Brazil [387]

112.4 (96.4–130.9) 19,474 2011 Plutella xylostella CSF1, Camocim I Brazil [387]

115.2 (96.3–137.8) 19,944 2011 Plutella xylostella BNV1, Boas Novas I Brazil [387]

123.9 (97–157.3) 21,440 2011 Plutella xylostella JPI, Jupi Brazil [387]

149.1 (113.4–197.7) 25,798 2011 Plutella xylostella CSF2, Camocim II Brazil [387]

162.6 (137.3–193.4) 28,125 2012 Plutella xylostella BZR, Bezerros Brazil [387]
0.011 (0.005–0.018) 1 2010 Plutella xylostella JA (lab susceptible) Japan [373]

23.4 (18.3–31.3) 2128 2010 Plutella xylostella Tonghai city, Yunnan China [373]
0.020 (0.013–0.031) 1 2011 Plutella xylostella BCS-S (lab susceptible) Phillippines [358]

>1000 >10,000 Plutella xylostella Sudlon, Cebu Island Phillippines [358]
0.03 (0.02–0.05) 1 2017 Plutella xylostella Susceptible strain Korea [390]
35.9 (21.1–57.4) 1196 2017 Plutella xylostella PC, Pyeongchang Korea [390]

1.2 (0.4–3) 40 2017 Plutella xylostella GN, Gangneung Korea [390]

0.49 (0.33–0.72) 16 2017 Plutella xylostella SJ, Seongju Korea [390]
0.9 (0.2–1.5) *** 1 2007 Plutella xylostella Susceptible strain China [378]

17.6 (12.5–22.9) *** 20 Plutella xylostella BY, BaiYun Int. Airport,
Guangdong China [378]

1954 (1415–2437) *** 2246 Plutella xylostella ZC, ZengChengi
Guangdong China [378]

0.82 (0.36–1.5) 1 2011 Chilo suppressalis Fushun11, Fushun,
Sichuan (Field Sus.) China [375]

8.4 (5.7–12.2) 10 2010 Chilo suppressalis Yizheng10, Yizheng,
Jiangsu China [375]

8.9 (6–14.5) 11 2011 Chilo suppressalis Xiangshan11,Xiangshan,
Zhejiang China [375]

10.4 (6.8–15.7) 13 2010 Chilo suppressalis Lujiang10, Lujiang,
Anhui China [375]

11.2 (6–20.5) 14 2010 Chilo suppressalis Longyou10, Longyou,
Zhejiang China [375]

10.4 (5–23.7) 17 2011 Chilo suppressalis Dong-An11, Dong-An,
Hunan China [375]

17.7 (10.6–31.8) 22 2010 Chilo suppressalis Wuxue10, Wuxue,
Hubei China [375]

3 (1.4–4.5) **** 1 2012 Chilo suppressalis RA12, Ruian, Zhejiang
(Sus. Strain) China [379]

47 (28.4–103) **** 16 2012 Chilo suppressalis ZJ12, Zhuji, Zhejiang China [379]

43.2 (20.1–107.6) **** 14 2013 Chilo suppressalis ZJ13, Zhuji, Zhejiang China [379]

1.4 (1.1–1.7) 1 2011–
2012 Chilo suppressalis Pooled susceptible

strains China [377]

16.2 (11–27.2) 11 2014 Chilo suppressalis XS14, Xiangshan,
Zhejiang China [389]

108.1 (79.5–178.5) 78 2014 Chilo suppressalis YY14, Yuyao, Zhejiang China [389]
0.43 (0.37–0.5) 1 2016 Chilo suppressalis CAAS (lab susceptible) China [44]

108.5 (86.2–136.4) 250 2016 Chilo suppressalis Tong Nan,
Nanchang, Jiangxi China [44]

1.4 (1.1–1.7) 1 2011/12 Chilo suppressalis Pooled
susceptible strains China [377]

114.5 (71.7–162.1) 82 2016 Chilo suppressalis XS, Xiaoshan, Zhejiang China [386]

199.9 (173.5–229.9) 143 2016 Chilo suppressalis JH, Jinhua, Zhejiang China [386]

147.3 (62.8–280.8) 106 2016 Chilo suppressalis QZ, Quzhou, Zhejiang China [386]

154.8 (103.8–222.1) 111 2016 Chilo suppressalis LY, Longyou, Zhejiang China [386]
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195.3 (164.2–232) 140 2016 Chilo suppressalis YQ, Yueqing, Zhejiang China [386]

214 (183.2–250.8) 154 2016 Chilo suppressalis WL, Wenling, Zhejiang China [386]

89.2 (73.9–107) 64 2016 Chilo suppressalis HY, Hengyang, Hu’nan China [386]

109.6 (91.4–131.9) 79 2016 Chilo suppressalis XY, Xinyang, He’nan China [386]
0.18 (0.13–0.30) 1 2014 Tuta absoluta Lab (susceptible strain) [383]

47.6 (30.8–77.1) 264 2014 Tuta absoluta IT-PACH-14-1
Siracusa, Pachino Italy [383]

63.7 (42.1–128) 354 2014 Tuta absoluta IT-PACH-14-2
Siracusa, Pachino Italy [383]

435 (165–1193) 2417 2014 Tuta absoluta IT-ACAT-14-1
Ragusa, Acate Italy [383]

225 (135–343) 1250 2014 Tuta absoluta IT-GELA-14-1
Caltanissetta, Gela Italy [383]

2.4 (1.2–17.0) 14 2014 Tuta absoluta GR-IER-14-1
Ierapetra, Kentri Greece [383]

0.0044 (0.0024–0.0068) 1 2014 Tuta absoluta BSL, Brasília-DF Brazil [385]
0.19 (0.12-0.28) 45 2015 Tuta absoluta BZR, Bezerros-PE Brazil [385]

1.5 (1.2–2) 356 2014 Tuta absoluta LGD, Lagoa Grande-PE Brazil [385]

2.3 (1.4–3.4) 525 2014 Tuta absoluta JDR2, João
Dourado II-BA Brazil [385]

2.9 (1.9–4.4) 658 2014 Tuta absoluta JDR1 João
Dourado I-BA Brazil [385]

4.6 (3.2–7) 1064 2014 Tuta absoluta GML2 Gameleira II-BA Brazil [385]

92.4 (60–129.9) 21,155 2014 Tuta absoluta GML1 Gameleira I-BA Brazil [385]

646 (423–917) 147,928 2014 Tuta absoluta PSQ Pesqueira-PE Brazil [385]

1263 (946–1673) 288,995 2014 Tuta absoluta AMD
América Dourada-BA Brazil [385]

0.3 (0.22–0.45) 1 2010 Tuta absoluta Gr-Lab, Peloponnesus Greece [388]
161 (44.2–596) 519 2015 Tuta absoluta GR-IndR, Ierapetra Greece [388]

17 (8.7–42) 55 2015 Tuta absoluta GR-IER-15-2 Greece [47]

56 (14–120) 180 2014 Tuta absoluta IT-GELA-14-1,
Sicily, Gela Italy [47]

0.21 (0.15–0.29) 1 2005 Tuta absoluta BCS-TA-S, Paulinia, SP Brazil [47]

92 (60–130) 438 2014 Tuta absoluta BR-GML1,
Gameleira, BA Brazil [47]

650 (420–920) 3095 2014 Tuta absoluta BR-PSQ, Pesqueira, PE Brazil [47]

1.6 (1.4–1.8) 1 2010 Adoxophyes honmai Kanaya
(susceptible strain) Japan [365]

26.3 (21.2–33.8) 17 2010 Adoxophyes honmai Shimada-Yui Japan [365]

64.6 (55.4–78.0) 41 2011
June Adoxophyes honmai Shimada-Yui Japan [365]

114 (101–132) 73 2011
Aug Adoxophyes honmai Shimada-Yui Japan [365]

1.3 (1.1–1.5) 1 2010 Adoxophyes honmai Kanaya
(susceptible strain) Japan [365]

25.3 (20.7–31.9) 20 2010 Adoxophyes honmai Shimada-Yui Japan [365]

50.0 (43.2–59.0) 39 2011
June Adoxophyes honmai Shimada-Yui Japan [365]

98.8 (86.7–114) 77 2011
Aug Adoxophyes honmai Shimada-Yui Japan [365]

0.014 (0.010–0.017) 1 Spodoptera exigua Lab-Sus
(susceptible strain) China [369]

0.15 (0.13–0.18) 11 2008 Spodoptera exigua SH08 Minhang,
Shanghai China [369]
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0.14 (0.11–0.17) 10 2010 Spodoptera exigua SH10 Minhang,
Shanghai China [369]

0.14 (0.12–0.16) 10 2008 Spodoptera exigua TA08 Tai’an, Shandong China [369]

0.16 (0.14–0.18) 12 2010 Spodoptera exigua HF10 Hefei, Anhui China [369]

0.21 (0.18–0.25) 15 2010 Spodoptera exigua SZ10 Shengzhen,
Guangdong China [369]

0.24 (0.2–0.28) 17 2010 Spodoptera exigua DG10 Dongguang,
Guangdong China [369]

0.21 (0.18–0.25) 15 2010 Spodoptera exigua HZ10 Huizhou,
Guangdong China [369]

0.16 (0.14–0.19) 12 2010 Spodoptera exigua ZZ10
Zhangzhou, Fujian China [369]

0.37 (0.26–0.52) 1 Spodoptera exigua WH-S
(Lab. susceptible) China [370]

12.2 (5.8–35.4) 33 2010 Spodoptera exigua JN, Jinning, Yunnan China [370]

4.7 (2.2–7.9) 13 2009 Spodoptera exigua YL-1, Yanliang, Shanxi China [370]

16.5 (12.6–22) 44 2009 Spodoptera exigua YX, Yongxiu, Jiangxi China [370]

5.3 (1.6–13.9) 14 2009 Spodoptera exigua LG, Longhai, Fujian China [370]

7.5 (3–15.8) 20 2009 Spodoptera exigua HA, Huaian, Jiangsu China [370]

4 (2.6–5.7) 11 2009 Spodoptera exigua LH-1, Luhe, Jiangsu China [370]

3.6 (2.3–6) 10 2010 Spodoptera exigua LH-2, Luhe, Jiangsu China [370]

12.7 (5.1–27.4) 34 2009 Spodoptera exigua FX-1, Fengxian,
Shanghai China [370]

6 (3.1–10.8) 16 2010 Spodoptera exigua FX-2, Fengxian,
Shanghai China [370]

5.1 (2.4–8.2) 14 2011 Spodoptera exigua FX-3, Fengxian,
Shanghai China [370]

0.08 (0.06–0.1) 1 Spodoptera exigua WH-S (Lab.
susceptible) China [393

2.2 (1.7–2.9) 27 2014 Spodoptera exigua Baiyun, Guangzhou China [396]

60 (46.1–79.8) 750 2015 Spodoptera exigua Baiyun, Guangzhou China [396]

64 (43.5–87) 800 2016 Spodoptera exigua Baiyun, Guangzhou China [396]

54.5 (41.6–72.3) 682 2017 Spodoptera exigua Baiyun, Guangzhou China [396]

140.7 (106.7–179.1) 1759 2018 Spodoptera exigua Baiyun, Guangzhou China [396]

1.3 (0.97–1.74) 16 2014 Spodoptera exigua Fengxian, Shanghai China [396]

1.9 (1.3–2.6) 24 2015 Spodoptera exigua Fengxian, Shanghai China [396]

45.6 (35–60.7) 571 2016 Spodoptera exigua Fengxian, Shanghai China [396]

159.6 (120.9–210.8) 1995 2017 Spodoptera exigua Fengxian, Shanghai China [396]

207.8 (162.3–267.4) 2597 2018 Spodoptera exigua Fengxian, Shanghai China [396]

0.97 (0.6–1.7) 12 2015 Spodoptera exigua Huangpi, Wuhan China [396]

3.7 (2.6–4.9) 46 2016 Spodoptera exigua Huangpi, Wuhan China [396]

10.3 (7.7–13.6) 129 2017 Spodoptera exigua Huangpi, Wuhan China [396]

17.6 (13.8–22.2) 221 2018 Spodoptera exigua Huangpi, Wuhan China [396]
0.01 (0.0002–0.07) 1 2017 Spodoptera exigua Susceptible strain Korea [390]

>25 >2500 2017 Spodoptera exigua CJ, Cheongju Korea [390]

>25 >2500 2017 Spodoptera exigua JD, Jindo Korea [390]

>25 >2500 2017 Spodoptera exigua YG, Yeonggwang Korea [390]

1.8 (0.8–4.2) 177 2017 Spodoptera exigua MR, Miryang Korea [390]

10.1 (6.5–16.3) 1006 2017 Spodoptera exigua GC, Geochang Korea [390]
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0.002 1 Spodoptera exigua Susceptible strain Korea [395]
8 (5.3–12.5) 4000 2019 Spodoptera exigua Anseong Korea [395]

1.2 (0.3–2.7) 600 2019 Spodoptera exigua Cheongju Korea [395]

6.6 (5.3–8.2) 3300 2019 Spodoptera exigua Gangneung Korea [395]

4.6 (2.3–7.0) 2300 2019 Spodoptera exigua Icheon Korea [395]

13.4 (7.6–25.3) 6700 2019 Spodoptera exigua Jindo Korea [395]

21.2 (9.9–498.0) 12,500 2019 Spodoptera exigua Yeoju Korea [395]

0.032 * (0.025–0.041) 1 Spodoptera exigua WH-S strain, Hubei
(Susceptible Str.) China [393]

4.9 * (3.9–6.6) 154 2018 Spodoptera exigua WF strain, Weifang,
Shandong China [393]

0.055 (0.040–0.072) 1 Spodoptera exigua SS China [394]

9.9 (4.9–19) 180 2018 Spodoptera exigua CL18, Changle,
Shandong China [394]

4.1 (1.4–12.4) 74 2019 Spodoptera exigua CL19, Changle,
Shandong China [394]

1.5 (1.2–2) 28 2018 Spodoptera exigua AQ18, Anqiu,
Shandong China [394]

5.5 (1.8–11.6) 100 2018 Spodoptera exigua NY18,
Nanyang, Henan China [394]

4.6 (3.2–6.4) 83 2019 Spodoptera exigua NY19,
Nanyang, Henan China [394]

29.3 (17.6–50) 534 2019 Spodoptera exigua AY19, Anyang, Henan China [394]

16.7 (10.6–31.3) 304 2018 Spodoptera exigua XZ18, Xuzhou, Jiangsu China [394]

16.5 (8.7–31.8) 301 2018 Spodoptera exigua XA18, Xian, Shanxi China [394]

136.3 (83.2–229.3) 2477 2019 Spodoptera exigua JX19, Jiaxing, Zhejiang China [394]

4.20 (3.51–4.95) 1 Spodoptera litura XW-Sus (Susceptible
Str.) China [368]

47.2 (40.7–53.9) 11 2010 Spodoptera litura SH10, Minhang,
Shanghai China [368]

71.6 (54.4–94.9) 17 2008 Spodoptera litura HF08, Hefei, Anhui China [368]

75.5 (61.7–89.8) 18 2010 Spodoptera litura HF10, Hefei, Anhui China [368]

100.3 (84.3–119.3) 24 2009 Spodoptera litura HX09, Hexian, Anhui China [368]

78.9 (64.3–93.5) 19 2010 Spodoptera litura ZZ10,
Zhangzhou, Fujian China [368]

102.5 (84–121) 24 2010 Spodoptera litura SZ10, Shenzheng,
Guangdong China [368]

80.4 (63.5–96.8) 19 2010 Spodoptera litura HZ10, Huizhou,
Guangdong China [368]

98.8 (79.5–118) 23 2010 Spodoptera litura DG10, Dongguang,
Guangdong China [368]

0.083 (0.066–0.106) 1 Spodoptera litura SS (Lab. susceptible) China [384]

0.83 (0.65–1.06) 10 2013 Spodoptera litura HZ13, Huizhou,
Guangdong China [384]

1.2 (0.9–1.7) 15 2014 Spodoptera litura ZC14, Zengcheng,
Guangdong China [384]

0.9 (0.7–1.24) 11 2014 Spodoptera litura ND14, Ningde, Fujian China [384]

1.2 (0.8–1.9) 14 2014 Spodoptera litura HK14, Haikou, Hainan China [384]

1.3 (0.9–1.9) 16 2014 Spodoptera litura GL14, Guilin, Guangxi China [384]

0.001 (0.0007–0.002) ** 1 Spodoptera frugiperda SUS, Monsanto
Company USA [391]

0.16 (0.06–0.32) ** 160 2016 Spodoptera frugiperda PR2016, Ponce Puerto
Rico [391]
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0.0068 (0.0039–0.012) 1 2011 Plutella xylostella BCS-S (susceptible
strain) Phillippines [358]

18 (5.1–66) 2647 2011 Plutella xylostella Sudlon, Cebu Island Phillippines [358]
0.009 (0.003–0.03) 1 2017 Plutella xylostella Susceptible strain Korea [390]

0.95 (0.34–2.06) 106 2017 Plutella xylostella PC, Pyeongchang Korea [390]

0.88 (0.35–1.85) 98 2017 Plutella xylostella GN, Gangneung Korea [390]

0.43 (0.24–0.65) 48 2017 Plutella xylostella SJ, Seongju Korea [390]
0.029 (0.025–0.034) 1 1998 Plutella xylostella RCF-Lab, Recife Brazil [387]

0.43 (0.14–0.92) 13 2012 Plutella xylostella BZR, Bezerros Brazil [387]

0.55 (0.25–1.00) 16 2012 Plutella xylostella BNV2, Boas Novas II Brazil [387]

1.3 (0.7–2.2) 39 2011 Plutella xylostella BNV1, Boas Novas I Brazil [387]

10.6 (5.8–18.8) 308 2011 Plutella xylostella SPC, Sapucarana Brazil [387]

33.1 (20.9–56.5) 962 2011 Plutella xylostella CSF2, Camocim II Brazil [387]

37 (31.2–44) 1075 2012 Plutella xylostella CGD, Cha Grande Brazil [387]

64 (43.8–91.9) 1943 2011 Plutella xylostella CSF1, Camocim I Brazil [387]

69.7 (55.4–87.4) 2024 2011 Plutella xylostella JPI, Jupi Brazil [387]
0.08 (0.04–0.13) 1 2017 Spodoptera exigua Susceptible strain Korea [390]

1.8 (1.7–2.2) 23 2017 Spodoptera exigua CJ, Cheongju Korea [390]

>25 >312 2017 Spodoptera exigua JD, Jindo Korea [390]

1.7 (0.01–6.3) 21 2017 Spodoptera exigua YG, Yeonggwang Korea [390]
0.015 (0.011–0.020) 1 2014 Tuta absoluta BSL, Brasília-DF Brazil [385]

1.2 (0.9–1.5) 78 2015 Tuta absoluta BZR, Bezerros-PE Brazil [385]

1.7 (1.2–2.2) 109 2014 Tuta absoluta JDR1 João
Dourado I-BA Brazil [385]

2.2 (1.6–3) 147 2014 Tuta absoluta GML2 Gameleira II-BA Brazil [385]

8.5 (6.2–11.4) 556 2014 Tuta absoluta JDR2, João
Dourado II-BA Brazil [385]

28.9 (17.3–41.9) 1895 2014 Tuta absoluta LGD, Lagoa Grande-PE Brazil [385]

90.6 (63.3–121.4) 5932 2014 Tuta absoluta GML1 Gameleira I-BA Brazil [385]

152.9 (96.2–224.3) 10,010 2014 Tuta absoluta PSQ Pesqueira-PE Brazil [385]

281.3 (190.8–405) 18,423 2014 Tuta absoluta AMD América
Dourada-BA Brazil [385]

0.17 (0.11–0.26) 1 Aphis gossypii 171B (Sus. Strain) Spain [347]
2.5 (1.5–3.9)c 14 2010 Aphis gossypii Spain 1, Blanca, Murcia Spain [347]
1.7 (1.4–1.9) 1 2009 Bemisia tabaci MED-S (Sus. Strain) China [392]

43.8 (37.4–51.3) 26 2016 Bemisia tabaci SX, Shanxi China [392]

Cyclaniliprole

0.002 (0.00009–0.02) 1 2017 Spodoptera exigua Susceptible strain Korea [390]
>22.5 >11,250 2017 Spodoptera exigua CJ, Cheongju Korea [390]

>22.5 >11,250 2017 Spodoptera exigua JD, Jindo Korea [390]

>22.5 >11,250 2017 Spodoptera exigua YG, Yeonggwang Korea [390]

10.7 (4.8–21.2) 5350 2017 Spodoptera exigua MR, Miryang Korea [390]

6.3 (4.9–8.1) 3150 2017 Spodoptera exigua GC, Geochang Korea [390]

Tetraniliprole

0.04 (0.03–0.07) 1 Spodoptera exigua SS China [394]
1.4 (1–1.9) 33 2018 Spodoptera exigua XA18, Xian, Shanxi China [394]

0.5 (0.3–0.7) 12 2018 Spodoptera exigua NY18,
Nanyang, Henan China [394]

5.5 (4.1–7.8) 128 2019 Spodoptera exigua AY19, Anyang, Henan China [394]

# LC50 of the field populations/LC50 of the susceptible strain. Cases with resistance ratios greater than 10-fold are included. * LC50 is
calculated as µg/cm2, LD50 values are calculated as µg/µL **, µg/g *** or ng/larva ****. RR stands for resistance ratio. The reference
susceptible populations are highlighted.

Detailed examination of RyRs from field-collected or lab-selected resistant strains
revealed mutations that affected residues located in the C-terminal transmembrane span-
ning domains [358,362,373,376], in accordance with this region being a binding site for
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diamides. Most of these studies were conducted in P. xylostella, but to a lesser extent
in T. absoluta and C. suppressalis, S. exigua, and S. frugiperda. Four mutations in insect
RyRs are associated with diamide resistance; 1) G4946E/V located at the interface be-
tween transmemrane domain 4 (TM4) and the TM4-TM5 linker (numbering is based
on PxRyR), 2) I4790M/T within the upper TM2 or TM3, 3) E1338D at the N-terminus,
and 4) Q4594L in a flexible loop located in DR1 before the pseudo voltage-sensor do-
main [47,48,107,109,358,362,373,376,378,381,389,393,405]. Ligand binding assays showed
that the binding affinity of chlorantraniliprole to native microsomal membranes from
field-resistant populations with the G4946E mutation was significantly lower than that
in the susceptible strains [358,362]. In another study, binding and efficacy of both fluben-
diamide and chlorantraniliprole were dramatically impaired in recombinant P. xylostella
RyR with the G4946E mutation, while affinity to other ligands, such as caffeine or ryan-
odine, did not change [109]. In a relatively recent study, CRISPR/Cas9 genome-modified
S. exigua larvae with the G4946E mutation exhibited 223-, 336-, and >1000-fold increase in
resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively [402].
Similarly, CRISPR/Cas9 modified D. melanogaster flies with the G4946V mutation were
also found to exhibit high levels of resistance against flubendiamide (RR: 91.3) and chlo-
rantraniliprole (RR:195), but less so against cyantraniliprole (RR:5.4) [405], further indicat-
ing the importance of this mutation for diamide resistance. Studies using a recombinant
D. melanogaster RyR with G4946E mutation expressed in Sf9 cells revealed that this mu-
tation confers a high degree of resistance also against pyrrole-2-carboxamides [345]. It is
noteworthy that the glycine at position 4946 is conserved amongst insect species, except
in the dipteran midge Belgica antarctica, the mite Tetranychus urticae and the hemipteran
mealybug Ferrisia virgata [63]. The replacement of glycine with a glutamic acid or valine
in the resistant strains is likely to have a major impact on the movement of the S5 and
S6 helices, which control opening and closing of the RyR channel pore, leading to an
inhibition or decrease in the binding of diamide insecticides to the channel [109,331]. On
the other hand, D. melanogaster flies naturally wild-type for the I4790M mutation exhibit
low to moderate resistance to diamides, while the M4790I mutation leads to higher levels of
susceptibility to flubendiamide (RR: −15.3 fold), but less to chlorantraniliprole (RR: −7.5)
and cyantraniliprole (RR: −2.3) [405]. As mentioned in Section 3. Structure, the isoleucine
residue at position 4790 is specific to lepidopterans (in contrast to commonly conserved
G4946 in insects) as is a methionine in D. melanogaster and all other insects and arachnids,
suggesting I4790 might be responsible for the differential sensitivities of the P. xylostella,
T. absoluta, and possibly beetles and other insects to diamides [63,115,116,358,363,373,405].
Homology models of the PxRyR based on rabbit RyR1 indicated that the I4790M mutation
in TM2 is located directly opposite to the G4946E mutation (the distance between the two
residues is only ~15 Å) in the pseudo voltage sensor domain, suggesting that these two
regions might define the diamide binding sites on the receptor [107,109,331,358,362]. The
model of PxRyR by Lin et al. [107] further indicated that G4946 is near the entrance to
the pocket and that the mutation to glutamatic acid narrows the entrance to the pocket,
whereas I4790 is located deep in the pocket and the mutation to methionine makes the
pocket shallower. The study by Douris et al. [405] also indicates that G4946V mutations con-
fers very high levels of resistance as the RR of the G4946V mutants to M4790I susceptible
mutants is 1400 and 1465 for flubendiamide and chlorantraniliprole, respectively, suggest-
ing both mutations may contribute synergistically to the overall resistance phenotype [406].
Regarding the Q4594L mutation, Q4594 is conserved amongst lepidopterans, while I4790

is lysine in D. melanogaster and coleopterans, hymentopterans and some other Dipterans;
however, its involvement in diamide binding is not currently known, other than it being
mutated in resistant populations [63,373]. The same is valid for E1338, which is located
in the insect divergent region 2 (IDR2) between SPRY2 and SPRY3 domains and appears
not to be conserved in insects [63,107]. A recent study on a Chinese field population of
C. suppressalis resistant to chlorantraniliprole revealed a new mutation Y4667D/C (corre-
sponding to Y4701 in PxRyR), which might confer to high levels of resistance [44]. However,
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the functional importance of the Y4667D/C, the E1338D and the Q4594L mutations has not
been demonstrated to date.

Other mechanisms might also confer to diamide resistance; this includes metabolic
resistance and down-regulation of RyR. Metabolic resistance against inseciticides develops
through elevated levels of detoxification enzymes, such as cytochrome P450 monooxyge-
nases (P450), glutathione S-transferases (GST) and esterases. The synergistics, piper-
onyl butoxide (PBO) an inhibitor of P450, diethyl maleate (DEM) a depletor of glu-
tathione, S,S,S-tributylphosphorothioate (DEF) an esterase inhibitor, and triphenyl phos-
phate (TPP) a carboxylesterase inhibitor, lowered the LC50/LD50 values of chlorantranilip-
role in L. decemlineata [407], P. xylostella [130], C. suppressalis [44] and S. frugiperda [48].
Additionally, higher levels of cytochrome P450 enzyme and esterases were reported
from laboratory strains selected with chlorantraniliprole [44,408,409]. Similarly, transcrip-
tomic profile of chlorantraniliprole-resistant field populations of P. xylostella revealed
that most of the metabolic detoxification enzyme genes were slightly up-regulated [410].
Up-regulation of cytochrome P450 genes by chlorantraniliprole or an increase in the
chlorantraniliprole-linked mortality upon silencing of a cytochrome P450 gene have been
also reported [411–413]. In contrast, synergism tests and biochemical assays showed
no obvious correlations between diamide resistance and three detoxifying enzymes in
C. suppressalis [389] and S. exigua [369]. It is noteworthy indicating that a detoxification
mechanism via the ATP-binding cassette (ABC) transporters is also possible [345,414,415].
Down-regulation of RyR might also be a possible resistance mechanism to diamide in-
secticides, which was demonstrated via RNAi in S. furcifera [53] and L. decemlineata [51].
Down-regulation of RyR led to a decrease in the diamide efficacy. In another study, RyR
was found to be slightly down-regulated in P. xylostella populations with lower to moderate
levels of resistance (RR: 6–35 fold) against chlorantraniliprole, while the gene was signifi-
cantly down-regulated in a population with high levels of resistance (RR:1750-fold) [410].
Similarly, RyR was down-regulated in C. suppressalis upon treatment with chlorantranilip-
role [44]. Down-regulation of RyR might slow the release and depletion of intracellular
Ca2+ stores from the SR in muscles and the ER of many cell types when induced by RyR ac-
tivators, and consequently enhances resistance to diamide insecticides [53]. It is noteworthy
that there are cases reporting over-expression of RyR genes in chlorantraniliprole-resistant
populations or up-regulation induced by diamides [38,64,416].

As mentioned before, studies on IP3Rs as targets in pest control are limited due
to their higher similarity with their mammalian counterparts. Nevertheless, a single
study has examined the role of IP3R in diamide resistance. Interestingly, silencing IP3R
in B. tabaci adults dramatically decreased susceptibility to cyantraniliprole [62], similar to
the decreased chlorantraniliprole-induced mortality upon RyR silencing in S. furcifera [53]
and L. decemlineata [51]. It is interesting that continuous administration of cyantraniliprole
down-regulates IP3R expression during the entire period of the treatment in B. tabaci, which
might be a strategy to adjust the RyR-linked increase in intracellular Ca2+ and decreased
ER Ca2+ levels [62]. However, this topic requires further investigation.

There might be other pest control tools targeting cellular Ca2+ homeostasis and inter-
fering with IP3R and RyR. Botanicals, entomopathogens, repellents, toxins, Ca2+ inhibitors
or biomolecules such as dsRNA or miRNAs or peptide agonists or antagonists are promis-
ing in this regard. For example, Ma et al. [417] examined the effect of wilforine, a novel
botanical insecticide from the root bark of thunder duke vine, Tripterygium wilfordii (Celas-
traceae) [418] on Mythimna separate (Lepidoptera: Noctuidae). This investigation revealed
that wilforine acts on myocytes leading to an increase in cytosolic Ca2+ levels when applied
at nanomolar levels and activates both RyR and IP3R based on use of specific inhibitors of
both channel proteins [417]. Similarly, both IP3R and RyR in neurons are activated by the
botanical insecticide Celangulin I, extracted from Chinese bittersweet Celastrus angulatus,
another species from Celastraceae [419]. Other biological agents, such as entomopathogenic
viruses, or repellents, such as DEET, or bacterial toxins, such as Bacillus thuringiensis Cry
toxins might also interfere directly or indirectly with Ca2+ signaling and intracellular Ca2+
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levels [420–429]. Development of dsRNA-based insecticides interfering with cellular Ca2+

homeostasis also has great potential in this manner [10,430–432]. Co-application of the
agents above with diamides might also have a potential within a combined tactic, which
also requires further investigation.

7. Conclusions

In conclusion, Ca2+ homeostasis is vital for insects, and the ER is one of the major
intracellular sources for Ca2+. The RyR and IP3R are the two channel proteins associated
with the ER and are involved in the intracellular Ca2+ supply. Insects possess a single RyR
and IP3R gene, in contrast to mammalians which possess three for each. Both RyR and
IP3Rs cluster separately in phylogenetic analyses; however, they share common domains,
such as the MIR, RIH, RIH-associated regulatory domains at the amino-terminus, and
transmembrane helices at the carboxy-terminus. Alternative splicing, which is regulated in
a tissue-specific and developmental manner, occurs for both genes and each receptor has its
own, distinct, regulatory mechanism. IP3R genes are expressed in most cells, in particular in
the ER of neurons, adipocytes, and oocytes, while RyR gene expression has a more restricted
distribution and is predominantly found in the SR of muscle cells and the ER of neurons.
Both receptors have essential roles in insect physiology and development. RyRs mediate
many cellular and physiological activities related to muscle contraction and hormone
secretion, while IP3Rs are involved in key events related to learning, memory, neuronal
signaling, lipid metabolism, and sensory transduction. Efforts have concentrated on the
development of pest control strategies targeting the operation of RyRs and IP3Rs; however,
RyRs appear to be safer targets due to their lower similarity with mammalian counterparts
compared to IP3Rs. Diamides are the best examples of a pest control chemistry targeting
RyRs, although resistance developed by pests against diamides has become an increasing
issue. Various pest control tactics based on use of botanicals, microbials and toxins, as well
as biomolecules such as dsRNA and miRNAs, targeting cellular Ca2+ homeostasis and
affecting the operation of RyRs and/or IP3Rs directly or indirectly might be also promising.
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216. Güney, G.; Toprak, U.; Hegedus, D.D.; Bayram, Ş.; Coutu, C.; Bekkaoui, D.; Baldwin, D.; Heckel, D.G.; Hänniger, S.; Cedden, D.; et al.
A look into Colorado potato beetle lipid metabolism through the lens of lipid storage droplet proteins. Insect Biochem. Mol. Biol. 2021,
133, 103473. [CrossRef] [PubMed]

217. Subramanian, M.; Jayakumar, S.; Richhariya, S.; Hasan, G. Loss of IP3 receptor function in neuropeptide secreting neurons leads
to obesity in adult Drosophila. BMC Neurosci. 2013, 14, 157. [CrossRef]

218. Subramanian, M.; Metya, S.K.; Sadaf, S.; Kumar, S.; Schwudke, D.; Hasan, G. Altered lipid homeostasis in Drosophila InsP3
receptor mutants leads to obesity and hyperphagia. Dis. Model Mech. 2013, 6, 734–744. [CrossRef] [PubMed]

219. Baumbach, J.; Hummel, P.; Bickmeyer, I.; Kowalczyk, K.M.; Frank, M.; Knorr, K.; Hildebrandt, A.; Riedel, D.; Jäckle, H.;
Kühnlein, R.P. A Drosophila in vivo screen identifies store-operated calcium entry as a key regulator of adiposity. Cell Metab. 2014,
19, 331–343. [CrossRef]

220. Baumbach, J.; Xu, Y.; Hehlert, P.; Kühnlein, R.P. Gαq, Gγ1 and Plc21C control Drosophila body fat storage. J. Genet. Genom. 2014,
41, 283–292. [CrossRef]

221. Bi, J.; Xiang, Y.; Chen, H.; Liu, Z.; Grönke, S.; Kühnlein, R.P.; Huang, X. Opposite and redundant roles of the two Drosophila
perilipins in lipid mobilization. J. Cell Sci. 2012, 125, 3568–3577. [CrossRef] [PubMed]

http://doi.org/10.1242/jcs.00455
http://doi.org/10.1038/ng2049
http://www.ncbi.nlm.nih.gov/pubmed/17534367
http://doi.org/10.1093/nar/gkr1030
http://www.ncbi.nlm.nih.gov/pubmed/22127867
http://doi.org/10.1016/0014-5793(96)01022-8
http://doi.org/10.1074/jbc.M210410200
http://doi.org/10.1091/mbc.3.6.621
http://doi.org/10.1083/jcb.121.2.345
http://www.ncbi.nlm.nih.gov/pubmed/8385671
http://doi.org/10.1074/jbc.M409462200
http://www.ncbi.nlm.nih.gov/pubmed/15537642
http://doi.org/10.1093/genetics/158.1.309
http://www.ncbi.nlm.nih.gov/pubmed/11333238
http://doi.org/10.1006/dbio.1995.1305
http://www.ncbi.nlm.nih.gov/pubmed/7556937
http://doi.org/10.1016/0006-2952(86)90244-3
http://doi.org/10.1096/fj.00-0584fje
http://www.ncbi.nlm.nih.gov/pubmed/11156940
http://doi.org/10.1080/07315724.2002.10719212
http://doi.org/10.1093/ajcn/77.6.1448
http://doi.org/10.1016/j.cmet.2015.06.010
http://doi.org/10.1016/j.cmet.2016.12.021
http://doi.org/10.1371/journal.pone.0210760
http://www.ncbi.nlm.nih.gov/pubmed/30629707
http://doi.org/10.1002/arch.21682
http://www.ncbi.nlm.nih.gov/pubmed/32335968
http://doi.org/10.1016/j.cbpb.2014.02.001
http://www.ncbi.nlm.nih.gov/pubmed/24556114
http://doi.org/10.1016/j.ibmb.2020.103473
http://www.ncbi.nlm.nih.gov/pubmed/33010403
http://doi.org/10.1186/1471-2202-14-157
http://doi.org/10.1242/dmm.010017
http://www.ncbi.nlm.nih.gov/pubmed/23471909
http://doi.org/10.1016/j.cmet.2013.12.004
http://doi.org/10.1016/j.jgg.2014.03.005
http://doi.org/10.1242/jcs.101329
http://www.ncbi.nlm.nih.gov/pubmed/22505614


Biomolecules 2021, 11, 1031 40 of 47

222. Bi, J.; Wang, W.; Liu, Z.; Huang, X.; Jiang, Q.; Liu, G.; Wang, Y.; Huang, X. Seipin promotes adipose tissue fat storage through the
ER Ca2+-ATPase SERCA. Cell Metab. 2014, 19, 861–871. [CrossRef] [PubMed]

223. Xu, Y.; Borcherding, A.F.; Heier, C.; Tian, G.; Roeder, T.; Kühnlein, R.P. Chronic dysfunction of stromal interaction molecule by
pulsed RNAi induction in fat tissue impairs organismal energy homeostasis in Drosophila. Sci. Rep. 2019, 9, 6989. [CrossRef]

224. Toprak, U. The role of peptide hormones in insect lipid metabolism. Front. Physiol. 2020, 11, 434. [CrossRef]
225. Arrese, E.L.; Flowers, M.T.; Gazard, J.L.; Wells, M.A. Calcium and cAMP are second messengers in the adipokinetic hormone-

induced lipolysis of triacylglycerols in Manduca sexta fat body. J. Lipid Res. 1999, 40, 556–564. [CrossRef]
226. Venkiteswaran, G.; Hasan, G. Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for

flight. Proc. Natl. Acad. Sci. USA 2009, 106, 10326–10331. [CrossRef]
227. Agrawal, N.; Venkiteswaran, G.; Sadaf, S.; Padmanabhan, N.; Banerjee, S.; Hasan, G. Inositol 1,4,5-trisphosphate receptor

and dSTIM function in Drosophila insulin-producing neurons regulates systemic intracellular calcium homeostasis and flight.
J. Neurosci. 2010, 30, 1301–1313. [CrossRef]
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