
Computing optimal factories in metabolic networks

with negative regulation

Spencer Krieger* and John Kececioglu

Department of Computer Science, The University of Arizona, Tucson, AZ 85721, USA

*To whom correspondence should be addressed.

Abstract

Motivation: A factory in a metabolic network specifies how to produce target molecules from source compounds
through biochemical reactions, properly accounting for reaction stoichiometry to conserve or not deplete intermedi-
ate metabolites. While finding factories is a fundamental problem in systems biology, available methods do not con-
sider the number of reactions used, nor address negative regulation.

Methods: We introduce the new problem of finding optimal factories that use the fewest reactions, for the first time
incorporating both first- and second-order negative regulation. We model this problem with directed hypergraphs,
prove it is NP-complete, solve it via mixed-integer linear programming, and accommodate second-order negative
regulation by an iterative approach that generates next-best factories.

Results: This optimization-based approach is remarkably fast in practice, typically finding optimal factories in a few
seconds, even for metabolic networks involving tens of thousands of reactions and metabolites, as demonstrated
through comprehensive experiments across all instances from standard reaction databases.

Availability and implementation: Source code for an implementation of our new method for optimal factories with
negative regulation in a new tool called Odinn, together with all datasets, is available free for non-commercial use at
http://odinn.cs.arizona.edu.

Contact: skrieger@email.arizona.edu

1 Introduction

Metabolic networks consist of all physical and biochemical reac-
tions that occur within an organism or cell. They critically guide re-
search in many areas, including metabolic engineering, where cell
metabolism is altered to improve a targeted cell function, and inter-
rogation of multi-species relationships, where the interaction be-
tween different organisms is determined by their metabolic output
(Oberhardt et al., 2009). Participants in these reactions have associ-
ated stoichiometric ratios, and the reactions are often catalyzed by
an enzyme (positive regulation), or inhibited by a substrate (negative
regulation). Metabolic networks, and closely-related cell-signaling
networks, are traditionally represented by ordinary graphs (Sharan
and Ideker, 2006; Vidal et al., 2011); however, ordinary graphs can-
not adequately model multiway reactions among compounds
(Klamt et al., 2009; Ritz et al., 2014), and are unable to represent
positive and negative regulation.

Recently, directed hypergraphs, which generalize ordinary
graphs, have emerged as a viable alternative to model these net-
works (Klamt et al., 2009). Hypergraphs correctly model a given re-
action, which often has multiple input reactants and multiple output
products, by a single hyperedge (that generalizes an ordinary graph
edge), now directed from the set of reactants (its tail) to the set of
products (its head). Positive regulation has been incorporated into
hypergraph models by including enzymes in the tail of the hyperedge
corresponding to the reaction they regulate; however, no hypergraph
models in the literature address negative regulation.

A fundamental task in metabolic and cell-signaling networks is
to find the most efficient series of reactions to synthesize a set of

target molecules from the set of source compounds available to the
organism or cell, while not exhausting any intermediate metabolites.
This task maps to the minimum-hyperedge factory problem we con-
sider here: Given a metabolic network represented by a directed
hypergraph, together with the set of available source compounds, a
set of target molecules, and the reaction stoichiometries, find a fac-
tory (a specialized pathway that takes into account stoichiometry of
intermediate metabolites) that produces the targets from the sources
using the fewest hyperedges, without interference from negative
regulation. We give a brief overview of related work next.

Related work
Previous methods for pathway inference in metabolic and cell-
signaling networks have largely focused on three models: factories,
elementary flux modes, and hyperpaths, which we summarize in
turn.

Factories have been studied mainly in the context of the min-
imum precursor problem: Given a metabolic network represented
by hypergraph G, a set of sources S, and a set of targets T, find a
subset P � S, called the precursors, of minimum cardinality jPj that
can produce the targets T via reactions in G without exhausting
intermediate metabolites. Cottret et al. (2008) show the minimum
precursor problem is NP-complete, while Zarecki et al. (2014) con-
sider precursors of minimum molecular weight. Methods have been
developed to enumerate all minimal precursor sets, either ignoring
stoichiometry (Acu~na et al., 2012) or including it (Andrade et al.,
2016). None of these methods minimize the number of reactions
used to produce the targets T from the precursors P.
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Elementary flux modes (EFMs) in metabolic networks are min-
imal sets of reactions that conserve intermediate metabolites (which
have no proper subset of reactions that also conserves them), with-
out specified sources or targets (Zanghellini et al., 2013). Most
methods enumerate all elementary flux modes, which quickly
becomes infeasible for genome-scale networks, whose number of
EFMs is vast. de Figueiredo et al. (2009) avoid enumerating all
EFMs by computing just the k-smallest EFMs via mixed-integer lin-
ear programming (MILP), but due to the minimality of EFMs can
only allow a single target. Two discrete models of transcriptional
regulation have also been considered: Jungreuthmayer and
Zanghellini (2012) take all possible EFMs as input, and find the
smallest number of gene knockouts that preserve desirable EFMs
and exclude undesirable EFMs, where regulation is accommodated
through constraints in an MILP that exclude biologically-infeasible
EFMs; while Jungreuthmayer et al. (2015) add discrete regulatory
rules to a generative approach for EFM enumeration.

Hyperpaths in directed hypergraphs are a generalization of
source-sink paths in ordinary graphs that, unlike factories, require a
strict ordering of their hyperedges. Italiano and Nanni (1989) show
that finding a shortest hyperpath is NP-complete, even for acyclic
hypergraphs. Gallo et al. (1993) explore multiple forms of connect-
ivity in directed hypergraphs, and define length measures called
additive cost functions for which shortest hyperpaths can be com-
puted efficiently. In metabolic networks, Carbonell et al. (2012) give
an algorithm that finds a source-sink hyperpath whenever one
exists, irrespective of its length. In cell-signaling networks, Ritz and
Murali (2014) and Ritz et al. (2017) were the first to solve acyclic
shortest hyperpaths through a practical MILP, which Schwob et al.
(2021) extend with reaction time-dependencies. To handle cycles,
Krieger and Kececioglu (2021, 2022a,b) present the first efficient
heuristic for general shortest hyperpaths, prove it finds optimal
hyperpaths in singleton-tail hypergraphs, develop an algorithm for
tractably generating all source-sink hyperpaths, and demonstrate
through comprehensive experiments that the heuristic almost always
finds optimal hyperpaths in real cell-signaling networks. These
approaches address positive regulation by adding positive regulators
to the tails of hyperedges for the reactions they regulate.

In contrast to prior work, we consider the new problem of find-
ing a factory with the fewest hyperedges that produces multiple tar-
gets from the given sources. We also incorporate for the first time
two discrete models of higher-order negative regulation: the first-
order model captures direct interference among reactions within the
factory, while the second-order model captures indirect interference
from reactions outside the factory.

Our contributions
We compute optimal factories that produce multiple targets from
multiple sources using the minimum number of reactions, while for
the first time incorporating negative regulation. More specifically,
this work makes the following contributions.

• We introduce the new problem of finding a minimum-hyperedge

factory that uses the fewest reactions to produce targets from

sources.

• For the first time, we incorporate negative regulation into opti-

mal factories, considering both its first- and second-order effects.

• We perform the first comparative study of pathway models:

minimum-precursor factories versus shortest hyperpaths versus

minimum-hyperedge factories with first- and second-order nega-

tive regulation.

• We prove that finding minimum-hyperedge factories is NP-com-

plete, hence there is likely no method that finds optimal factories

and is efficient in the worst-case.

• Even so, in practice our approach to optimal factories via mixed-

integer linear programming is almost always remarkably fast,

with a median run time of only a few seconds while including

first- and second-order negative regulation, as demonstrated

through comprehensive experiments across all instances from

standard reaction databases.

A preliminary implementation of our method for optimal
factories in a new tool we call Odinn (short for “optimal minimum-
hyperedge factories in metabolic networks with negative
regulation”), together with all datasets, is available free for non-
commercial use at http://odinn.cs.arizona.edu.

Plan of the paper
In the next section, we define optimal factories in metabolic networks,
incorporate negative regulation, tackle the problem via mixed-integer
linear programming, and show that finding minimum-hyperedge fac-
tories is NP-complete. Section 3 then presents experimental results,
over all instances from the two standard reaction databases, compar-
ing minimum-hyperedge factories to minimum-precursor factories and
shortest hyperpaths, analyzes the effects of negative regulation, and
demonstrates the practicality of finding optimal factories by our ap-
proach. Section 4 highlights the differences between solutions to these
pathway models on concrete biological examples, and discusses the
sensitivity of our model’s behavior to a critical input parameter.
Finally Section 5 concludes, and offers directions for further research.

2 Methods

To present our methods for finding optimal metabolic factories, we
first define versions of the minimum factory problem with or with-
out negative regulation, and then explain how we reduce these for-
mulations to solving an optimization problem known as a mixed-
integer linear program.

2.1 Defining minimum factories in metabolic networks
Informally, a factory in a metabolic network is a collection of reac-
tions that produce a set of target substances starting from a set of
source substances, properly taking into account the stoichiometries
of intermediate metabolites in reactions. The reactions in the factory
may form cycles, and effectively can proceed simultaneously. (This
is in contrast to the notion of a hyperpath, which is also a collection
of reactions that produce the targets from the sources, but without
taking into account stoichiometry, and where the reactions in the
hyperpath must be ordered so that in each successive reaction all its
input reactants must have been formed as output products of prior
reactions in the ordering.) For factories, two relevant optimization
criteria are: minimizing how many sources it uses to produce the tar-
gets, which in synthetic biology reduces the number of source sub-
stances that must be synthesized to produce the targets; or
minimizing how many reactions it involves, which in pathway infer-
ence may yield a more likely pathway by which the cell produces the
targets.

For the intermediate metabolites involved in a factory (the sub-
stances other than the sources and the targets), the stoichiometry
ratios for the input reactants and output products of the factory’s
reactions must be such that one of two conditions are met: either
intermediate metabolites neither build up nor get depleted as the fac-
tory continues to produce the targets, known as conservation; or
intermediate metabolites are allowed to build up, but not be
depleted, known as accumulation. Under conservation or accumula-
tion, by continuously supplying just the source substances to the fac-
tory, the targets can be produced indefinitely.

A key aspect to consider in a factory is negative regulation,
where a substance participating in the factory may interfere by
down-regulating a reaction in the factory, disrupting production of
the targets. While negative regulation has not been incorporated
into prior optimization formulations of factories, we categorize
three levels of modeling its higher-order effects: (i) zeroth-order,
which neglects it; (ii) first-order, which models direct negative regu-
lation between the reactions in a factory; and (iii) second-order,
which models indirect negative regulation, where a substance not
participating directly in the reactions of the factory can still be
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produced indirectly from the factory’s sources via other reactions
outside the factory, and end up negatively regulating reactions with-
in the factory.

We next formally define the computational problem of finding
optimal factories, under conservation or accumulation, taking into
account zeroth-, first- and second-order negative regulation.

Formulating minimum factories without negative regulation

To properly represent the reactions in a metabolic network, where a
given reaction can have multiple input reactants and multiple output
products, requires a generalization of ordinary directed graphs known
as a directed hypergraph G ¼ ðV;EÞ, consisting of a set of directed
hyperedges E corresponding to the reactions of the network, and a set
of vertices V corresponding to the substances participating in the reac-
tions. Each hyperedge e 2 E is an ordered pair (X, Y) where both
X;Y � V are nonempty sets of vertices, and e is directed from set X
to set Y. Here, X is called the tail of e, and Y is called its head, given
by functions tailðeÞ ¼ X and headðeÞ ¼ Y. We refer to the in-edges of
a vertex v 2 V by inðvÞ ¼ fe 2 E : v 2 headðeÞg, and its out-edges by
outðvÞ ¼ fe 2 E : v 2 tailðeÞg. For a metabolic reaction represented in
hypergraph G by hyperedge e, tailðeÞ is all the input reactants for the
reaction, and headðeÞ is all its output products. For a reversible reac-
tion in a metabolic network, we represent it in G by a pair of hyper-
edges e ¼ ðX;YÞ and its reverse hyperedge revðeÞ ¼ ðY;XÞ. Typically
for a metabolic network represented by hypergraph G, the sources
S � V of the network are the vertices with no in-edges, while targets
T � V are often (but not always) vertices with no out-edges.

A key concept for metabolic factories is the notion of flux, which
is the relative rate at which each reaction is used in its forward direc-
tion by the factory. In a hypergraph, we represent the flux for a fac-
tory by a nonnegative real-valued vector f ¼ ðfeÞe2E, with all
fe � 0. For a metabolic network represented by a hypergraph with
n ¼ jVj vertices and m ¼ jEj hyperedges, the stoichiometry ratios of
the substances in the reactions of the network can be summarized by
an n�m stoichiometry matrix M ¼ ðrijÞ, where rij is the stoichiom-
etry ratio for substance i in reaction j, or equivalently rv;e gives this
ratio for vertex v in hyperedge e. For v 2 tailðeÞ, which correspond
to an input reactant for the reaction, ratio rv;e is negative, represent-
ing that substance v is consumed in reaction e. For v 2 headðeÞ, cor-
responding to an output product of the reaction, ratio rv;e is positive,
as v is produced by e. (If v is both in tailðeÞ and headðeÞ, quantity rv;e

is the difference between the reaction’s stoichiometry ratios for v as
an output product and as an input reactant.) When v 62 tailðeÞ and
v 62 headðeÞ, in stoichiometry matrix M ¼ ðrv;eÞ we assign rv;e ¼ 0.

The utility of stoichiometry matrix M with respect to flux f for a
factory is in capturing conservation or accumulation of intermediate
metabolites. For a set I � V of intermediate metabolites, we denote
by MjI matrix M restricted to its rows corresponding to I. Then the
matrix–vector product MjI � f is a vector giving for each intermedi-
ate metabolite v 2 I the relative excess of v produced by the reac-
tions in the factory under flux f. The condition MjI � f ¼ 0
corresponds to conservation, while MjI � f � 0 corresponds to
accumulation.

Given flux f for a factory, we say a hyperedge e with fe > 0 is an
active edge, meaning its corresponding reaction is used by the fac-
tory. Similarly, we say a source s 2 S is an active source, meaning
this source is used by the factory to produce the targets, ifP

e2outðsÞ fe > 0.
We now formally define the basic problem of finding a factory in

a metabolic network that uses the fewest reactions, where we do not
yet consider the effects of negative regulation. This basic problem
has two versions below, according to whether we require conserva-
tion or accumulation of intermediate metabolites.

DEFINITION 1 (Minimum-Hyperedge Factory) The Minimum-Hyperedge

Factory problem without negative regulation is the following.

The input is a metabolic network represented by hypergraph G ¼ ðV;EÞ
with stoichiometry matrix M, candidate sources S � V, target molecules

T � V�S, and minimum-flux constant � > 0.

The output is nonnegative flux f such that, for all intermediate
metabolites I ¼ V � ðS [ TÞ either

• (conservation) MjI � f ¼ 0 or
• (accumulation) MjI � f � 0 holds,

the following production condition holds for each target t 2 T,

X

e2inðtÞ
fe � �;

and the number of active edges
��fe 2 E : fe > 0g

�� is minimum. �

This finds a metabolic factory, given by flux f, that produces all
targets T from the sources S using the fewest reactions. We can also
have edge weights, and minimize the total weight of the active
edges.

The Minimum-Source Factory problem is the same as the
above, except the objective is to instead minimize the number of
active sources,

��fs2S :
P

e2outðsÞ fe > 0g
��.

We use the shorter terms min-edge factory and min-source fac-
tory to refer to optimal solutions to these two problems. One advan-
tage of Minimum-Hyperedge Factory over Minimum-Source
Factory in practice is that a min-source factory can contain useless
cycles that are disconnected from the sources and targets but circu-
late nonzero flux (as later illustrated in Figure 3), while this can
never occur in a min-edge factory.

Including first-order negative regulation

We extend Minimum-Hyperedge Factory to include first-order nega-
tive regulation as follows. The input G;M; S;T; �, output f, the con-
ditions on f, and the minimization criteria are all the same, except
now we also require that for flux f none of its active edges e are
negatively regulated by any inhibitor v that is produced by another
active edge d in the factory with v 2 headðdÞ. This captures the ab-
sence of direct negative regulation between reactions used by the op-
timal factory.

Including second-order negative regulation

To further extend Minimum-Hyperedge Factory to include second-
order negative regulation, in addition to the first-order requirements
given above, we also require that none of its active edges e are nega-
tively regulated by any inhibitor v that can be produced from the ac-
tive sources A � S of the factory. This captures the absence of
indirect negative regulation of reactions used by the factory via
inhibitors produced from the active sources by reactions outside the
factory.

Complexity of computing optimal factories

We now show Minimum-Hyperedge Factory is NP-complete, so
there is likely no algorithm that finds min-edge factories that is effi-
cient in the worst-case. In the following, the decision version of the
problem has an additional input parameter ‘, and asks whether a
given instance of the problem has a factory with at most ‘ active
edges.

THEOREM 1 (NP-completeness) The decision version of Minimum-

Hyperedge Factory under conservation is NP-complete.

PROOF We use a reduction from Exact Cover by 3-sets, which is NP-
complete (Garey and Johnson, 1979, p. 221). Recall an instance of
Exact Cover is a ground set X where jXj ¼ n ¼ 3k, together with a
family Y of subsets of X, where all subsets Y 2 Y in the family
have exactly jYj ¼ 3 elements. The problem is to determine
whether there is a subfamily ~Y � Y whose subsets Y 2 ~Y cover
every element of X exactly once.

Given an instance X;Y of Exact Cover, we construct an instance
G;M; S;T; �; ‘ of Minimum-Hyperedge Factory under conservation
as follows. Hypergraph G has a single source fsg ¼ S, a single target
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ftg ¼ T, vertices vY for each family subset Y 2 Y, and vertices wx

for each ground-set element x 2 X. The hyperedges of G are in three
levels. The top level connects source s to the subset vertices vY by or-
dinary edges e ¼ ðs; vYÞ with stoichiometry ratios rs;e ¼ �1 and
rvY ;e ¼ þ3. The intermediate level connects each of these subset ver-
tices vY to the corresponding ground-set vertices wx for each of its
three elements x 2 Y again by ordinary edges e ¼ ðvY ;wxÞ with
stoichiometry ratios rvY ;e ¼ �1 and rwx ;e ¼ þ1. Lastly, the bottom
level connects all of these ground-set vertices wx to the target t con-
ceptually by a large hyperedge whose head set consists of all wx and
whose tail set contains only t. Our construction instead implements
this large conceptual hyperedge for ground set X ¼ fx1; . . . ; xng by
a daisy chain of smaller hyperedges e1; . . . ; en�1 involving additional
vertices u1; . . . ; un�2, where the first hyperedge
e1 ¼ ðfwx1

;wx2
g; fu1gÞ, in general ei ¼ ðfui�1;wxiþ1

g; fuigÞ for
1 < i < n�1, and the last hyperedge en�1 ¼ ðfun�2;wxn

g; ftgÞ, with
stoichiometry ratios for all daisy-chain hyperedges ei of –1 for both
tail vertices of ei, and ratio þ1 for the single head vertex of ei.
Finally, we use minimum-flux constant � ¼ 1, and active-edge
upper-bound ‘ ¼ 7k�1.

We now claim X;Y is a yes-instance of Exact Cover iff
G;M; S;T; �; ‘ is a yes-instance of Minimum-Hyperedge Factory.
For the forward implication, suppose ~Y � Y is an exact cover for X.
Consider a flux f that has unit flux on each edge in the top and inter-
mediate levels of G that touches a vertex vY for Y 2 ~Y , unit flux on
each hyperedge in the bottom daisy-chain level, and zero flux on all
other edges. It is straightforward to verify flux f corresponds to a
factory yes-instance.

For the reverse implication, suppose the constructed instance of
Minimum-Hyperedge Factory is a yes-instance with corresponding
flux f, and rescale f so it has exactly unit flux entering target t.
Conservation at all vertices ui implies every edge in the daisy chain also
has unit flux. Thus for all 3k elements x 2 X, vertex wx has outgoing
unit flux, so conservation at all wx implies at least 3k edges at the inter-
mediate level must be active. Since each vertex vY has only three out-
edges at the intermediate level, conservation at all vY implies a lower
bound of at least k active edges at the top level. On the other hand, we
have an upper bound of at most k active edges at the top level, since in
total f has at most ‘ ¼ 7k�1 active edges, while there are 3k�1 active
edges in the daisy chain, and at least 3k active edges at the intermediate
level. Combining both bounds, the top level has exactly k active edges.
These k active top-level edges touch subsets Y that form an exact cover
of X, demonstrating this is also a yes-instance.

Finally, the instance of Minimum-Hyperedge Factory in the re-
duction can be constructed from X;Y in polynomial time, so the
problem is NP-hard. Moreover it is in NP, as after non-determinis-
tically guessing at most ‘ active edges, we can find a flux f that satis-
fies conservation and produces target t in polynomial time by
solving a linear programming problem that enforces zero flux on all
non-active edges. Thus it is NP-complete. �

We note this proof shows Minimum-Hyperedge Factory is NP-
complete as well when including first- and second-order negative regu-
lation (since the instance constructed in the reduction has no negative
regulators). Furthermore, the proof also shows the problem is NP-
complete when the hypergraph is acyclic, has a single source and a sin-
gle target, and when every hyperedge has only one head-vertex and at
most two tail-vertices. A minor modification to the proof shows the
problem remains NP-complete under accumulation as well.

2.2 Finding factories via integer linear programming
We now show that all versions of Minimum-Hyperedge Factory
(with conservation or accumulation, and none, first- or second-
order negative regulation) can be reduced to solving either a single
instance, or a series of instances, of a constrained linear optimization
problem known as a mixed-integer linear program (MILP). An
MILP optimizes a linear function of a collection of variables, some
of which are real-valued and others integer-valued, subject to con-
straints that are linear inequalities in the variables.

Modeling minimum factories without negative regulation

We model Minimum-Hyperedge Factory without negative regula-
tion as an MILP as follows. An instance of Min-Edge Factory con-
sists of hypergraph G ¼ ðV;EÞ, candidate sources S � V, targets
T � V�S, stoichiometry matrix M, and constant � > 0. We next de-
scribe the variables, constraints, and objective function of the corre-
sponding MILP for this instance.

The variables are in two groups. Flux vector f ¼ ðfeÞe2E consists
of real-valued variables fe, and active-edge vector x ¼ ðxeÞe2E con-
sists of integer-valued variables xe.

The constraints are in three classes. The domain constraints are
0 � fe � 1 and 0 � xe � 1 for all hyperedges e 2 E (which
ensures xe 2 f0; 1g). For the intermediate metabolites
I ¼ V � ðS [ TÞ, we have either the conservation constraints
MjI � f ¼ 0, or the accumulation constraints MjI � f � 0. For each
target molecule t 2 T, the production constraint

P
e2inðtÞ fe � �

ensures target t is produced. For hyperedges e 2 E, the active edge
constraints xe � fe ensure xe ¼ 1 for an active edge e with fe > 0.
Lastly for pairs of reverse hyperedges e and revðeÞ that model a
single reversible reaction, the reversible-reaction constraints
xe þ xrevðeÞ � 1 prevent trivial cycles that send flux through both
e and its reverse.

The objective function is to minimize
P

e2E xe. Notice that for
this objective, an optimal solution f �; x� has x�e ¼ 1 iff f �e > 0, so
this MILP captures the problem of finding a factory that produces
the targets T with the minimum number of active edges.

We can model Minimum-Source Factory without negative regu-
lation by a similar MILP. Briefly, we now have an active-source vec-
tor y ¼ ðysÞs2S with integer variables ys 2 f0;1g, where for every
candidate source s 2 S and every hyperedge e 2 outðsÞ, we have the
active-source constraints ys � fe. The objective function is then to
minimize

P
s2S ys, the number of active sources.

We can also combine these two MILPs for Min-Edge Factory
and Min-Source Factory into a single MILP whose variables include
both active-edge vector x and active-source vector y, that contains
the union of their constraints, and minimizes a linear combination
of their objective functions. This has the advantage of solving one
optimization problem that, by adjusting the weighting constant in
the objective on the contribution of active edges versus active sour-
ces, yields a solution to the bicriteria problem of finding a min-edge
factory that uses the fewest sources, or a min-source factory that has
the fewest edges, as discussed in Section 3.2.

Finally, we mention the value of minimum-flux constant � > 0,
that ensures targets T are produced, is critical. Since for any flux
vector f that satisfies conservation or accumulation the scaled flux
vector cf for positive constant c also satisfies these conditions, we
can always rescale solutions so that each fe 2 ½0;1	. Nevertheless,
determining a priori a good lower bound on how small the non-zero
flux on active edges can get in an optimal solution after such rescal-
ing is challenging, as discussed in Section 4.2.

Modeling first-order negative regulation

We can easily accommodate first-order negative regulation within
the above MILP. For every hyperedge e 2 E that is negatively regu-
lated by substance v 2 V, and for all hyperedges d 2 inðvÞ that
produce v, we add the negative-regulation constraints xe þ xd � 1.
Since hyperedges e and d now cannot both be active, this prevents as
a solution any factory that both uses a reaction e and directly nega-
tively inhibits e.

Handling second-order negative regulation

For Minimum-Hyperedge Factory under second-order negative
regulation, we want a min-edge factory whose active edges are not
negatively regulated by any inhibitor that can be produced from its
active sources. This complex constraint cannot be readily incorpo-
rated into the original MILP directly. Instead, we take an iterative
approach that essentially generates next-best factories until finding
one that satisfies second-order negative regulation.

Our algorithm first solves problem P1, the original MILP above
for Minimum-Hyperedge Factory under first-order negative
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regulation, to obtain initial solution f ð1Þ. In general at iteration i, it
checks whether the current solution f ðiÞ satisfies second-order nega-
tive regulation, as follows. Determine the active sources A � S of f ðiÞ,
and for each active edge e of f ðiÞ that has a negative regulator v, check
whether v can be produced from A by setting up a linear program
(LP) with only flux variables whose constraints include conservation
or accumulation, that sets all fluxes to zero on out-edges of non-
active sources, and instead of the target constraint has the production
constraint

P
e2inðvÞ fe � �. If this LP is feasible, inhibitor v can be

produced from the active sources A, so f ðiÞ is not second-order valid,
and the process continues to the next iteration iþ 1 below.
Otherwise, if no inhibitor of an active edge can be produced from the
active sources, the algorithm halts, and outputs optimal factory f ðiÞ.

At iteration iþ 1, the algorithm adds two new constraints to the
current MILP, which rule out the prior solution f ðiÞ, to obtain the
next problem Piþ1. The first constraint requires, for the active edges
F � E of f ðiÞ, that

P
e2F xe � jFj � 1. This constraint ensures that

solving Piþ1 yields an optimal factory distinct from f ðiÞ, and by ex-
tension all prior factories. The second constraint requires, for hyper-
edge e that was negatively regulated by inhibitor v produced from
the active sources A � S of f ðiÞ, that xe þ

P
s2A ys � jAj. This con-

straint ensures that solving Piþ1 yields an optimal factory that does
not both contain active edge e and use the same active sources A
(since if it does, hyperedge e will again be negatively regulated by v).
The algorithm then solves problem Piþ1 and repeats.

This solves a series of MILPs P1;P2; . . . until finding the optimal
factory satisfying second-order negative regulation. In practice, this
algorithm is remarkably fast for the vast majority of instances from
standard reaction databases, as discussed in Section 3.4.

3 Results

We now present results from computational experiments on real
biological datasets comparing the structure of min-edge factories,
min-source factories, and shortest hyperpaths. We also study the
effects of negative regulation on optimal factories, and evaluate the
speed of our optimization-based approach.

3.1 Experimental setup
We first detail the datasets used in our experiments, and then de-
scribe the implementation of our methods.

Datasets

We evaluate our approach to min-edge factories on eight standard
datasets. Seven of these datasets are metabolic networks for different
organisms taken from MetExplore (Cottret et al., 2018):
namely, Buchnera aphidicola, Baumannia cicadellinicola, Carsonella
ruddii, Escherichia coli, Homo sapiens, Saccharomyces cerevisiae,
and Sphenomorphus muelleri. We identify these datasets by an ab-
breviation of the organism name (first letter of genus, underscore,
first three letters of species). These metabolic datasets were down-
loaded as SBML files, and parsed into hypergraphs. We note that
these seven datasets do not contain any regulation information.

The eighth and largest dataset comes from Reactome (Joshi-
Tope et al., 2005), which contains curated human signaling path-
ways. To build the Reactome dataset, we downloaded all
Reactome pathways in BioPAX format (Demir et al., 2010) from
Pathway Commons, concatenated them together, and formed the
hypergraph using a modified version of a parser from Franzese et al.
(2019). Reactome includes 6,051 reactions and 483 reactions anno-
tated with positive and negative regulators, respectively.

For each dataset, we constructed a hypergraph by mapping each
entity (protein, protein complex, and so on) to a vertex in the hyper-
graph, accounting for different compartmentalization and post-
translational modification. (So the same protein in the nucleus and
cytoplasm, for example, is represented by two different vertices.)
This is because many of the pathways specifically describe protein
transport between cellular compartments, or post-translational
modifications. We mapped each reaction to a unit-weight hyper-
edge, with reactants in the tail of the hyperedge, and products in the
head. Following the precedent from Ritz et al. (2017), positive regu-
lators were added to the tails of hyperedges they regulate. Negative
regulators and stoichiometry ratios for each hyperedge were stored
separately, where unit stoichiometry ratios were used when they
were missing. Reversible reactions were modeled as two separate
hyperedges with their heads and tails reversed.

We consider any vertex with no in-edges a source, and any ver-
tex with no out-edges a target. A problem instance then involves
finding a factory (or hyperpath) from all of the sources to a given
target. (When computing hyperpaths, we created a supersource, and
a zero-weight hyperedge with the supersource as its tail, and all
source vertices in its head; we also added to its head any vertices
whose only in-edge is a self-loop, as otherwise these self-loops are
unreachable.)

Table 1 gives statistics on the hypergraphs constructed for each
dataset, listed in order of increasing size. Overall, the hypergraphs
are very sparse, having fewer hyperedges than vertices in half the
datasets. While the hypergraphs do contain a few highly-connected
vertices representing ubiquitous molecules, most vertices have very
low connectivity, in terms of the small median in- and out-degrees
(as well as the small median hyperedge tail and head sizes).

Implementation

Our new tool Odinn (Krieger and Kececioglu, 2022c) implements
both min-edge and min-source factories, comprising around 300
lines of Python code. The parser to convert the BioPAX format into
hypergraphs is from Franzese et al. (2019) and was modified to in-
clude stoichiometry and negative regulators. The shortest acyclic
hyperpath MILP is from Ritz et al. (2017). Halp (https://
github.com/Murali-group/halp) was used for directed hyper-
graph representations. MILPs were solved using CPLEX 12.6, run on
an M1 processor with 8 Gb of memory.

3.2 Comparing min-edge factories to current models
We highlight the advantages of min-edge factories by comparing
them to the current alternate models of min-source factories

Table 1. Dataset summaries

C_Rud S_Mue B_Aph B_Cic S_Cer H_Sap E_Col Reactome

Vertices 263 314 460 700 936 1618 1877 20 458

Hyperedges 229 273 447 755 1250 2132 2999 11 802

Sources 40 45 45 58 128 171 65 8296

Targets 44 48 51 67 227 344 73 5066

median max median max median max median max median max median max median max median max

Tail size 2 4 2 4 2 6 2 6 1 2 1 2 2 7 2 26

Head size 2 5 2 5 2 6 2 6 1 3 1 3 2 95 1 28

In-degree 1 41 1 49 1 67 1 156 1 15 1 13 1 806 1 1056

Out-degree 1 64 1 72 1 104 1 142 1 8 1 18 1 511 1 1167
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(Andrade et al., 2016) and shortest acyclic hyperpaths (Ritz et al.,
2014).

Shortest acyclic hyperpaths Hyperpaths have strict order require-
ments on their hyperedges that factories do not, so instances with a
factory may not have a hyperpath. As Table 2 shows, there are gen-
erally more instances with factories than hyperpaths. In the seven
metabolic datasets, when hyperpaths exist they tend to be very
short, sometimes with only one hyperedge. Table 3 shows that in
Reactome, the length of the shortest acyclic hyperpath and min-
edge factory differ on just 2% of the instances under accumulation,
and only 6% under conservation. The vast majority of Reactome
instances likely contain a shortest hyperpath that is also a min-edge
factory under accumulation due to many reactions having unit stoi-
chiometry. An instance where the shortest acyclic hyperpath is lon-
ger than the min-edge factory is discussed later in Section 4.1.

Min-source factories Min-edge factories tend to also minimize their
number of sources. Table 3 shows the fraction of instances where
the min-edge and min-source factory have the same number of sour-
ces or hyperedges. The number of sources agrees for both factories
under conservation on most instances, possibly due to there being
few feasible factories per instance. Even under accumulation, their
median number of sources is close.

On the other hand, min-source factories tend to use much more
than the minimum number of reactions. Table 3 shows the number
of hyperedges in the two types of factories under accumulation dif-
fers significantly on nearly all instances. Min-source factories can
contain useless cycles that do not contribute to target production, as
later illustrated in Section 4.1.

The merits of min-edge factories are also shown when consider-
ing bicriteria optimization (as mentioned earlier in Section 2.2). We
computed the min-edge factory with fewest sources, the min-source
factory with fewest hyperedges, and compared them to standard

min-edge and min-source factories. On over 95% of Reactome
instances, the number of hyperedges differs between the standard
min-source factory and its bicriteria version having fewest hyper-
edges (with a median difference of 1 hyperedge, and a maximum dif-
ference of 37). In contrast, on less than 1% of Reactome instances,
the number of sources differs between the standard min-edge factory
and its bicriteria version having fewest sources (with a median dif-
ference of 3 sources, and a maximum difference of 10). In brief,
min-edge factories almost always minimize their number of sources
as well—while the opposite is not true for min-source factories.

3.3 Effects of negative regulation on optimal factories
For a given instance, the hyperedges in the optimal min-edge factory
without negative regulation (zeroth-order factories) often differ
from the hyperedges in the optimal min-edge factory satisfying
higher-order negative regulation (first- and second-order factories).
In fact for many Reactome instances, all feasible factories violate
higher-order negative regulation.

Table 4 gives the number of Reactome instances with a feasible
factory for each order of negative regulation, along with statistics on
instances with longer min-edge factories under negative regulation.
(We note that Reactome is the only dataset with negative regula-
tion information.) Under accumulation, 22 instances have no first-
order factories, while for 83 instances all optimal zeroth-order facto-
ries violate first-order negative regulation. This clearly demonstrates
the importance of directly considering negative regulation in path-
way inference.

Even more instances have zeroth-order factories that violate
second-order negative regulation. Under accumulation, a further
262 instances have no second-order factories, while for 11 instances
all optimal first-order factories violate second-order negative regula-
tion. In addition, for these 11 instances, the optimal second-order
factory is often much longer than the optimal first-order factory.

Table 3. Solution structure

C_Rud S_Mue B_Aph B_Cic S_Cer H_Sap E_Col Reactome

acc. cons. acc. cons. acc. cons. acc. cons. acc. cons. acc. cons. acc. cons. acc. cons.

Sources same number (min-edge,

min-source)

41% 100% 35% 100% 50% 100% 10% 100% 51% 51% 65% 64% 14% 100% 23% 99%

Hyperedges same number (min-edge,

min-source)

33% 100% 0% 0% 0% 33% 3% 0% 0% 50% 0% 59% 2% 0% 0% 96%

Hyperedges same number (min-edge,

hyperpath)

100% 0% 100% 100% 100% 100% 100% 100% 93% 66% 92% 88% 100% 100% 98% 94%

med. max med. max med. max med. max med. max med. max med. max med. max

Sources (min-edge, accumulation) 2 6 3 7 3 6 3 7 1 7 1 4 4 7 2 43

Sources (min-source, accumulation) 2 5 1 4 2 4 2 4 1 4 1 3 1 2 2 40

Sources (min-edge, conservation) 1 1 1 1 1 1 2 2 1 4 1 3 1 1 2 20

Sources (min-source, conservation) 1 1 1 1 1 1 2 2 1 4 1 2 1 1 2 20

Hyperedges (min-edge, accumulation) 4 7 6 22 5 15 4 30 3 48 3 44 13 90 2 37

Hyperedges (min-source, accumulation) 5 10 27 40 10 27 10 62 12 61 9 108 163 205 3 39

Hyperedges (min-edge, conservation) 4 5 3 3 3 7 7 14 3 48 3 44 1 1 1 24

Hyperedges (min-source, conservation) 4 5 6 6 8 8 10 34 5 54 3 99 100 100 1 25

Hyperedges (hyperpath) 1 1 1 1 1 2 2 2 3 48 3 44 1 1 1 16

Table 2. Target instance feasibility

C_Rud S_Mue B_Aph B_Cic S_Cer H_Sap E_Col Reactome

Target instances 44 48 51 67 227 344 73 5066

Instances with factory under accumulation 12 23 34 39 169 320 58 3955

Instances with factory under conservation 2 1 3 13 160 265 1 1649

Instances with acyclic hyperpath 1 2 2 1 165 312 1 2432
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We now give two concrete biological examples that highlight the
importance of discrete negative regulation in pathway inference. The
first example is for the instance with the target “protectin conjugate
in tissue regeneration 3” (PCTR3) from Reactome. Figure 1 illus-
trates the optimal zeroth- and first-order min-edge factories for this
instance, where only a portion of these factories is explicitly drawn
due to their complexity. The solid black hyperedges are common to
both the zeroth- and first-order factories. The hyperedges in red with
a longer dash are unique to the zeroth-order factory, while the hyper-
edges in green with a shorter dash are unique to the first-order fac-
tory. Several hyperedges have been replaced with ellipses to simplify
the figure. Both factories contain hyperedges from the Reactome path-
way “Biosynthesis of DHA-derived sulfido conjugates”, representing
reactions that create PCTR3, a sulfido conjugate. Docosahexaenoic
acid (DHA)—which appears in both factories—is an omega-3 fatty
acid often found in fish. DHA is transformed through a cascade of
reactions to a group of resolvins and protectins in response to inflam-
mation (Molfino et al., 2017). The zeroth-order factory has 19 hyper-
edges, and contains the hyperedge drawn with a red dash, which is a
negative feedback loop where reduced glutathione (GSH) negatively
regulates the hyperedge that produces it. The optimal first-order fac-
tory cannot use this hyperedge, and instead requires 21 hyperedges,

which replace this hyperedge by a series of reactions that culminate in
the green hyperedge shown. The optimal second-order factory also
has 21 hyperedges, but now replaces an invalid upstream hyperedge
whose negative regulator is reachable from the sources.

Our second example highlights how much the reactions utilized
for a given instance can differ between the optimal zeroth- and first-
order factories. For this example, we chose the instance from
Reactome with Exoin E4 as a target, as it has the largest variation
in number of hyperedges between the optimal zeroth- and first-order
factories, with 21 and 25 hyperedges respectively. We first enumer-
ated all optimal zeroth- and first-order factories. We then compared
the hyperedges in each zeroth-order factory to each first-order fac-
tory, measuring their symmetric difference and percent overlap
(namely the size of their intersection divided by their average
length). The minimum symmetric difference was 10 (and must be at
least 4 due to the length difference between factories), with a max-
imum of 26. The percent overlap between pairs ranged from 43% to
78% (so at most 78% of the hyperedges in every optimal zeroth-
order factory appeared in any optimal first-order factory).

As this example demonstrates, optimal factories that ignore
negative regulation can differ markedly from optimal factories that
take into account even just first-order negative regulation.

Table 4. Negative regulation feasibility and structure

Reactome

accumulation conservation

0th-order factory instances (min-edge and min-source) 3955 1649

1st-order factory instances (min-edge and min-source) 3933 1640

2nd-order factory instances (min-edge) 3671 1614

Instances where 1st- worse than 0th-order (min-edge) 83 6

Instances where 1st- worse than 0th-order (min-source) 14 0

Instances where 2nd- worse than 1st-order (min-edge) 11 4

median max median max

0th- to 1st-order factory length change 1 4 2 3

0th- to 1st-order factory source change 1 4 0 0

1st- to 2nd-order factory length change 3 6 3 4

Number of 2nd-order iterations 1 554 1 285

Fig. 1. Min-edge factories under zeroth- and first-order negative regulation to the target “protectin conjugate in tissue regeneration 3” (PCTR3) from Reactome. The solid

black hyperedges appear in both the optimal min-edge factory without negative regulation (zeroth-order) and the min-edge factory under first-order negative regulation.

Hyperedges in red with a longer dash are only in the zeroth-order factory, while hyperedges in green with a shorter dash are only in the first-order factory. Some hyperedges

from the sources have been replaced with ellipses to simplify the drawing. The zeroth-order and first-order factories have 19 and 21 hyperedges, respectively. The single hyper-

edge in longer red dash that is shown is internally negatively regulated within the zeroth-order factory, and its role is effectively replaced in the first-order factory by the single

hyperedge in shorter green dash that is shown. The min-edge factory under second-order negative regulation again has 21 hyperedges, but also differs from the first-order fac-

tory by a single hyperedge, due to external negative regulation.
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3.4 Speed of computing optimal factories
Our MILP-based approach to min-edge factories with zeroth- and
first-order negative regulation runs in a matter of seconds, with a me-
dian running time over all instances from all datasets of 3 seconds,
and a maximum of 61 seconds. Finding min-source factories with zer-
oth- and first-order negative regulation is also fast, with a maximum
running time of 10 seconds. Finding shortest acyclic hyperpaths is
typically fast as well, but can get expensive: on the larger E_Col and
Reactome datasets, its median running time is 10 seconds, while the
maximum time is 5335 seconds, or nearly 15 hours.

Finding min-edge factories with second-order negative regulation is
usually remarkably fast as well, with a median running time of
3.5 seconds. On instances, though, where no factory satisfies second-
order negative regulation, it can end up generating all first-order facto-
ries that produce the target in order of increasing length, before finally
failing. While the MILP is fast on the majority of these instances, there
are twelve such instances that run longer than 6 hours, with a max-
imum running time of 70 hours.

4 Discussion

We next discuss two biological examples that compare minimum-
hyperedge factories to minimum-source factories and shortest

acyclic hyperpaths, and then examine the sensitivity of our model to
the value of minimum-flux constant �.

4.1 Comparing models on concrete examples
Figures 2 and 3 contrast the optimal min-edge factory for a given in-
stance with the shortest acyclic hyperpath (Fig. 2) and the optimal
min-source factory (Fig. 3). Hyperedges common to all three path-
way models are drawn in solid black, while hyperedges unique to
the min-edge factory are drawn in a longer red dash, and hyperedges
unique to the shortest hyperpath or min-source factory are drawn in
a shorter green dash. (Some hyperedges common to both the facto-
ries and the hyperpath were removed to simplify the drawings.)

These figures show the metabolism of vitamin A (retinol) in
Reactome pathway “Signaling by retinoic acid”. The pathway cre-
ates all-trans-retinal (atRAL) in the eye before being oxidized by
aldehyde dehydrogenase 1A1 tetramer (ALDH1A1), forming all-
trans-retinoic acid (atRA), which is free to bind with cellular retinoic
acid-binding protein 2 (SUMO-CRABP2). It then moves to the nu-
cleoplasm, where it binds with the retinoic acid receptor complex
(RAR/RXR), and SUMO-CRABP2 disassociates, creating the target
atRA/RAR/RXR complex.

Figure 2 reveals how hyperpaths can have more restrictive con-
straints than factories. Notice that in the factory, vertex Hþ in the

Fig. 2. Minimum-hyperedge factory and shortest acyclic hyperpath to the atRA/RAR/RXR complex in Reactome, including positive but not negative regulation. Hyperedges

in solid black appear in both the minimum-hyperedge factory and the shortest acyclic hyperpath. Hyperedges with a shorter green dash appear only in the shortest acyclic

hyperpath, while hyperedges with a longer red dash only appear in the minimum-hyperedge factory. To simplify the drawing, two hyperedges creating the RAR/RXR/SUMO-

CRABP2/atRA complex have been omitted.

Fig. 3. Minimum-hyperedge factory and minimum-source factory to the atRA/RAR/RXR complex in Reactome, including positive but not negative regulation. Hyperedges in

solid black appear in both the minimum-hyperedge and minimum-source factory. Hyperedges with a shorter green dash appear only in the minimum-source factory, while

hyperedges with a longer red dash only appear in the minimum-hyperedge factory. To simplify the drawing, two hyperedges creating the RAR/RXR/SUMO-CRABP2/atRA

complex have been omitted.
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red-dashed hyperedge’s tail has not been reached by prior hyper-
edges. The shortest acyclic hyperpath cannot use this red hyperedge
due to strict ordering requirements, and hence requires an additional

hyperedge in its pathway.
Figure 3 illustrates how min-source factories can contain useless

cycles that do not contribute to creating the target, such as the self-
loop between the six-member complex and hyaluronic acid (HA).

This extra cycle does not affect the active sources and so was
included, as the min-source criterion does not attempt to minimize
the number of hyperedges. The min-source factory also uses extra

hyperedges (unrelated to the retinol pathway) to create NADþ, in
order to minimize the number of active sources.

4.2 Sensitivity to the minimum-flux constant
The value of minimum-flux constant � in our min-edge factory
MILP is crucial. If � is too large, factories that produce the target

with non-zero flux smaller than � are excluded as infeasible, even
though they are valid solutions. If � is too small, numerical errors
can occur internally within the MILP solver, leading to outputs that

are not actually valid factories.
We experimentally demonstrate the sensitivity to � on a

Reactome instance where we ran the min-edge MILP with three dif-
ferent values of �: specifically 10�2; 10�4, and 10�6. Even though

this smallest value for � is larger than the smallest real-value allowed
by CPLEX (our MILP solver), the solution contained no active
edges, and so was clearly not a valid factory. Factories for the two

larger �-values differed in their number of hyperedges, indicating the
largest �-value was too big and excluded valid factories. (This shows

the necessity of validating factories output by the MILP.) In general,
an � of 10�4 did not return an invalid factory for any instance—
though it is possible that a smaller � could result in a valid factory

with fewer hyperedges (that was excluded by this greater �).

5 Conclusion

We have introduced the new problem of minimum-hyperedge facto-
ries, established its computational complexity, incorporated for the

first time higher-order effects of negative regulation, computed opti-
mal solutions via mixed-integer linear programming, and demon-
strated the practicality of our approach through comprehensive

experiments on real metabolic networks. Extensive comparisons
with the current pathway models of minimum-source factories and

shortest acyclic hyperpaths reveal structural differences between
their solutions that highlight the value of computing min-edge facto-
ries with discrete negative regulation.

Further research
The minimum-flux constant � is crucial for our model, and an algo-

rithmic approach for computing the largest valid � for a given in-
stance would be useful. Incorporating third-order negative
regulation to model mutual interference between negative regulators

that ultimately inhibit each other would better capture actual nega-
tive regulation in real metabolic networks.
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