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This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO
is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO
is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five
numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a
comparatively small population size and is suitable for solving optimization problems with lower dimensions.

1. Introduction

In recent years, heuristic algorithms have gained popularity
because of their ability to find near-optimal solutions to
problems unsolved by analytical methods within reasonable
computation time due to the multimodality or high dimen-
sionality of their objective functions [1]. Heuristic algorithms
are usually developed to solve a specific problem. There is
also a class of heuristic algorithms which can be used to
solve a large class of problems either directly or with minor
modifications, hence the namemeta-heuristic algorithms [2].

Researchers continue to develop many meta-heuristic
algorithms. Some of the most successful meta-heuristic
algorithms include genetic algorithm (GA) [3], ant colony
optimization [4], particle swarm optimization (PSO) [5], and
artificial bee colony (ABC) [6]. Some of the recently proposed
meta-heuristic algorithms include cuckoo search [7],monkey
search [8], firefly algorithm [9], grenade explosion method
[10], cat swarm optimization [11], and the artificial chemical
reaction optimization algorithm [12]. The majority of these
algorithms are biologically inspired; that is, they mimic
nature for problem solving.

Meta-heuristic algorithms are widely used in different
fields and problems, such as manufacturing [13], services
[14], scheduling [15], transportation [16], health [17], sports

[18], geology [19], and astronomy [20]. A single meta-
heuristic algorithm that can solve all optimization problems
of different types and structures does not exist, and, thus,
newmeta-heuristic optimization algorithms are continuously
developed [21].

This paper introduces a novel biologically inspired meta-
heuristic algorithm called seven-spot ladybird optimization
(SLO). SLO is inspired by the foraging behavior of a seven-
spot ladybird. This paper presents the basic concepts and
main steps of the SLO and demonstrates its efficiency. The
performance of the SLO is compared with some popular
meta-heuristic algorithms, such as GA, PSO, and ABC, by
using five different dimensional classical benchmark func-
tions, as given in [6, 22]. The simulated results show that
the SLO has the ability to get out of a local minimum
and is efficient for some multivariable, multimodal function
optimizations.

In general, all the metaheuristic algorithms have some-
thing in common in the sense that they are population-based
search methods. These methods move from a set of points
(population) to another set of points in a single iteration with
likely improvement using a combination of deterministic or
probabilistic rules. The most remarkable difference of these
metaheuristic algorithms lies in the updating rules. The GA
is inspired by the principles of genetics and evolution and
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Figure 1: Seven-spot ladybird.

mimics the reproduction behavior observed in biological
populations.TheGA employs the principal of “survival of the
fittest” in its search process to select and generate individuals
that are adapted to their environment. In PSO, instead of
using genetic operators, each particle adjusts its “flying”
according to its own flying experience and its companions’
flying experience [23]. ABC uses minimal model that mimics
the foraging behavior of bees comprising of employed bees,
onlooker bees and scouts [24]. The bees aim at discovering
places of food sources with high amount of nectar (good
fitness values). Differently, in our paper, SLO attempts to
simulate the foraging behavior of a seven-spot ladybird
which is rarely researched in the field of metaheuristic
algorithm. The SLO algorithm consists of three essential
components: dividing patches, searching food, and dispersal.
Dividing patches increases the search efficiency and dispersal
progressively reduces the search space. The search strategy
in our algorithm is classified into extensive search and
intensive search. Extensive search overcomes the weakness of
local search and intensive search increases the possibility of
achieving latent best solution. All the ideas are inspired by
recent discoveries on the foraging behavior of a seven-spot
ladybird which are quite different from other metaheuristic
algorithms.

The rest of this paper is organized as follows. Section 2
presents the foraging behavior of the seven-spot ladybird.
Section 3 describes the SLO and the steps in detail. Section 4
discusses the experiments and the results. Section 5 draws the
conclusions.

2. Seven-Spot Ladybird Foraging Behaviors

The seven-spot ladybird (Figure 1), Coccinella septempunc-
tata, is a common, easily recognizable insect that has attracted
a considerable amount of interest from professional entomol-
ogists.

Recent studies have shown that seven-spot ladybirds are
more social than we believe them to be [25–28]. Seven-
spot ladybirds use different kinds of pheromones at different
stages of its life history, such as eggs, larvae, pupa, and adult
stages (Figure 2). Some chemical ecologies of the seven-spot
ladybirds, with special attention to semiochemicals involved

in social communication and foraging behaviors, have been
reviewed in [29].

Seven-spot ladybirds are effective predators of aphids and
other homopteran pests, and, thus, their foraging behaviors
have been extensively studied [30–35]. Some scholars clas-
sified the environmental levels of seven-spot ladybirds into
prey, patches, and habitats (Figure 3) [33–35], providing a
framework for discussing the foraging behaviors of seven-
spot ladybirds.

In Figure 3, movement between prey within aggregates
of aphids is referred to as intensive search which is slow
and sinuous. Movement between aggregates within a patch
is referred to as extensive search which is relatively linear
and fast. Movement between patches is called dispersal and
movement from patches to hibernation is calledmigration.

Seven-spot ladybirds locate their prey via extensive search
and then switch to intensive search after feeding. While
searching for its prey, a seven-spot ladybird holds its antennae
parallel to its searching substratum and its maxillary palpi
perpendicular to the substratum. The ladybird vibrates its
maxillary palpi and turns its head from side to side. The
sideward vibration can increase the areawherein the preymay
be located.

How seven-spot ladybirds decide when to leave a patch
for another, also known as dispersal, remains unclear. Several
authors suggested that beetles decide to leave when the
capture rate falls below a critical value or when the time since
the last aphid was captured exceeds a certain threshold [36–
38].

3. Proposed Seven-Spot Ladybird
Optimization (SLO) Algorithm

This section describes the proposed seven-spot ladybird
optimization (SLO) algorithm, which simulates the foraging
behavior of seven-spot ladybirds to solve multidimensional
and multimodal optimization problems. The main steps of
the SLO are as follows.

Step 1 (dividing patches). Suppose that the search space
(environment) is a𝐷-dimensional space.The 𝑖th dimensional
space is divided into 𝑛

𝑖
subspaces, and the whole dimensional

space is divided into 𝑛 = Π𝑛
𝑖
subspaces (patches).

Step 2 (initializing population). Suppose that each seven-spot
ladybird is treated as a point in a D-dimensional patch. The
𝑖th ladybird is represented as 𝑋

𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝐷
), where

𝑋
𝑖
is a latent solution to the optimized question.
If𝑚 is the number of seven-spot ladybirds initializedwith

random positions in a patch, then the population size of the
seven-spot ladybirds is𝑁,𝑁 = 𝑚 × 𝑛.

Step 3 (calculating fitness). For each particle, evaluate the
optimization fitness in a𝐷-dimensional patch.

Step 4 (choosing the best ladybird). The current fitness
evaluation of each ladybird was compared with the fitness
value of its best historical position (𝑠best). If the current value
is better than the previous one, then set 𝑠best value is equal to
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Figure 2: The life history of the seven-spot ladybird.

the current value, and the 𝑠best position is equal to the current
position.

The current best fitness evaluation of all the ladybirds
in a patch was compared with the fitness value of their
previous best position (𝑙best). If current value is better than
the previous one, then set 𝑙best value equal to the current
value, and the 𝑙best position equal to the current position.

The current best fitness evaluation of all the ladybirds
in the population was compared with the fitness value of
their previous best position (𝑔best). If the current value is
better than the previous one, then set 𝑔best value equal to
the current value, and the 𝑔best position equal to the current
position.

Step 5 (dispersal). In the SLO, if a position does not improve
in a predetermined number of cycles, then a new position
is produced in the patch where 𝑔best exists, replacing the
abandoned position. The new position is produced near the

𝑔best to share the information of the best ladybird in the
whole particle. The value of the predetermined number of
cycles (limit) is an important control parameter in the SLO.

If the abandoned position is 𝑋
𝑖
and 𝑗 ∈ {1, 2, . . . , 𝐷},

then the seven-spot ladybird discovers a new position 𝑋
𝑖
as

follows:
𝑥


𝑖,𝑗
= 𝑥
𝑔best,𝑗 + 𝜙𝑤, (1)

where𝑤 is the neighborhood space of𝑔best and𝜙 is a random
number between [−1, 1].

Step 6 (updating positions). The position of a ladybird is
updated associated with its previous movement. If a ladybird
has done extensive search, then the position of the ladybird is
changed as follows:

𝑉
𝑖 (𝑡) = 𝑐 ∗ 𝑟1 ∗ (𝑆𝑖 (𝑡) − 𝑋𝑖 (𝑡)) + 𝜀1, (2)

𝑋
𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑉𝑖 (𝑡) ,

𝑉𝑖 (𝑡)
 ≤ 𝑉max. (3)



4 The Scientific World Journal

Migration

Migration

Dispersal

Dispersal
Dispersal

Intensive

search

search

Extensive

Prey

Prey

aggregate

Patch Patch

Patch

(breeding site) (hibernation site)

Figure 3: Diagram illustrating how a ladybird might perceive its
environment and forage for resources.

After intensive search, a ladybird switches to extensive search.
The position is updated according to the following equations:

𝑉
𝑖 (𝑡) = 𝑐 ∗ 𝑟2 ∗ (𝐿 𝑖 (𝑡) − 𝑋𝑖 (𝑡)) + 𝜀2, (4)

𝑋
𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑉𝑖 (𝑡) ,

𝑉𝑖 (𝑡)
 ≤ 𝑉max. (5)

In (2) and (4), 𝑟
1
and 𝑟

2
are two random numbers

uniformly distributed from0 to 1 and the positive constant 𝑐 is
used for adjusting the search step and search direction in each
iteration. In (3) and (5), the velocities of the ladybirds in each
dimension are limited to the maximum velocity 𝑉max, which
decides the search precision of the ladybirds in a solution
space. If 𝑉max is too high, then the ladybirds will possibly fly
over the optimal solution.However, if the𝑉max is too low, then
the ladybirds will fall into the local search space and have no
method to carry on with the global search. Typically, 𝑉max is
set as follows:

𝑉max = 0.2 (ub − lb) , (6)

where ub and lb are the upper and lower bounds of each
patch, respectively. Equation (6) came from [39]. We adopt
it here to clamp the particles’ velocities on each dimension.

From equations above, we can see that the velocity
updating rule is composed of three parts. The first part,
known as intensive search, is inspired by the slow and sinuous

movements of ladybirds.The second part, known as extensive
search, is derived from the relatively linear and fastmovement
behavior of ladybirds. The third part imitates the sideward
vibration of ladybirds to increase the search area where the
potential solution may exist. The parameter 𝜀

1
and 𝜀

2
are

usually set as relatively small random numbers.

Step 7 (inspecting termination condition). If the termination
condition is satisfied, that is, the SLO has achieved the
maximum iteration number, then the SLO is terminated;
otherwise, it returns to Step 3.

4. Experiments

4.1. Benchmark Functions. In the field of heuristic computa-
tion, it is common to compare different algorithms using a set
of test functions. However, the effectiveness of an algorithm
against another algorithmcannot bemeasured by the number
of problems that it solves better [40]. In this way, we have
made a previous study of the functions to be optimized for
constructing a test set with fewer functions and a better
selection. We used five classical benchmark functions to
compare the performance of the proposed SLO with those of
GA, PSO, and ABC. This set is adequate to include different
kinds of problems such as unimodal, multimodal, regular,
irregular, separable, nonseparable, and multidimensional.
Mathematical descriptions of the benchmark functions were
obtained from [6, 22].

The first function is the Griewank functionwhose value is
0 at its global minimum (0, 0, . . . , 0) (7). Initialization range
for the function is [−600, 600]. The Griewank function has
a product term that introduces interdependence among its
variables.The aim is to overcome the failure of the techniques
that optimize each variable independently. The optima of
the Griewank function are regularly distributed. Since the
number of local optima increases with the dimensionality,
this function is strongly multimodal. The multimodality
disappears for sufficiently high dimensionalities (𝑛 > 30) and
makes the problem unimodal. Consider

𝑓
1 (�⃗�) =

1

4000
(

𝐷

∑

𝑡=1

(𝑥
2

𝑖
)) − (

𝐷

∏

𝑡=1

cos(
𝑥
𝑖

√𝑖

)) + 1. (7)

The second function is theRastrigin functionwhose value
is 0 at its globalminimum (0, 0, . . . , 0) (8). Initialization range
for the function is [−15, 15]. The Rastrigin function is based
on the Sphere function with the addition of cosine modula-
tion to produce many local minima, making it multimodal.
The locations of the minima are regularly distributed. The
difficult part about finding optimal solutions to the Rastrigin
function is that an optimization algorithm is easily trapped
in a local optimum on its way towards the global optimum.
Consider

𝑓
2 (�⃗�) =

𝐷

∑

𝑡=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) . (8)

The third function is the Rosenbrock function whose
value is 0 at its global minimum (1, 1, . . . , 1) (9). Initialization
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range for the function is [−15, 15]. The global optimum is
inside a long, narrow, parabolic-shaped flat valley. Since it is
difficult to converge to the global optimum, the variables are
strongly dependent, and the gradients generally do not point
towards the optimum, this problem is repeatedly used to test
the performance of the optimization algorithms. Consider

𝑓
3 (�⃗�) =

𝐷

∑

𝑡=1

100(𝑥
2

𝑖
− 𝑥
𝑖+1
)
2

+ (1 − 𝑥
𝑖
)
2
. (9)

The fourth function is the Ackley function whose value
is 0 at its global minimum (0, 0, . . . , 0) (10). Initialization
range for the function is [−32.768, 32.768]. The Ackley
function has an exponential term that covers its surface with
numerous local minima, making its complexity moderated.
An algorithm that only uses the gradient steepest descent will
be trapped in the local optima, but any search strategy that
analyzes a wider region will be able to cross the valley among
the optima and achieve better results. A search strategy
must combine the exploratory and exploitative components
efficiently to obtain good results for the Ackley function.
Consider

𝑓
4 (�⃗�) = 20 + 𝑒 − 20𝑒

(−0.2√(1/𝐷)∑
𝐷

𝑡=1
𝑥
2

𝑖
)

− 𝑒
(1/𝐷)∑

𝐷

𝑡=1
cos(2𝜋𝑥𝑖).

(10)

The fifth function is the Schwefel function whose value is
0 at its global minimum (420.9867, 420.9867, . . . , 420.9867)
(11). Initialization range for the function is [−500, 500]. The
surface of the Schwefel function is composed of a large
number of peaks and valleys. The Schwefel function has a
second best minimum far from the global minimum where
many search algorithms are trapped. Moreover, the global
minimum is near the bounds of the domain. Consider

𝑓
5 (�⃗�) = 𝐷 ∗ 418.9829 +

𝐷

∑

𝑡=1

− 𝑥
𝑖
sin(√𝑥𝑖

) .
(11)

4.2. Settings for Algorithms. The common control parameters
for the algorithms include population size and number of
maximum generation. In the experiments, maximum gener-
ations were 750, 1000, and 1500 for Dimensions 5, 10, and 30,
respectively, and the population size was 50. Other control
parameters of the algorithms and the schemes used in [6],
including the control parameter values employed for GA,
PSO, and ABC are presented below.

4.2.1. GA Settings. The settings for the used GA scheme
presented in [6] are as follows: single point uniform crossover
with rate of 0.95, random selection mechanism, Gaussian
mutation with rate of 0.1, and linear ranking fitness function.
A child chromosome is added to the population by using the
child production scheme.
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Figure 4: Convergence characteristics of the Griewank function
with𝐷 = 5.
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Figure 5: Convergence characteristics of the Griewank function
with𝐷 = 10.

4.2.2. PSO Settings. PSO equations can be expressed as
follows:

V⃗ (𝑡 + 1) = 𝑤V⃗ (𝑡) + 𝜙1rand (0, 1) (�⃗� (𝑡) − �⃗� (𝑡))

+ 𝜙
2
rand (0, 1) ( ⃗𝑔 (𝑡) − �⃗� (𝑡)) ,

�⃗� (𝑡 + 1) = �⃗� (𝑡) + V⃗ (𝑡 + 1) ,

(12)

where 𝑤 is the additional inertia weight that varies from 0.9
to 0.4 linearly with the iterations.The learning factors, 𝜙

1
and

𝜙
2
, are set to 2.The upper and lower bounds for V, (Vmin, Vmax)

are set as the maximum upper and lower bounds of 𝑥; that is,
(Vmin, Vmax) = (𝑥min, 𝑥max). If the sum of accelerations would
cause the velocity on that dimension V(𝑡 + 1) to exceed Vmin
or Vmax, then the velocity on that dimension V(𝑡 + 1) will be
limited to Vmin or Vmax, respectively [6].
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Table 1: Results of the Griewank function.

Algorithm Dimension Mean Best SD

SLO
5 1.2870𝐸 − 01 7.4000𝐸 − 03 9.1200𝐸 − 02

10 3.1000𝐸 − 01 2.4600𝐸 − 02 5.2890𝐸 − 01

30 1.4705𝐸 + 00 6.2000𝐸 − 03 1.7894𝐸 + 00

GA
5 1.2240𝐸 + 01 1.2240𝐸 + 01 1.2267𝐸 − 10

10 1.4568𝐸 + 01 6.5624𝐸 + 00 4.7149𝐸 + 00

30 1.4100𝐸 − 02 1.9119𝐸 − 10 2.4700𝐸 − 02

PSO
5 2.3700𝐸 − 02 7.4000𝐸 − 03 1.2400𝐸 − 02

10 7.6900𝐸 − 02 2.7000𝐸 − 02 3.3600𝐸 − 02

30 1.3200𝐸 − 02 1.1102𝐸 − 15 1.4900𝐸 − 02

ABC
5 6.8808𝐸 − 04 0.0000𝐸 + 00 2.1000𝐸 − 03

10 2.8000𝐸 − 03 1.1102𝐸 − 16 4.6000𝐸 − 03

30 6.3515𝐸 − 04 0.0000𝐸 + 00 3.5000𝐸 − 03

Table 2: Results of the Rastrigin function.

Algorithm Dimension Mean Best SD

SLO
5 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

10 2.2781𝐸 + 01 9.9760𝐸 − 01 1.4721𝐸 + 01

30 3.6123𝐸 + 02 2.3147𝐸 + 02 5.9041𝐸 + 01

GA
5 6.3010𝐸 − 01 2.0653𝐸 − 09 6.1180𝐸 − 01

10 7.9600𝐸 − 01 3.3258𝐸 − 08 8.4260𝐸 − 01

30 3.0844𝐸 + 00 2.5108𝐸 − 06 2.3711𝐸 + 00

PSO
5 6.6300𝐸 − 02 0.0000𝐸 + 00 2.5240𝐸 − 01

10 1.7267𝐸 + 00 0.0000𝐸 + 00 1.1662𝐸 + 00

30 2.9001𝐸 + 01 1.7927𝐸 + 01 8.5603𝐸 + 00

ABC
5 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

10 0.0000𝐸 + 00 0.0000𝐸 + 00 0.0000𝐸 + 00

30 1.0658𝐸 − 15 0.0000𝐸 + 00 4.2397𝐸 − 15

Table 3: Results of the Rosenbrock function.

Algorithm Dimension Mean Best SD

SLO
5 1.3325𝐸 + 00 1.6163𝐸 − 08 8.7800𝐸 − 01

10 1.6880𝐸 + 01 6.6976𝐸 + 00 2.3646𝐸 + 01

30 1.6123𝐸 + 04 2.5639𝐸 + 03 9.1648𝐸 + 03

GA
5 5.0800𝐸 − 02 9.2000𝐸 − 03 2.0100𝐸 − 02

10 7.0620𝐸 − 01 1.0590𝐸 − 01 5.6060𝐸 − 01

30 2.3368𝐸 + 01 7.5000𝐸 − 02 2.2251𝐸 + 01

PSO
5 2.2040𝐸 − 01 3.6080𝐸 − 04 3.9500𝐸 − 01

10 2.6053𝐸 + 00 3.9800𝐸 − 02 1.3755𝐸 + 00

30 4.1055𝐸 + 01 1.1177𝐸 + 01 2.7793𝐸 + 01

ABC
5 5.1300𝐸 − 02 4.9000𝐸 − 03 5.6700𝐸 − 02

10 5.2200𝐸 − 02 1.9000𝐸 − 03 5.1100𝐸 − 02

30 6.0700𝐸 − 02 3.6401𝐸 − 04 7.5300𝐸 − 02

4.2.3. ABC Settings. The control parameters of the ABC
algorithm are as follows: the maximum number of cycles is
equal to the maximum number of generation and the colony
size is equal to the population size, that is, 50, as presented in
[6]. The percentage of onlooker bees was 50% of the colony,
the employed bees were 50% of the colony, and one bee was
selected as the scout bee.The increase in the number of scouts

encourages the exploration because the increase in onlookers
for a food source increases exploitation.

4.2.4. SLO Settings. In SLO, each dimension is divided into
two equal parts, and thus, 2𝐷 patches are generated. In each
patch, the initial population of ladybirds is set to 20. The
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Table 4: Results of the Ackley function.

Algorithm Dimension Mean Best SD

SLO
5 −8.8818𝐸 − 16 −8.8818𝐸 − 16 0.0000𝐸 + 00

10 9.3400𝐸 − 02 2.6645𝐸 − 15 3.6120𝐸 − 01

30 9.2670𝐸 − 01 6.2172𝐸 − 15 2.3272𝐸 + 00

GA
5 1.9147𝐸 − 05 8.7429𝐸 − 07 1.4740𝐸 − 05

10 2.8850𝐸 − 05 4.1240𝐸 − 06 1.2182𝐸 − 05

30 7.6502𝐸 − 05 5.3960𝐸 − 05 1.2228𝐸 − 05

PSO
5 2.0724𝐸 − 15 −8.8818𝐸 − 16 1.3467𝐸 − 15

10 3.6119𝐸 − 15 2.6645𝐸 − 15 1.5979𝐸 − 15

30 1.7064𝐸 − 08 1.5857𝐸 − 09 2.1073𝐸 − 08

ABC
5 2.6645𝐸 − 15 2.6645𝐸 − 15 0.0000𝐸 + 00

10 6.9278𝐸 − 15 2.6645𝐸 − 15 2.1681𝐸 − 15

30 4.4154𝐸 − 13 1.6964𝐸 − 13 3.0035𝐸 − 13

Table 5: Results of the Schwefel function.

Algorithm Dimension Mean Best SD

SLO
5 3.2505𝐸 + 02 6.3638𝐸 − 05 1.7285𝐸 + 02

10 1.2493𝐸 + 03 7.5042𝐸 + 02 2.7913𝐸 + 02

30 5.8700𝐸 + 03 4.7145𝐸 + 03 7.6059𝐸 + 02

GA
5 2.0752𝐸 + 03 2.0752𝐸 + 03 5.2257𝐸 − 11

10 4.1504𝐸 + 03 4.1504𝐸 + 03 9.4875𝐸 − 11

30 1.2451𝐸 + 04 1.2451𝐸 + 04 7.3221𝐸 − 10

PSO
5 2.9610𝐸 + 02 6.3638𝐸 − 05 1.3104𝐸 + 02

10 5.6719𝐸 + 02 2.3688𝐸 + 02 1.6709𝐸 + 02

30 2.8564𝐸 + 03 1.5989𝐸 + 03 4.0442𝐸 + 02

ABC
5 6.3638𝐸 − 05 6.3638𝐸 − 05 1.9653𝐸 − 14

10 1.2728𝐸 − 04 1.2728𝐸 − 04 5.2425𝐸 − 14

30 3.1000𝐸 − 03 3.8183𝐸 − 04 1.4200𝐸 − 02
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Figure 6: Convergence characteristics of the Griewank function
with𝐷 = 30.

parameter limit is 100 and 𝑤 is 1; that is, after 100 cycles of
search, if a position in a patch cannot be improved, then it
will be abandoned and a new position will be produced in
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Figure 7:Convergence characteristics of theRastrigin functionwith
𝐷 = 5.

the neighborhood of 𝑔best. The parameter 𝑐 in (2) and (4)
decreases linearly from 10 to 2. The sideward vibration 𝜀

1
is

Rand ∗ 10𝑒 − 4 and 𝜀
2
is Rand ∗ 10𝑒 − 8.
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Figure 8: Convergence characteristics of the Rastrigin function
with𝐷 = 10.
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Figure 9: Convergence characteristics of the Rastrigin function
with𝐷 = 30.
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Figure 10: Convergence characteristics of the Rosenbrock function
with𝐷 = 5.

1.5E + 06

1.0E + 06

5.0E + 05

0.0E + 00

Iterations
200 400Fi

tn
es

s o
f R

os
en

br
oc

k 
fu

nc
tio

n
(
D

=
1
0
)

600

ABC
GA

PSO
SLO

Figure 11: Convergence characteristics of the Rosenbrock function
with𝐷 = 10.
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Figure 12: Convergence characteristics of the Rosenbrock function
with𝐷 = 30.
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Figure 13: Convergence characteristics of the Ackley function with
𝐷 = 5.
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Figure 14: Convergence characteristics of the Ackley function with
𝐷 = 10.
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Figure 15: Convergence characteristics of the Ackley function with
𝐷 = 30.

4.3. Results and Discussion. In this paper, all the experiments
were repeated 30 times with different random seeds.The best
and mean function values of the solutions found using the
algorithms for different dimensions were recorded. Tables 1,
2, 3, 4, and 5 present the mean, best, and standard deviations
of the function values obtained using SLO, GA, PSO, and
ABC with 𝐷 = 5, 𝐷 = 10 and 𝐷 = 30. Figures 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18 show the convergence
characteristics in terms of the fitness value of each algorithm
for each test function.

According to the best function values obtained using
the different algorithms with 𝐷 = 5, the SLO can find
the global optimization solution with values close to the
theoretical solution and has the same search ability as PSO.
Many literatures have pointed out that larger population size
and large number of generations increase the likelihood of
obtaining a global optimum solution. Thus, the performance
of PSO with a swarm size of 50 is better than that with a
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Figure 16: Convergence characteristics of the Schwefel function
with𝐷 = 5.

200 400 600 800 1000

Iterations

Fi
tn

es
s o

f S
ch

w
ef

el
 fu

nc
tio

n
(
D

=
1
0
) 4500

4000

3500

3000

2500

2000

1500

1000

500

0

ABC
GA

PSO
SLO

Figure 17: Convergence characteristics of the Schwefel function
with𝐷 = 10.

swarm size of 20. According to the experiments in our paper,
SLO with a small population of 20 was able to find the global
optimization solution with values close to the theoretical
solution. This indicates the proposed SLO algorithm has the
ability to find the best solution with a comparatively small
population size. Based on themean results of all experiments,
the proposed SLO has better performance than GA for
Griewank function, Ackley function, and Schwefel function.
However, when dimension is 30, the result of SLO is no better
than that of PSO and ABC. Comparing the convergence
graphs, SLOconverged faster andperformedbetter compared
with GA.

From the results, we can see that the SLO does not obtain
better result alongwith the growing dimensions. Considering
theNoFree LunchTheorem [41], if we compare two searching
algorithms with all possible functions, the performance of
any two algorithms will be, on average, the same. As a result,
when an algorithm is evaluated, we must look for the kind
of problems where its performance is good, in order to
characterize the type of problems for which the algorithm is
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Figure 18: Convergence characteristics of the Schwefel function
with𝐷 = 30.

suitable [42]. In this paper, the proposed SLO is suitable for
solving optimization problems with lower dimensions.

5. Conclusion

This paper investigated the foraging behaviors of seven-spot
ladybirds and proposed a novel biologically inspired meta-
heuristic algorithm called SLO. The SLO, GA, PSO, and
ABC algorithms were tested on five numerical benchmark
functions with multimodality to validate the performance of
SLO. The simulated results show that SLO has the ability to
find the best solution and is suitable for solving optimization
problemswith lower dimensions. In this paper, theABC algo-
rithmoutperformed all other algorithms, but according to the
No Free LunchTheorem [41], “any elevated performance over
one class of problems is offset by performance over another
class.” Future studies will focus on improving the SLO.

Acknowledgments

The authors are grateful to the editor and the anonymous
referees for their insightful and constructive comments and
suggestions, which have been very helpful for improving this
paper. This research was supported by the National Natural
Science Foundation of China (Grant no. 51375389) and
the National High Technology Research and Development
Program of China (863 Program) no. 2011AA09A104.

References

[1] D. T. Pham and D. Karaboga, Intelligent Optimisation Tech-
niques, Springer, New York, NY, USA, 2000.

[2] F. Glover and G. A. Kochenberger,Handbook of Metaheuristics,
Kluwer Academic, Boston, Mass, USA, 2003.

[3] J. H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Lansing, Mich, USA, 1975.

[4] M.Dorigo, V.Maniezzo, andA. Colorni, “Ant system: optimiza-
tion by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics B, vol. 26, no. 1, pp. 29–41, 1996.

[5] R. C. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium onMicroMachine and Human Science, pp. 39–43, Nagoya,
Japan, October 1995.

[6] D. Karaboga and B. Basturk, “A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony
(ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3,
pp. 459–471, 2007.

[7] X. S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in
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