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Novel mobility index tracks 
COVID‑19 transmission 
following stay‑at‑home orders
Peter Hyunwuk Her1,2,8, Sahar Saeed3,4,8, Khai Hoan Tram5 & Sahir R Bhatnagar6,7*

Considering the emergence of SARS-CoV-2 variants and low vaccine access and uptake, minimizing 
human interactions remains an effective strategy to mitigate the spread of SARS-CoV-2. Using a 
functional principal component analysis, we created a multidimensional mobility index (MI) using 
six metrics compiled by SafeGraph from all counties in Illinois, Ohio, Michigan and Indiana between 
January 1 to December 8, 2020. Changes in mobility were defined as a time-updated 7-day rolling 
average. Associations between our MI and COVID-19 cases were estimated using a quasi-Poisson 
hierarchical generalized additive model adjusted for population density and the COVID-19 Community 
Vulnerability Index. Individual mobility metrics varied significantly by counties and by calendar time. 
More than 50% of the variability in the data was explained by the first principal component by each 
state, indicating good dimension reduction. While an individual metric of mobility was not associated 
with surges of COVID-19, our MI was independently associated with COVID-19 cases in all four states 
given varying time-lags. Following the expiration of stay-at-home orders, a single metric of mobility 
was not sensitive enough to capture the complexity of human interactions. Monitoring mobility can be 
an important public health tool, however, it should be modelled as a multidimensional construct.

While highly effective vaccines are readily available in the United States, uptake remains low1,2 and interventions 
aimed at minimizing human contact continue to be necessary to mitigate the spread of SARS-CoV-23–8. The 
potential of monitoring population-level mobility patterns using geolocated mobile phone data as a public health 
tool has been demonstrated9–12. In March 2020, worldwide adherence to lockdowns was measured using various 
mobility metrics13–18. A modelling study from China showed 20–60% reductions in mobility notably controlled 
the spread of SARS-CoV-219. A study from Canada showed that reductions in mobility strongly predicted future 
control of SARS-CoV-2 growth rates6. However, in the absence of social distancing interventions, the asso-
ciation between changes in population-level mobility and COVID-19 remains unclear11,12. This is particularly 
important now as highly transmissible variants of concerns (Delta, Omicron) have become dominant strains20 
and transmission is likely to occur before clinical cases are diagnosed21. Additionally, relying on case detection 
alone to predict surges in transmission continues to underestimate the pandemic as molecular diagnostic tests 
have become scarce worldwide22. Thus, the need to rapidly identify populations and locations at heightened risk 
of exposure remains necessary.

Population-level mobility, as it pertains to human interaction, is multidimensional. This is particularly true 
when assessing distinct geographical areas that vary by population density and socioeconomic factors across 
the United States23,24. While the measurement of mobility is complex, most studies to date have used single 
metrics such as the percentage of people remaining at home or changes in the distance travelled to summarize 
human interactions and evaluate trends and associations with COVID-199. These single metrics may oversimplify 
mobility associated with human interaction. As social distancing policies loosened from strict “lock down” to 
business-as-normal, the utility of continuously monitoring mobility may require a robust definition that is able 
to capture the complexity of population-level movement25. To this end, the aim of this study was to use advanced 
statistical methods to create a novel index that summarizes mobility as a latent construct using a combination of 
six mobility metrics. We evaluated how our mobility index varied across 365 counties in 4 states as a function of 
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time. Finally, we assessed the validity of our mobility index by evaluating how mobility correlated with COVID-
19 cases from four states in the Midwest compared to a single metric from the time stay-at-home orders expired.

Methods
Data sources.  Mobility metrics.  We used aggregated mobility data publicly available through SafeGraph 
from January 1 to December 8, 2020, via the Social Distancing Metric database. SafeGraph uses a panel of GPS 
pings from anonymous mobile devices from a representative sample of the US Census population to derive 
metrics of mobility. These data includes a range of spatial behaviors from >45 million mobile devices ( ≈ 10% of 
devices in the United States). To enhance privacy, SafeGraph excludes census block group information if fewer 
than two devices visited an establishment in a month.

A priori, we choose six mobility metrics commonly used in the literature as a proxy of human contact and 
that could be attributable to mobility behavior changes as associated with COVID-19 infections. Each metric is 
defined for a given day (t) for a given county (j). The metrics (s) included:

•	 The fraction of devices leaving home in a day
•	 The fraction of devices away from home for 3–6 hours (Part-time work behavior)
•	 The fraction of devices away from home longer than 6 hours (Full-time work behavior)
•	 The median time spent away from home
•	 The median distance traveled from home
•	 The average number of short stops (>3 stops for less than 20 min) (Delivery behaviors).

COVID‑19 cases.  Confirmed COVID-19 cases data were retrieved from the New York Times open-source 
project26. This publicly available dataset aggregates county-level daily counts of diagnosed cases, from Health 
services’ official reports. All methods were carriedout in accordance with the relevant guidelines.

Covariates.  Demographic variables including population size and population density for each county were 
collected from the American Community Survey, data available through the the US Census Bureau. To capture 
the variability of health, social, and economic factors across counties we used the COVID-19 Community Vul-
nerability Index (CCVI)27,28. The CCVI is similar to the Social Vulnerability Index, which was developed by the 
CDC to support disaster management29 except with additional elements specific to the COVID-19 pandemic. 
The index combines 40 indicators of vulnerability from seven themes (socioeconomic status, minority status, 
household composition, epidemiology, healthcare system, high risk environments, population density) to create 
the county and state-level index. The CCVI is recognized by the Centers for Disease Control and Prevention as a 
valuable tool in COVID-19 research and pandemic response planning30,31. Dates for when stay-at-home orders 
were enforced and lifted were obtained from the state-level social distancing policies database32. There were sev-
eral entries for each state due to policy revisions or updates. We used the first entry for each state in this database.

Analysis.  Population.  Given the magnitude of the available data, we reduced the number of states in our 
analysis to four populous and neighboring states in the Midwest. These states had similar numbers of counties 
and socioeconomic indicators. The counties from each state represented varying population densities and rural 
vs. urban areas. Based on the 2020 Presidential elections, Illinois (IL) and Michigan (M) were considered Demo-
cratic states while Ohio (OH) and Indiana (IN) were predominately Republican states. We used every county 
from each of the selected states to avoid any preferential selection.

Mobility index.  We defined mobility as a change of each mobility metric relative to the average of the week 
before (time-updated rolling average). For each county j = 1, . . . , 365 , we index each of the 6 mobility metrics 
s = 1, . . . , 6 by calendar day t = 1, . . . ,mj , where mj is the total number of observed days since re-opening in 
county j. We define the following quantities:

•	 Xj,t,s : the scalar value of mobility metric s measured on day t in county j.
•	 X j,t−8,...,t−1,s = (Xj,t−8,s , . . . ,Xj,t−1,s) ∈ R

8 : the value of mobility metric s measured on days t − 8, . . . , t − 1 , 
i.e., the 7 days prior to day t in county j. This is a vector quantity.

•	 Xj,t−8,...,t−1,s : the average of the X j,t−8,...,t−1,s.

The change from baseline mobility metric s for day t in county j is given by

The use of a rolling average is unique to this analysis. Most studies have used a static relative baseline period 
such as mobility trends between January until February 20209,33,34. This common approach does not account for 
seasonal mobility variability or changes as a result of the pandemic35–37. In contrast, our baseline (rolling average) 
takes into consideration temporal trends that were likely changing with evolving public health policies. To check 
for outliers and appropriateness of the use of the average, we calculated the coefficient of variation (CV) for each 
individual metric in each county (Supplemental Figure S13). We found that there were no strong outliers, as all 
the CV were less than 2.5, suggesting that the average was a valid metric to use. We also considered using the 
median but did not find a significant difference in the results relative to the average.

(1)�Xj,t,s =
Xj,t,s − Xj,t−8,...,t−1,s

Xj,t−8,...,t−1,s
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Since our hypothesis was each metric could be attributed to a common underlying notion of mobility, we used 
an unsupervised machine learning method known as functional principal component analysis (fPCA) to create 
our latent mobility index38. Briefly, PCA is a technique for reducing the dimensionality of multiple variables 
while minimizing information loss. This is done by creating new uncorrelated variables (principal components) 
that successively maximize variance. A “functional” PCA accounts for the longitudinal nature of the data. We 
applied fPCA on �Xj,t,s separately for each county and extracted the first principal component, i.e., the linear 
combination of individual mobility metrics that explained the most variance. We denote this first principal com-
ponent by fPCA j,t , a score summarizing mobility in each county (j) on a given day (t). To enable comparability 
between counties and states, fPCA j,t were scaled as Z-scores, which defined our mobility index (MI) given by:

where fPCAj,t =
1
mj

∑mj

k=1 fPCAj,k and Var(fPCAj,t) are the average and variance of the fPCA scores in county j 
over the observed time period, respectively.

The interpretation of MI is as follows: MI = 0 , on average there was no change in mobility relative the previ-
ous week; MI = 1 on average there was an increase in mobility by one standard deviation relative to the last week 
and: MI = −1 on average there was a decrease in mobility by one standard deviation relative to the last week. 
An animation was created to visualize the relative daily changes of MI by counties.

Association with COVID‑19.  For each county j, let yj,t be the number of confirmed COVID-19 cases on day 
t = 1, . . . ,mj , and qj,t = [MIj,t−0, . . . ,MIj,t−21] denote the vector of lagged occurrences of our mobility index 
(defined in Eq. (2)) with 0 days and 21 days as minimum and maximum lags, respectively. In words, the first 
element of qj,t represents the value of our mobility index on day t, the second element represents the value of 
our mobility index one day prior to t, and so on. From the time stay-at- home orders expired until December 8 
2020, the relationship between daily counts of COVID-19 cases ( yj,t ) and mobility ( qj,t ), accounting for up to 21 
days of lag, was estimated with a quasi-Poisson hierarchical generalized additive model (HGAM)39,40 of the form:

where β0 is the intercept, s(·) are the smooth non-parametric functions of the predictor variables, CCVIj is the 
COVID-19 Community Vulnerability Index and densityj is the population density (people per square kilometer) 
at the county-level. The term s(qj,t) in Eq. (3) captures the potentially non-linear and delayed effect of mobility 
on COVID-19 cases through a cross-basis function41. We used penalized cubic regression splines39 for both 
dimensions, with interior knots placed at Z-scores of −3,−2,−1, 0, 1, 2, 3 for MIj,t , and 7 and 14 days for the 
lag. The penalty is given by �β⊤Sβ , where β are the regression parameters, S is a matrix of known coefficients42, 
and � is the tuning parameter that controls the degree of smoothing and chosen via generalized cross-validation. 
Given the heterogeneity of COVID-19 epidemiology across counties, models included both a state level calendar 
time effect s(timet) using thin plate regression splines43 and a county level calendar time effect sj(timet) using a 
factor-smoother interaction basis40. Population size was used as offset in each model. A separate model was run 
for each of the selected states.

There were two main advantages for using a HGAM to evaluate the association between mobility and COVID-
19 cases: (1) it can quantify the non-linear functional relationships over time where the shape of each function 
varies across counties, and (2) it has the capacity of modelling varying lags44. Based on a recent systematic review 
of 42 studies, the mean incubation period of SARS-CoV-2 was 8 days (95% CI 10.3, 16 days)45. This lag between 
time of infection and becoming symptomatic/testing positive can vary at both the patient-level (the time it takes 
to develop symptoms and get tested) and also at the county-level (the time it takes to perform and report the 
test results). Given this variation, we were able to control for varying lagged exposures (up to 21 days) at the 
county-level. To evaluate the utility of our mobility index, we compared a dose-response relationship between 
mobility and COVID-19 cases and goodness-of-fit-statistics of our latent MI compared to a single measure of 
mobility (the fractions of devices leaving the home). All analyses were performed using R version 4.0.246 along 
with the mgcv39 and dlnm47 packages. Code and data for reproducing all the results, figures and animation in 
this paper is available at https://​github.​com/​sahir​bhatn​agar/​covid​19-​mobil​ity.

Results
Mobility patterns.  Daily mobility changes of three hundred sixty-five counties from the four most popu-
lous states in the Midwest: Illinois, Ohio, Michigan and Indiana were analyzed between January 1 2020 until 
December 8 2020. State-level sociodemographic and economic characteristics were similar across four states 
and are summarized in Table 1.

Figure 1 illustrates the average daily changes of the six mobility metrics between January and December 2020 
of each state (average of all counties) relative to the week before. Overall, each metric had a unique trajectory 
but trends were similar across four states. Based on the average change, the number of devices not at home and 
delivery behavior (more than 3 stops lasting for less than 20 mins) remained stable throughout time. There was 
more variation in the metrics related to full-time work and the time spent away from home. Of the four states, 
mobility changes were more pronounced in Ohio. Across all states, relative to the previous seven days, mobil-
ity increased daily between March and May. Mobility metrics varied considerably by counties ( S1, S2, S3, S4), 
illustrating how aggregating changes at the state-level may mask granular changes at the county-level.

(2)MIj,t =
fPCAj,t − fPCAj,t
√

Var(fPCAj,t)
,

(3)log(E(yj,t)) = β0 + s(qj,t)+ s(timet)+ sj(timet)+ CCVIj + densityj ,

https://github.com/sahirbhatnagar/covid19-mobility
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First fPCA summarizes mobility patterns by counties.  We created a latent index of mobility by coun-
ties as given by Eq. (2) which is derived from the first fPCA. Table 2 provides the median and inter quartile range 
of the proportion of variance explained by the first fPCA across counties in a given state. We saw that more than 
50% of the variance was explained by the first fPCA for a majority of all the counties analyzed, indicating good 
dimension reduction. In Supplemental Figures S5, S6, S7 and S8, we provide the absolute Pearson correlations 
between our MI and each individual metric by county for Illinois, Ohio, Michigan and Indiana, respectively. 
Furthermore, the correlations were particularly strong with full-/part-time work behavior as well as time spent 
away from home. Importantly, there was significant heterogeneity across counties, which would otherwise be 
missed when aggregating mobility metrics at the state level.

Figure 2 compares the changes of the MI from the day stay-at-home policies expired and July 4 (Independence 
Day). Blue shades indicate MI <0 (decrease in mobility) and red shades indicate MI>0 (increase in mobility). 
This graph provides some evidence that our MI is appropriately capturing mobility as we would expect there 

Table 1.   The sociodemographic and economic characteristics of Illinois (IL), Ohio (OH), Michigan (M) and 
Indiana (IN). aCumulative cases per 100,000 population bBased on the 2020 Presidential elections48.

State Order Lift Population Number of counties
Median household 
income

Cumulative cases per 
capita at openinga

Cumulative cases per 
capita until Dec 8 a Party affiliationb

Illinois March 21 April 8 12,741,080 102 $65,030 118 6324 Democratic

Ohio March 24 April 7 11,689,442 88 $56,111 41 4363 Republican

Michigan March 24 April 14 9,995,915 83 $56,697 269 4427 Democratic

Indiana March 25 April 7 6,691,878 92 $55,746 83 5909 Republican

Michigan Indiana
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Figure 1.   The average daily changes from baseline in the six mobility metrics for all counties of each state 
between January and December 2020. The baseline was calculated using a rolling average of the 7 previous days. 
The solid vertical lines represent the date the stay-at-home orders were put in place while the dotted vertical 
lines represent the dates the stay-at-home orders were lifted.

Table 2.   Median (inter quartile range) of the proportion of variance explained by the first fPCA by state. n 
represents the number of counties in each state.

Illinois (n = 102) Ohio (n = 88) Michigan (n = 83) Indiana (n = 92)

0.57 (0.50, 0.63) 0.71 (0.67, 0.74) 0.61 (0.53, 0.69) 0.65 (0.59, 0.70)
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to be more movement on a traditionally busy U.S. holiday compared to earlier on in the pandemic when stay-
at-home orders were lifted. In the Supplemental material, we also provide an animation illustrating the daily 
changes from reopening to December 8, 2020. The animation shows substantial difference in mobility patterns 
across counties that vary from day to day. The most dramatic change over time is increases in mobility from a 
weekday to a weekend.

Association with COVID‑19.  To evaluate the validity of the MI, we compared its association with COVID-
19 cases and a commonly used single metric of mobility (fraction of devices leaving home) (Fig. 3). Notably, the 
single metric was not associated with COVID-19 cases in any state at any lagged time point. However, there was 
a clear dose-response relationship between our MI and COVID-19 cases following a 10–21-day time lag in all 
four states. Across all four states the MI model resulted in significantly better goodness-of-fit statistics compared 
to the single metric (Table 3).

Discussion
The COVID-19 pandemic is now fueled by highly transmissible variants of concern. Understanding the associa-
tion between mobility and disease transmission can help tailor non-pharmaceutical interventions to mitigate 
outbreaks and potentially be used as an early indicator for surges in new infections. We leveraged freely available 
cell phone data with an unsupervised machine learning approach to create a multidimensional index of mobil-
ity. Results from our study suggest following the expiration of stay-at-home physical distancing policies, single 
metrics of mobility were not sensitive enough to capture the complexity of human mobility related to disease 
transmission. Our MI was correlated with COVID-19 cases from all counties in Illinois, Ohio, Michigan and 
Indiana. In comparison, the single metric of mobility (fraction of devices leaving home) was not associated with 
incident cases. Our results also demonstrate the importance of evaluating changes at a granular level as there 
was significant heterogeneity within states.

Tracking mobility has the potential of becoming a powerful tool to determine the impact of public health 
policies25. A growing subfield of COVID-19 research involves the analysis of mobility data and patterns. In the 
last 2 years, a variety of metrics and sources have been used to track mobility49,50. Initial studies evaluated how 
populations adhered to stay-at-home policies by tracking mobility trends11,51. Later it became evident that mobil-
ity may be useful as a public health surveillance tool as studies evaluated the correlation between mobility and 
COVID-19 diagnoses.3,52–59 A study by Lasry et al. used Safegraph mobility data as a proxy for social distancing 
in the metropolitan areas of Seattle, San Francisco, New York City, and New Orleans and found an association 
between changes in mobility (% personal mobile devices leaving home) at the state-level and COVID-19 cases 
during the first COVID-19 wave9. In all four metropolitan areas, the number of mobile devices leaving home 

Michigan − Reopen Michigan − July 04 Indiana − Reopen Indiana − July 04

Illinois − Reopen Illinois − July 04 Ohio − Reopen Ohio − July 04

MI
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2

Figure 2.   MI values for each county of each state on the day the stay-at-home orders expired (reopen) and on 
July 4, 2020. Blue shades indicate a decrease in mobility (MI < 0) and red shades indicate an increase in mobility 
(MI > 0).
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declined from 80% (on Febraury 26 2020) to 42% in New York City, 47% in San Francisco, 52% in Seattle, and 
61% in New Orleans as stay-at-home policies were implemented. However, at this time NPI were more homog-
enous across counties and states. In contrast our study evaluated the association of mobility and COVID-19 cases 
following the expiration of stay-at-home orders reflecting mobility behavior that is more reflective of typical 
population-level movement. While we have used mobility data from Safegraph, several other mobility datasets 
have have been studied with regards to COVID-19. Zachreson et al. used data from Facebook to determine the 
validity of aggregate human mobility data for COVID transmission patterns60 . Aggregate mobility data is avail-
able through the Facebook Data For Good Program, which uses the mobile apps’ location service records of the 
users GPS locations. To be captured in this database, participants must be a member of Facebook and enable 
location services. To prevent users from being identified, Facebook removes users who do not meet a certain 
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Figure 3.   Model results comparing the MI and its association with COVID-19 cases and a commonly used 
single metric of mobility (fraction of devices leaving home). For each state, the left panel summarizes the 
multidimensional MI; the right panel represents the percentage of devices leaving their home (x-axis); y-axis is 
the adjusted incidence rate ratio of COVID-19, at varying lagged response (0–21 days) (z-axis).

Table 3.   Analysis of deviance table comparing the goodness of fit between the MI model (fPCA) and the 
fraction of devices leaving home (single) of the four states. Degrees of freedom shown is for the χ2 test statistic.

State Residual deviance Degrees of freedom Reduction in deviance for the MI model (fPCA)

Illinois (single) 152,581

Illinois (fPCA) 149,282 3.6 3,299

Ohio (single) 123,551

Ohio (fPCA) 112,975 8.6 10,576

Michigan (single) 261,759

Michigan (fPCA) 250,888 7.0 10,871

Indiana (single) 83,517

Indiana (fPCA) 80,297 1.7 3,220
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threshold during the data aggregation period. This means that less densely populated areas are most likely to be 
underrepresented by Facebook mobility data. Google also provides another source of aggregate mobility using 
the time spent by users at several geolocations using Google Maps. While studies using Google data have found 
that increases in mobility lead to increased COVID-19 cases and death61 , to date studies have not taken into 
account changes in mobility following the end of stay-at-home policies. Apple Mobility also provides mobility 
data using Apple Maps to create aggregated counts of direction requests. A study by James and Menzies used 
Apple Data and found mobility data and national financial indices exhibited similarities in their trajectories. 
Apple Mobility has several limitations as it includes any searches for directions as a measure of mobility and 
therefore may not be representative of actual community mobility.62

Mobility data offers several functions as a public health tool. While we focused directly on the number of 
COVID-19, cases, mobility can also be used to estimate and model of transmission rates52,60. Spatially explicit 
models of disease transmission using census data are often used to guide disease intervention decisions. However, 
it remains important to define mobility as a multidimensional construct. We demonstrated among hundreds 
of counties from four states, time-updated relative changes were associated with increases in COVID-19 cases. 
Furthermore, results from our study suggest our mobility should be considered an important confounder when 
evaluating the impact of other non-pharmaceutical interventions.

The strength of our study was the use of multiple advanced statistical methods to measure mobility and then 
validating its utility by evaluating its association with COVID-19 cases. The fPCA used to create the mobility 
index effectively captured the heterogeneity of the individual metrics over time and across counties within a 
given state. The unsupervised nature of this approach prevented the model from overfitting when evaluating the 
association with cases. Furthermore, we modelled a non-linear functional relationship between mobility and 
COVID-19 cases using a HGAM model while simultaneously fitting different lagged time periods. The expecta-
tion that the lag time should vary across states was confirmed by our results. The use of these methods has been 
under appreciated in the epidemiological and public health studies; we provide code and data to expand the use 
as we believe these methods could have wide applications in future research. We also highlight the need to track 
population-level mobility at a granular level, as we show significant heterogeneity across counties.

Our study also has limitations. The results of our study are based on data from all 365 counties from four states 
in the Midwest. While these counties represented varying population densities, socioeconomic conditions, and 
party affiliations (that may have resulted in different adherence and uptake of other NPI) our results may have 
limited generalizability to other larger metropolitan cities. Cell phone data was freely available and could help to 
predict trends during the pandemic but it is only a proxy for human contact. In this study we attempted to define a 
more robust definition of mobility, however it still remains a surrogate exposure. The association between mobil-
ity and COVID-19 cases may be underestimated, given our outcome is dependent on testing. Testing capacity 
has significantly changed throughout the pandemic in the United States. Seroprevalence studies estimate case 
detection is underrepresented by a factor of three times63. Although we do not believe this underrepresentation 
is differential between counties, outcomes such as COVID-19 related deaths and hospitalizations may be less 
biased. While the advantage is clear, the utility of these outcomes as a “real-time” public health tool is debatable 
as the latency period (time of infection to outcome) is long (greater than 21 days). As with all observational 
studies, associations should not be interpreted causally. Our model does not take into consideration confounding 
interventions that could also increase or mitigate transmission such as the proportion of the population adher-
ing to physical distancing guidelines, wearing masks, interactions outside vs inside or air quality. To effectively 
measure social distancing patterns using individual-level data (either cell phones or wearable technology such 
as fitness trackers), would be more sensitive compared to aggregate data, but this raises ethical and privacy 
concerns64. Recent reports have hypothesized the COVID-19 pandemic may not be following a normal distribu-
tion but over dispersed or driven by “super spreader” transmission events which we did not account for in our 
model65. Finally, while PCA has the advantage of reducing overfitting, it has several assumptions and limitations. 
We must assume the features are related to each other in a linear fashion, and that the data can be appropriately 
summarised by the mean and variance66. Furthermore, PCA can be heavily influenced by outliers (three times 
the standard deviation from the sample mean), requires that the PCs are orthogonal to each other, and results in 
information loss due to selecting a relatively small number of PCs for downstream analysis. Specifically for our 
data, we show in Table 2 that selecting the first fPCA explains over 50% of the variance explained for a majority 
of all the counties analysed. The data did not have any significant outliers as seen in Supplemental Figure S13, 
which shows that the coefficients of variation (standard deviation divided by the mean) is less than 2.5 for all 
mobility metrics across all counties. We did not pursue nonlinear dimension reduction techniques such as kernel 
PCA, but think this would be an interesting direction for future research.

Conclusion
Our study underscores the potential of using freely available cell phone data as public health tool. We show 
changes in mobility can be used a predictor of surges in COVID-19 cases. However, monitoring mobility in the 
absence of strict non-pharmaceutical interventions such as stay-at-home policies will require robust definitions.
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