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Abstract

Fundamental laws governing human mobility have many important applications such as forecasting and controlling
epidemics or optimizing transportation systems. These mobility patterns, studied in the context of out of home activity
during travel or social interactions with observations recorded from cell phone use or diffusion of money, suggest that in
extra-personal space humans follow a high degree of temporal and spatial regularity – most often in the form of time-
independent universal scaling laws. Here we show that mobility patterns of older individuals in their home also show a high
degree of predictability and regularity, although in a different way than has been reported for out-of-home mobility.
Studying a data set of almost 15 million observations from 19 adults spanning up to 5 years of unobtrusive longitudinal
home activity monitoring, we find that in-home mobility is not well represented by a universal scaling law, but that
significant structure (predictability and regularity) is uncovered when explicitly accounting for contextual data in a model of
in-home mobility. These results suggest that human mobility in personal space is highly stereotyped, and that monitoring
discontinuities in routine room-level mobility patterns may provide an opportunity to predict individual human health and
functional status or detect adverse events and trends.

Citation: Austin D, Cross RM, Hayes T, Kaye J (2014) Regularity and Predictability of Human Mobility in Personal Space. PLoS ONE 9(2): e90256. doi:10.1371/
journal.pone.0090256

Editor: Dante R. Chialvo, National Research & Technology Council, Argentina

Received October 4, 2013; Accepted January 30, 2014; Published February 27, 2014

Copyright: � 2014 Austin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by the National Institutes of Health and the National Institute on Aging under Grants R01AG024059, P30 AG024978,
and P30AG008017. Some of the computers used to collect data in this study were purchased with funds from Intel Corporation. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors received commercial funding from Intel Corporation to purchase some of the computers used in their study. T.H. (now
deceased) had a significant financial interest in Intel Corporation. This potential conflict has been reviewed and managed by Oregon Health and Science
University. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: austidan@ohsu.edu

Introduction

Many factors influence human mobility, spanning the contin-

uum from regular and predictable commitments (e.g., commuting

for work or taking a child to school) to unforeseen circumstances

(e.g., travelling to help a sick relative or pausing to fix a flat tire)

while also encapsulating individuals’ preferences, wants, needs,

and contextual effects (e.g., weather conditions or current health

status). Despite the seemingly diverse array of reasons for which

individuals move around[1,2,3,4,5,6], a large body of work has

found significant regularity and predictability in human mobility

patterns, primarily in the form of scaling properties and power

laws[2,3,5,7,8,9,10,11] using location data collected predominant-

ly from cell phones[7,12,13,14]. These findings have importance

to a diverse array of applications such as optimization of

transportation systems[15,16] and controlling the spread of

infectious disease[17,18,19]. To date, these studies have focused

on human mobility outside of the personal home space. In part,

this reflects the commonly used proxies for human mobility, such

as cell phone records, which lack the spatial and temporal

resolution to resolve movements on the scale present in home

space. However, much of the population spends a significant

proportion of their time at home – especially as they age[20] –

suggesting that mobility in the home is an important facet of

human behavior.

Recent advances in ubiquitous computing and in-home

monitoring have provided opportunities to monitor individuals

in their personal home space both passively and unobtrusively via

motion sensors and other devices[21,22,23,24] providing the

opportunity to study continuous behavioral characteristics in the

home setting for the first time (see Fig. S1 for an example of an in-

home monitoring platform floor plan and setup). Current methods

for in-home monitoring are somewhat different than out-of-home

monitoring in that they lack a common measurement system for

all individuals, such as common cell phone towers used to measure

mobility out-of-home[7,8,12,13,14]. This is due in part to

heterogeneity of the home space (size, furniture placement, etc.)

and in-home sensor networks (number of sensors deployed, sensor

placement in the home, etc.), making the spatial aspect of mobility

less comparable across individuals. In particular, we can readily

account for (as in the contextual model; see below) the opportunity

space an individual has in which to move temporally (e.g., size,

number of sensors, average recorded mobility), but it is difficult to

make meaningful cross-sectional comparisons when individuals’

spatial locations do not map across people (e.g., not everyone has a

computer room or second bedroom). For this reason we focused

our investigation on the temporal regularity and predictability of
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mobility, mi, where mobility is defined as the number of times an

individual moves between different rooms in their home - a count

variable quantifying an individual’s number of movements in a

specified time interval i.

We focused our investigation on two main questions, both of

which address aspects of predictability and regularity in human

mobility not previously examined. First, we sought to determine

whether scaling laws in human mobility similar to those

demonstrated outside the home also hold inside the home.

Second, we investigated whether including context in a model of

human mobility uncovered regularity not accounted for by

modeling mobility with a single, time independent power law

mobility distribution. We find that while a power law is not a

plausible representation for the observed in-home mobility data,

by explicitly including context in a model of human mobility we

obtain a high level of predictability and uncover structural

regularity not previously reported. These results suggest that in-

home mobility is also highly stereotyped, albeit in a different way,

which may have applications to predicting individual human

health and functional status[25,26] by detecting adverse events or

trends[7] and in conducting more meaningful clinical trials[27,28].

Results and Discussion

For both investigations, we used a dataset consisting of

14,920,560 measurements of mobility recorded in two-minute

intervals from 19 older adults monitored for up to 5 years in their

own homes. Data were gathered from participants in the

Intelligent Systems for Assessing Aging Changes (ISAAC)

study[20], a longitudinal cohort study of naturalistic aging using

unobtrusive embedded home activity sensing (see Methods and

Supporting Information S1 for further details about the data,

study, and study participants).

Power Law
The mobility data over time, mi, for sampling intervals of one-

day and two-minutes are shown in Fig. 1, where the sampling

intervals were chosen to exemplify both gross (one-day) and fine

(two-minute) grained mobility patterns. Mobility over the course of

the day is comprised of bursts of movement separated by periods

of little or no movement, suggesting that the large swings in day

level mobility are driven by the number and size of mobility

‘‘bursts’’ at the two-minute level. The episodic nature of the

Figure 1. A snapshot of individual in-home mobility patterns. Time series plots of in-home mobility for 5 different participants (color coded)
for daily-mobility (A) over 31 days starting November 1st of 2011 (top left) and (B) 2-minute increments for four hours of November 2, 2011. Mobility,
in units of room-transitions, at the day level is impulsive occasionally changing by a factor of 2 or more. Mobility at the 2-minute level is also
impulsive and demonstrates that day-level mobility is comprised of periods of little-to-no mobility interspersed with bursts of movement. (C) Day-
level data for 5 representative homes is shown (circles) with best fit power laws (dashed lines), indicating good fit for individual homes but not across
homes. Note that as we have plotted the cumulative distribution function for the power laws, the slopes in the plot are 2a+1 for each participant’s
value of a. (D) Data at the two-minute level was not consistent with a power law distribution but is still heavy-tailed. Figs. S2–S4 show similar plots for
the 14 homes not show here.
doi:10.1371/journal.pone.0090256.g001
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mobility patterns at both sampling intervals coupled with results

demonstrating power law behavior for out-of-home mobility[8,9]

suggested that a double truncated power law, P(m),m2a for

mmin#m#mmax, could be a reasonable characterization of the data.

The double truncation is suggested on the upper side by a

physiological maximum speed of an individual, which limits the

amount of possible mobility in a fixed interval, and on the lower

side since most empirical data tend to follow a power law only in

the tail of the distribution[29]. We found that a power law was a

reasonable fit for 17 of the 19 individuals’ mobility measured at the

day level (the sum of two minute mobility samples over 24 hours;

shown in Fig. 1 for five homes and Figs. S2–S4 for the remaining

14 homes) when normalizing the data by the individual specific

median mobility and number of sensors in the home (see

Supporting Information S1 for discussion of the normalization).

However, in contrast to results reported for out-of-home

mobility[8], the mobility across subjects did not collapse into a

single power law distribution after normalization. Instead,

significant differences were found in all three parameters of the

distributions (mmin, mmax, and a; see Supporting Information S1).

This suggests no universal scaling exponent governs human

mobility in the home (see Supporting Information S1 for further

discussion), but indicates that a high degree of individual regularity

still exists.

A power law was inconsistent with all mobility data when

sampled at two-minute intervals, demonstrating that the impulsive

nature of in-home mobility on fine-grained time scales (Fig. 1) is

not well approximated by a single, individual-specific, and time-

independent power law density. This finding was somewhat

surprising in light of the scaling laws found in many prior studies

on human mobility or behavior in general (e.g., [1,8,9]), and

further comments are in order. For the day-level power law

analysis, there were 1090 samples (days of data) per home on

average used to fit the power laws. For the 2-minute analyses,

there were 785,292 samples - of which 67,535 were nonzero - on

average, per home. The number of samples is an important

concern because the standard test for whether a power law is a

plausible fit for data is based on assuming a power law holds as the

null hypothesis[8,29] and only rejecting this null hypothesis if

there is enough evidence in the data to do so. As a result, it is much

easier, statistically speaking, to not reject the null with a small

number of samples. Because of this, we believe the results

presented at the 2-minute level of ‘‘no plausible power law’’ are

more accurate than those presented at the day level since we had

so many more samples to potentially reject the null hypothesis at

the 2-minute level. This may point to a fundamental difference in

the phenomena of in-home and out-of-home mobility, but further

work is needed to investigate this (see Supporting Information S1

for further discussion).

Contextual Model
In light of the lack of evidence for a universal scaling law for in-

home mobility, we investigated the hypothesis that explicitly

modeling the relationship between activity context and mobility

would uncover regular and predictable structure in human

mobility in-home. As a power-law density was not a good model

for mobility and because mi is a non-negative integer valued

variable, we used a negative binomial regression model[30] (see

Supporting Information S1 for alternative models), where the

probability of mi – the observed mobility in a two-minute interval

at sample i – follows a negative binomial distribution:

Pr (mijxi)~
C(miza{1)

mi!C(a{1)

a{1

miza{1

� �a{1
mi

miza{1

� �mi

ð1Þ

where x is a vector of explanatory variables, m is the expected

value of the mobility distribution satisfying ln (mi)~xib, b are the

model parameters describing the individual contributions of each

explanatory variable, a is a dispersion parameter controlling the

conditional variance of the mobility distribution, Var(mi|xi) =

mi+ami
2, C is the gamma function, and i indexes the observations.

Eighty-eight explanatory variables (see Supporting Information

S1) which we hypothesized could drive human mobility and be

reliably measured were selected, representing seven general

categories: behavioral (e.g., walking speed), weather (e.g., temper-

ature, precipitation), self-report (e.g., age, health status), peer-

reference (e.g., walking speed of the peer group), time-dependence

(e.g., time, lagged variables), missing data, and physical environ-

ment (e.g., home size). Variables from the first five categories were

included to directly account for the influence between observed

context, observed phenomena, and mobility, while the last two

categories were included to account for missing data and known

heterogeneity across both subjects and home space. While eighty-

eight variables may appear too large a number to include without

the risk of over fitting the model to the data, the large number of

data points available with which to estimate the parameters

prevents this (see also Supporting Information S1 for further

discussion of this important consideration).

The contextual model allows the determination of two

important questions: 1) is in-home mobility predictable and 2) is

in-home mobility regular? If the model uncovers predictability and

regularity in human mobility, then we can infer that context is an

important part of human mobility patterns. Further, a context-

based model that adequately approximates human mobility allows

inferences on the relationship between contextual variables and

mobility. To investigate these questions, we fit the data to the

model described by equation (1) and found the model to be both

statistically significant and an accurate representation of the data

(see Supporting Information S1).

Predictability can be defined in many ways, perhaps most often

with an entropy-based definition. This method has the advantage

of not requiring an explicit construction of a model that can make

predictions in order to determine the theoretical predictability of a

time series[3]. However, the contextual model can predict mobility

on a sample-by-sample basis, allowing predictability to be assessed

directly as the accuracy of the model in making predictions. We

evaluate predictability using two different but complementary

measures of model accuracy (see Supporting Information S1 for

full details). The first measure of predictability directly assesses

prediction accuracy in the contextual model. Specifically, we

define the first measure of predictability as the proportion of

correctly predicted mobility samples. This measure is best

represented as a function of the size of allowable prediction error

(e.g., the size of the prediction error allowed for a prediction to be

considered correct; Fig 2A). In our data set, 91.4% of the

observations are 0 (no mobility) with a range of observed mobility

values from 0 to 41 across the entire data set. Therefore,

predictability must be substantially higher than 91.4% to be

meaningful. We found that if the allowed prediction error is 3

transitions or less (a 7% error with respect to the range of data),

then the model has over 99% predictability (Fig. 2A; see also

Supporting Information S1). We also quantified predictability as

the difference in model predicted mobility counts and observed

mobility counts in our data set (Fig. 2B). We found that the model

Human Mobility in Personal Space
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overestimates periods of no movement by 1%, underestimates

periods with a single movement by 1.2%, and is within 0.2% or

less of observed values for all other values of mobility. Taken

together, these results demonstrate a high degree of predictability

is present in human home-space mobility when context is taken

into account.

Regularity can be quantified in several ways, perhaps most often

related to the return probability or time spent in a highly

frequented location[3,8,31,32], a form of spatio-temporal regular-

ity. As we have not explicitly taken location into account in our

analyses, we instead investigate temporal regularity as measured

by the presence of rhythms or periodicities[33,34,35] in mobility

that may be biologically or contextually determined, and the

existence of correlations on multiple time scales. The inclusion of

time variables (e.g., hour of day) and lagged activity variables at

different time scales (e.g., a day ago or a week ago) in the

contextual model allows for the determination of this type of

regularity in human mobility. In particular, we found that all of

the behavioral variables exhibited some effect on mobility at

different time lags spanning a time-dependence of as little as two-

minutes (one sample) to one month (the longest time lag included

in the model) suggesting that the mobility exhibits a form of

autocorrelation on multiple time scales. We also found that time

influenced mobility on different scales with hour of the day,

month, and year all impacting the amount of observed mobility

(see Supporting Information S1 for a full description of the effects

of different variables). Combining these insights gives strong

evidence for regularity in mobility patterns as exhibited both by

circadian, infradian, and ultradian cycles and with correlations on

multiple time scales. In particular, this suggests that in the absence

of extenuating circumstances (characterized as the other variables

used in the contextual model) humans tend to have highly regular

mobility patterns (e.g., moving less at night, more in the morning,

and so on).

Combining the evidence for the high degree of regularity and

predictability in human mobility in-home supports the hypothesis

that context is an important driving force behind when and how

much humans move in their homes. One additional advantage of

the regression framework is that the model parameters estimated

from the data allow inferences about how mobility changes with

changing context. Fig. 3 shows how the mobility density changes

for changing values of context for four different contextual

variables that change on different time scales (while all other

variables are held at specified values; see Supporting Information

Figure 2. The predictability of in-home mobility. (a) Predictability of in-home mobility, defined as the proportion of correct estimates, is shown
as a function of allowable error. For example, 95.8% of mobility estimates are within 1 of observed values, and over 99% of mobility estimates are
within 3 of observed values. (b) The difference between estimated and observed probabilities are shown (black line) as a function of mobility. The
y = 0 line (gray dashed line) represents perfect predictability. The regression model over estimates 0’s by 1%, underestimates 1’s by 1.2%, and is off by
less than 0.2% for the rest of the mobility values. Confidence intervals on the predictability have been omitted as they are too small to distinguish
from the figure traces (see Tables S3–S4).
doi:10.1371/journal.pone.0090256.g002
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S1). The time scales of the different contextual variables are as

follows: Age linearly increases with time for all participants,

maximum temperature can vary day-to-day, peer-walking speed

can change from two-minute sample to two-minute sample, and

socioeconomic status is relatively fixed at this point in participants’

lives. Increasing age is associated with decreasing mobility,

whereas increasing temperature, peer walking speed, and socio-

economic status are all associated with increased mobility (Fig. 3).

Another important question for which the model can make a

prediction is: what is the effect of context on the probability of not

moving? Fig. 4 shows the probability of not moving for changing

context using the same data as shown in Fig. 3. Not surprisingly, as

expected mobility increases as the probability of not moving

decreases.

Our results suggest that while in-home mobility does not appear

to follow a universal scaling law, accounting for context uncovers

both regularity and predictability in this mobility in a way in which

a single time-independent scaling distribution cannot. Further, in-

home mobility is highly stereotyped both within and across

subjects when context is taken into account. This result is

potentially useful for behavioral forecasting (predicting patterns

of mobility over time), especially since deviations from highly

stereotyped in-home behavior may have significant and broad

application in predicting both acute and long-term illness or

wellness such as in predicting personal health status[36,37] or in

conducting more meaningful clinical trials[27,28].

Methods

All study participants whose data we used in this study were

enrolled in the Intelligent Systems for Assessing Aging Changes

(ISAAC) study, a longitudinal cohort study of naturalistic aging

described in detail elsewhere[20]. All participants provided written

informed consent and the ISAAC study was approved by the

Oregon Health & Science University Institutional Review Board

(IRB# 2353). A more detailed description of the ISAAC study and

participant pool along with a detailed description of the data

analysis used in this study not already described in the text is

included in the Supporting Information S1.

Figure 3. The effect of life context. Probability density (color represents density; discrete probabilities were linearly interpolated for graphical
clarity) of mobility (y-axes) as a function of four different contextual variables (x-axes) that vary across different time scales, holding all other variables
at constant values (see Supporting Information S1 for details). The mean function, m (black trace) with 95% confidence intervals (CI; dashed black
trace), has been overlaid on the density to show central tendency in each panel. (A) Mobility declines with increasing age, where expected mobility
decreases by a factor of 0.83 as age increases from 71 to 97 years. (B) Mobility increases with increasing walking speed among the peer reference
group (expected mobility increases by a factor of 1.9 as peer referenced walking speed increases from 20 cm/s to 260 cm/s), (C) maximum daily
outdoor temperature (expected mobility increases by a factor of 1.12 as maximum temperature increases from 5uC to 37uC), and (D) socioeconomic
status (expected mobility doubles as socioeconomic status increases from a score of 8 to 65).
doi:10.1371/journal.pone.0090256.g003
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Supporting Information

Figure S1 An instrumented home space. Example floor

plan showing location of motion sensors (red symbols), walking

speed sensors (teal symbols), and contact sensors (purple

rectangles) with associated area (text) and approximate center of

sensor field of view (cross hair symbol). The computer symbol and

router (purple) icons represent the placement of the data

computer, router, and transceiver.

(TIF)

Figure S2 Another snapshot of individual in-home
mobility patterns. Time series plots of in-home mobility for

participants 6–10 (color coded) for (A) daily-mobility over 31 days

starting November 1st of 2011 and (B) 2-minute increments for

four hours of November 2, 2011. (C) Day-level data for 5 homes is

shown (circles) with best fit power laws (dashed lines), indicating

good fit for individual homes but not across homes. Note that as

we have plotted the cumulative distribution function for the power

laws, the slopes in the plot are 2a+1 for each participant’s value of

a. (D) Data at the two-minute level was not consistent with a

power law distribution but is still heavy-tailed. Participant 6’s data

was not consistent with a power law at the day level (black) with no

power law trace in (C). Dates shown were chosen to show one

month worth of data for all homes.

(TIF)

Figure S3 A third snapshot of individual in-home
mobility patterns. Time series plots of in-home mobility for

participants 11–14 (color coded) for (A) daily-mobility over 31 days

starting July 7, 2009 and (B) 2-minute increments for four hours of

July 7, 2009. (C) Day-level data for 4 homes is shown (circles) with

best fit power laws (dashed lines), indicating good fit for individual

homes but not across homes. Note that as we have plotted the

cumulative distribution function for the power laws, the slopes in

the plot are 2a+1 for each participant’s value of a. (D) Data at the

two-minute level was not consistent with a power law distribution

but is still heavy-tailed Dates shown were chosen to show one

month worth of data for all homes.

(TIF)

Figure S4 A fourth snapshot of individual in-home
mobility patterns. Time series plots of in-home mobility for

participants 15–19 (color coded) for (A) daily-mobility over 31 days

Figure 4. The probability of not moving in-home. The estimated probability of no movement with 95% confidence intervals (CI) as a function
of 4 different contextual variables (x-axes), holding all other variables at constant values (including gender = female, same as values in Fig. 3, see
Supporting Information S1 for details). (A) The probability of no movement increases by a factor of 1.7 as age increases from 71 to 97 years. (B) The
probability of not moving decreases with increasing walking speed of the peer reference group (probability decreases by a factor of 0.1 as peer
referenced walking speed increases from 20 cm/s to 260 cm/s), (C) increasing maximum daily outdoor temperature (probability decreases by a factor
of 0.71 as maximum outdoor temperature increases from 5uC to 37uC), and (D) increasing socioeconomic status (probability decreases by a factor of
0.17 as socioeconomic status increases from 8 to 65). Socioeconomic status has been plotted with a different y axis range than the other three
variables as it has a larger range.
doi:10.1371/journal.pone.0090256.g004
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starting August 1, 2009 and (B) 2-minute increments for August 1,

2009. (C) Day-level data for 5 homes is shown (circles) with best fit

power laws (dashed lines), indicating good fit for individual homes

but not across homes. Note that as we have plotted the cumulative

distribution function for the power laws, the slopes in the plot are

2a+1 for each participant’s value of a. (D) Data at the two-minute

level was not consistent with a power law distribution but is still

heavy-tailed Participant 18’s data was not consistent with a power

law at the day level (red) with no power law trace in (c). Dates

shown were chosen to show one month worth of data for all

homes.

(TIF)

Table S1 Power law results for mobility in one day
increments after normalization for home-specific medi-
an mobility and number of sensors installed in the
home. The distributional parameters: a, mmin, and mmax are

reported along with standard errors aSE and mmin,SE and the p value

for the fit (higher p values suggest a better fit). The largest observed

value in the data for each home, max(m) is reported for comparison

with the largest value for which a power law is consistent (mmax) to

quantify the range over which a power law holds. The standard

errors combined with the parameter estimates show that even after

normalizing for participant and measurement specific effects, there

is not a universal power law. Homes 6 and 18 were not consistent

with a power law.

(DOC)

Table S2 Summary of model. Parameters (mean and 95%

confidence intervals), significance at the 5% level (denoted by *),

interpretation as a percentage change in the expected mobility due

to a unit change in the associated independent variable with all

other variables held constant, units, and description of variables.

(DOC)

Table S3 Proportion of correct mobility estimates with
95% confidence intervals (CI) for different values of
largest allowable estimation error (residual size; see
Fig. 2A).

(DOC)

Table S4 Estimated, observed, and difference in mo-
bility probabilities according to mobility value (see
Fig. 2B).

(DOC)

Supporting Information S1 Additional information on
data, methods, and results.

(DOC)
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