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It has been long realized that the immune and skeletal systems are closely linked. This

crosstalk, also known as osteoimmunology, is a primary process required for bone health.

For example, the immune system acts as a key regulator in osteoclasts-osteoblasts

coupling to maintain the balanced bone remodeling. Osteoimmunology is achieved

through many cellular and molecular processes, among which autophagy has recently

been found to play an indispensable role. Autophagy is a highly conserved process in

eukaryotic cells, by which the cytoplasm components such as dysfunctional organelles

are degraded through lysosomes and then returned to the cytosol for reuse. Autophagy

is present in all cells at basal levels to maintain homeostasis and to promote cell survival

in response to cellular stress conditions such as nutrition deprivation and hypoxia.

Autophagy is a required process in immune cell activation/polarization and osteoclast

differentiation, which protecting cells from oxidative stress. The essential of autophagy in

osteogenesis is its involvement in osteoblast differentiation and mineralization, especially

the role of autophagosome in extracellular calcium transportation. The modulatory

feature of autophagy in both immune and skeleton systems suggests its crucial roles in

osteoimmunology. Furthermore, autophagy also participates in the maintenance of bone

marrow hematopoietic stem cell niche. The focus of this review is to highlight the role of

autophagy in the immune-skeleton interactions and the effects on bone physiology, as

well as the future application in translational research.
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INTRODUCTION

The skeletal bone is a dynamic tissue with a life-long continuous renovation termed bone
remodeling (1). This remodeling consists of bone resorption and formation and plays a
fundamental role in the maintenance of bone homeostasis (2). Bone remodeling is kept in balance
under physiological conditions, as the amount of bone resorption equals to that of formation (3).
This balance is achieved via sophisticated regulations originated from the immune system (4). The
link between the immune and skeleton systems has been identified for almost fifty years and termed
as “osteoimmunology” (5). Further research into osteoimmunology has recognized the complex
mutual regulations between immune cells and bone cells, that at one level, immune response
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determines the balance of bone remodeling, whereas on another
level, bone cells mediate the polarization and function of immune
cells (3, 4, 6). This interaction consists of multiple factors such
as cytokines, receptors, signaling pathways (4); and it has been
recently indicated that autophagy plays elementary roles in both
immune (7) and skeletal (8) systems. Autophagy is defined as
the delivery of cytoplasmic materials to the lysosome in animal
cells or the vacuole in plant and yeast cells (9). Especially
in eukaryotic cells, autophagy plays a key role in homeostasis
maintenance (10, 11). Moreover, autophagy promotes cell
survival in response to stress conditions such as nutrition
deprivation and hypoxia (12). Autophagy is required in the
differentiation of osteoclast and osteoblast (13, 14); meanwhile,
it participates in the immune cell polarization/function and
therefore regulates immune response (7, 15), suggesting a
complex and rather intriguing role in osteoimmunology. This
review highlights the effects of autophagy in the immune-
skeleton interactions and proposes the regulation of autophagy
for future application in bone regeneration.

AUTOPHAGY MECHANISM

There are mainly three types of autophagy, known as
macroautophagy, microautophagy, and chaperone-mediated
autophagy (9). The current review will focus on macroautophagy
(hereafter referred to as autophagy), a highly conserved “self-
eating” lysosomal degradation pathway in eukaryotic cells to
clear intracellular waste (10, 11). Autophagy initiates with
the sequestration of cytoplasmic organelles within double-
membrane vesicles known as autophagosomes, which then fuse
with lysosomes to form autolysosomes to degrade or recycle the
autoghagic contents, such as damaged organelles, intracellular
pathogens, glycogens, lipids, and nucleotides proteins (9, 16).
Concomitantly, the cytosolic form of microtubule-associated
protein 1A/1B-light chain 3 (LC3-I) is converted to form LC3-
phosphatidylethanolamine conjugate (LC3-II), which is attached
to the autophagosome membrane and then degraded (17, 18).
This conversion from LC3-I to LC3-II is identified as one of the
autophagy hallmarks. On the other hand, microautophagy is
defined as the direct engulfment of small cytoplasmic portions
by inward deformation of the lysosomal or late endosomal
membrane (9, 19). Chaperone-mediated autophagy does not
require membrane reorganization: the substrate proteins
containing a KFERQ-like pentapeptide are selectively targeted
by cytosolic heat shock cognate 70 (Hsc70) protein, then directly
translocated into the lysosomal lumen (9, 20).

Autophagy is maintained at basal levels in all cell types,
which plays a “quality control” role to maintain cellular
homeostasis (11). On the other hand, autophagy is induced
in response to stress conditions such as nutrient deprivation,
oxidative stress, hypoxia and infection, which is one of the main
strategies to promote cell survival (12, 21). Autophagy facilitates
the “recycle” of cellular components and therefore provides
energy for cells under starvation (22). Another important
function of autophagy is to scavenge malfunctioning/damaged
proteins and organelles (22). For example, autophagy-mediated

clearance of damaged mitochondria, also termed as “mitophagy,”
inhibits reactive oxygen species (ROS) accumulation and thereby
protecting cell from oxidative stress and apoptosis (15, 23).
This has been identified as a required process during bone cell
differentiation and immune cell polarization, making a central
role in osteoimmunology.

AUTOPHAGY IN THE SKELETAL SYSTEM

General Bone Biology
As the main constituent of the vertebrate skeletal system, bone
serves as supporters and protectors of organs in the body
(24). Bone consists of cellular components such as osteoclast,
osteoblast, and osteocyte, as well as collagen, osteoid and
inorganic mineral deposits (25). Osteoclast and osteoblast are
the major players in bone remodeling (26). Originated from
the hematopoietic stem cells (HSCs), osteoclast is considered as
the major cell type responsible for bone resorption (25). The
macrophage–monocyte lineage-derived osteoclast precursors
fuse with each other to form a giant, multinucleated cell—
the osteoclast (27). On the other hand, the mesenchymal stem
cells (MSCs)-derived osteoblast is the major bone formation
cell (25), which builds the osteoid matrix and eventually
differentiate into osteocyte, the most abundant cell type in
bone (28). The fact that osteoclastogenesis is dependent on
osteoblast-derived receptor activator of nuclear factor factor-
kappa B ligand (RANKL) (29, 30), suggests “coupling” between
osteoclast and osteoblast, therefore linking osteoclastogenesis
to osteogenesis (31). RANKL binds with receptor activator of
nuclear factor factor-kappa B (RANK) on osteoclast-precursors,
therefore initiating the differentiation of osteoclast. On the
other hand, osteoblast produces osteoprotegerin (OPG), a decoy
receptor of RANKL, to interrupt osteoclastogenesis (32). Hence,
the balance between RANKL and OPG determines the outcome
of bone remodeling (33). Furthermore, osteoblast secrets other
factors to regulate osteoclastogenesis and osteogenesis in a
paracrine or endocrine manner (34). For example, osteoblast
is one of the major source of macrophage colony-stimulating
factor (M-CSF) —a major factor for osteoclast differentiation—
in the bone microenvironment (31, 35–37). Osteoblast-derived
semaphorin 3A (Sema3A) and Wnt16 have been found to
reduce osteoclastogenesis via interrupting the RANKL-RANK
signaling (38, 39), while osteoblast-originated Wnt5 induces
osteoclast differentiation by enhancing RANK expression in
osteoclast-precursors (40, 41). Osteoblast also produces factors
such as vascular endothelial growth factor A (VEGF-A) to induce
osteogenesis (34, 42). Beside osteoblast, osteocyte is considered
as another critical producer of RANKL, which also produces
sclerostin (SOST) to reduce osteogenesis, therefore acting as the
orchestrator of bone remodeling (43–46).

Autophagy in the Differentiation/Function
of Osteoclast, Osteoblast, and Osteocyte
Recent studies have identified the importance of autophagy in
osteoclast differentiation and function. Autophagy activation
has been reported during the osteoclastogenic process. During
the RANKL-induced osteoclast differentiation, the autophagic
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protein levels (such as autophagy related (ATG) 5/7/12) and the
LC3-II/LC3-I ratio have been reported to increase in accompany
with degradation of p62 (also known as SQSTM1/sequestome1)
(47). This degradation plays an essential role in the generation of
filamentous actin (F-actin) ring, a key feature of osteoclatogenesis
(47, 48). Mutant p62 results in abnormal osteoclasts with
increased size, number, multinuclearity, and activity (49). The
autophagic proteins Atg5/7/4B and LC3 have also been reported
to play decisive roles in regulating the osteoclast-ruffled border
(RB) generation and the lysosomal secretion (Figure 1), thereby
determining osteoclast function in vitro and in vivo (50).
Especially, in rheumatoid arthritis (RA) patients, autophagy
is found activated by the pro-inflammatory cytokine tumor
necrosis factor α (TNF- α) in osteoclasts, which results in induced
osteoclastogenesis and bone resorption in vitro and in vivo,
suggesting a central role of autophagy in the pathogenesis of
inflammatory bone loss (51).

Autophagy has long been considered as a necessary part in
cell differentiation (22). In a recent study, induced autophagy has
been found during osteoblast differentiation and mineralization
in vitro; autophagosomes act as cargos to transport the
intracellular mineral crystal-like structures to facilitate the
extracellular mineralization (52). Autophagy inhibition can
result in impaired mineralization in vitro and decreased bone
mass/volume in vivo (Table 1), which is usually followed by
induced oxidative stress and RANKL production (52). These
results suggest the fundamental roles of autophagy during
osteoblast differentiation and mineralization, which serves as
mineralization vehicles, protects osteoblast from increased
oxidative stress and moreover, reduces osteoblast-derived
RANKL production and thereby inhibits osteoclastogenesis
during bone formation (52). This is in accordance with the
phenomenon that autophagy deficiency/inhibition in osteoblast
leads to an osteoporotic-like phenotype with induced osteoclast
differentiation (62). Another study found out that bone
morphogenetic protein 2 (BMP2), an osteoinductive agent for
clinical-use, leaded to increased protein levels of beclin-1 and
lysosome-associated membrane protein 2 (LAMP2) (63), both
of which are known as autophagy markers (64, 65). On the
other hand, autophagy inhibition has been found to affect the
differentiation and immunoregulatory capacities of MSCs in
ovariectomy-induced osteoporosis model mice (66). In the field
of bone tissue-engineering and biomaterials development, the
autophagy-inductive bioactive silica nanoparticles have been
found to promote osteogenesis (67), suggesting that autophagy
could be a potential therapeutic target for bone repair (Figure 1).

Autophagy is particularly critical for terminally-differentiated
cells such as neurons and osteocytes, which provides these
cells with “intracellular refreshment” to enable the cellular
homeostasis and function during their long-life periods (13,
22). Osteocyte is terminally-differentiated osteoblast embedded
in bone matrix. The long dendritic processes of osteocyte
facilitate the communication within osteocytes as well as
the connection with bone surface, making osteocyte capable
of sensing mechanical or bio-chemical stimulus from the
microenvironment (14). Osteocyte in response to the stimulation
therefore acts as director in bone remodeling such as producing

RANKL and sclerostin (43, 44, 46, 68). Living in a hypoxic
and potentially nutrient poor environment, osteocyte has
been reported to keep higher levels of autophagy than the
bone surface osteoblast in vivo (13, 69). Accordingly, it
is found that the terminally-differentiated osteocytes show
induced autophagy, as compared with the pre-osteocytes in
vitro (69). Genetic autophagy suppression (selective Atg7-
deletion) in murine osteocytes results in skeletal changes in
young adult mice (Table 1), such as decreased bone mass
and volume, reduced osteoclastogenesis and impaired bone
formation, as well as induced ROS in the bone marrow; a
phenotype similar to the aging bone (70). Another study has
also found that autophagy-activation/inhibition is involved in
glucocorticoids-related bone loss (71). All these studies suggest
that autophagy at a certain level maintains the homeostasis and
function osteocyte to facilitate the physiological balance of bone
remodeling (Figure 1).

AUTOPHAGY IN OSTEOIMMUNOLOGY

Regulations of the Immune System on
Bone Remodeling
The crosstalk between skeletal and immune systems was
initially identified by the finding that immune cells-originated
interleukin-1 (IL-1) could induce osteoclastogenesis (5). Since
then, more evidence has revealed the regulatory role of immune
system on bone remodeling (4). T-helper cells, derived from the
adaptive immune system, have been found to play a critical role
in inflammatory bone loss in arthritis via producing RANKL (72).
Besides RANKL, the type 17 helper T (Th17) cell-originated IL-
17 has long been identified as a key pre-inflammatory cytokine
that promotes osteoclastogenesis (73, 74); while the Th2 cell-
originated IL-4 and IL-10 are considered as inhibitors for
osteoclasts (75–78). On the other hand, the immune-suppressive
regulatory T (Treg) cells (79), inhibit osteoclastogenesis either
in a direct cell-to-cell contact-dependent manner (cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) on Treg cells
binding with CD80 and CD86 on osteoclast precursors), or
via production of IL-4, IL-10, and TGF-β (80, 81). Cells from
the innate immune system, such as macrophages, not only
serve as osteoclast precursors (82), but also participate in the
osteoclastogenesis regulation. Macrophages are a population of
cells with three subsets: (1) non-activated M0 macrophage; (2)
pro-inflammatory M1 macrophage, which is classically activated
by microbe-derived lipopolysaccharide (LPS) or Th1 cells-
derived IFNγ; and (3) anti-inflammatory M2macrophage, which
is alternatively activated by Th2 cells-derived IL-4 or IL-13 (83–
86). M1 macrophage induces osteoclastogenesis by producing
cytokines such as IL-1α/β (87, 88), IL-6 (89–91), TNF-α (92–
95); while M2 macrophage reduces osteoclast differentiation via
secretion of IL-10 and TGF-β (85, 96, 97).

The regulation of immune system on osteogenesis is
not so clear-cut. There are conflicting results regarding
the positive/negative effects of inflammatory/anti-inflammatory
cytokines on osteoblast differentiation, known as IL-1 (98–101),
IL-17 (102–104), TNF-α (100, 101, 105, 106) and IFNγ (107, 108).
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FIGURE 1 | The role of autophagy in the differentiation/function of osteoclast, osteoblast and osteocyte. During RANKL-RANK induced osteoclast differentiation, the

protein levels of ATG5/7/12 are increased, accompanied with enhanced conversion from LC3-I to LC3-II and p62 degradation, which plays an essential role in the

generation of F-actin ring. Besides differentiation, autophagy also plays decisive roles in osteoclast function, that the physiological levels of Atg5/7/4B are required for

lysosomal [containing H+ and cathepsin K (CatK)] trafficking and fusion with the plasma membrane to generate mature ruffled border, as well as to release H+ and

cathepsin K to resorb bone. During osteoblast differentiation, the binding of BMP2 to its receptors (BMPR) activates Smad signaling pathway to initiate osteogenesis,

which also induced the expression of beclin 1 and LAMP2 (autophagy-related proteins) as well as autophagy pathway. Autophagosomes are utilized for transporting

mineral crystals to extracellular matrix and thereby facilitating mineralization. Autophagy reduces oxidative stress during osteoblast differentiation via clearance of

damaged mitochondria, which also suppresses RANKL production and hence inhibiting osteoclastogenesis. Compared with osteoblast, the autophagy level is

increased in osteocyte, which not only maintains homeostasis of osteocyte, but also guarantees a physiological osteocyte-derived regulation on bone remodeling.

An interesting finding is that the pro-inflammatory cytokine IL-
6 could induce osteogenesis through the oncostatin M (OSM)-
STAT3 signaling pathway, suggests the inflammatory response,
at a certain level, could initiate osteoblast differentiation (109–
115). This is in accordance with the phenomenon that early
stage inflammation with macrophage infiltration is regarded
as indispensable in bone fracture healing (116). However,
this inflammation will be gradually quenched, as the M1 to
M2 macrophages conversion happens along with bone repair.
This conversion has been found to improve bone formation
(116, 117). The M2 macrophage-derived factors, such as BMP2
and TGF-β, are identified to promote osteoblast differentiation
and functions, as well as to enhance mineralization (118,
119). These findings suggest that the transformation from the
M1 macrophage-mediated inflammatory microenvironment, to
the M2 macrophage-mediated regenerative one, should be a

required part in bone formation; modulation of M2 polarization
should be considered as a potential therapeutic approach for
bone regeneration.

The Role of Autophagy-Mediated
Immunomodulation in Bone Remodeling
Autophagy is now identified as a multifunctional pathway in
immunity such as lymphocyte differentiation (22), pathogen
elimination (120), antigen presentation and inflammation
regulation (7, 15). T cell-specific ATG genes deletion (such
as Atg7 or Atg5) results in decreased T lymphocyte counts,
mitochondria accumulation, and induced apoptosis in mature
T cells (121, 122). This is due to the critical role of
autophagy-mediated mitochondria clearance in the development
of thymocytes into circulating mature T cells (123). Beside
differentiation, autophagy also provides barriers against invading
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TABLE 1 | Effects of Atg gene-knockout on osteoimmunology in vivo.

Cell type Atg 5-/- Atg 7-/- Possible effects on bone

resorption

Possible effects on

bone formation

Osteoclast Differentiation↓ (50) Impaired cathepsin K secretion (53) Downregulation Unknown

Osteoblast Differentiation↓

RANKL production↑ (52)

Differentiation↓ (54) Upregulation Downregulation

Osteocyte Unknown Aging-like phenotype (54) Downregulation Downregulation

M1 macrophage Polarization↑ (55, 56) Polarization↑

Aging-like phenotype (57)

Upregulation Downregulation

M2 macrophage Polarization↓ (55, 56, 58) Polarization↓

Aging-like phenotype (57)

Upregulation Downregulation

Th17 cell Polarization↑ (59) IL-17 production↑ (60) Upregulation Upregulation

Treg cell Polarization↓ (61) Polarization↓ (61)

Function↓ (60)

Upregulation Unknown

pathogens, that autophagosome and autophagolysosome are
utilized for selective-detection and elimination of intracellular
pathogens (120, 124–127). Especially, the immunomodulatory
roles of autophagy have been found in both innate and adaptive
immune responses, making autophagy a potential key regulator
in osteoimmunology.

The importance of autophagy has long been addressed in
macrophage polarization and inflammatory response. Although
autophagy is induced by toll-like receptor 4 (TLR4) signaling
during M1 macrophage polarization (128), further research has
suggested that autophagy plays an immunosuppressive role in
macrophage inflammatory response (129). Atg5- or Atg16L1-
deficiency on macrophage is found to direct M2 macrophage to
polarize toward a M1-like phenotype with induced secretion of
pro-inflammatory cytokines (55, 58). Mice with Atg5-knockout
macrophages showed induced systemic inflammation (56).
Primary bone marrow-derived macrophages (BMDMs) obtained
from this mice type exhibited abnormal polarization, that the
M1 polarization was increased while the M2 polarization was
impaired (Table 1), which further indicating that autophagy-
deficiency would induce inflammatory response in macrophages
(56). In mice with Atg 7 gene deletion in the hematopoietic

system (vav-Atg7-/- mice), monocytes failed to differentiated
into macrophages under M-CSF stimulation (130). Moreover,
macrophages obtained from vav-Atg7–/– mice were found to
have a phenotype similar to aged macrophages, which showed
reduced abilities of phagocytosis and nitrite burst, while induced
inflammatory response (Table 1); suggesting that autophagy
maintained at a certain level would correct the abnormities
in immune system to prevent aging associated chronical
inflammation (57). It has been demonstrated that autophagy
inhibition (either by Atg gene deletion or pharmacological
intervention) results in induced IL-1β secretion of macrophage,
suggesting autophagy limits the inflammatory response of
macrophage (15, 131, 132). Further studies have found that
inflammatory stimulus causes mitochondrial damage, and
then consequently results in induced ROS release/apoptosis
in macrophage. ROS interact with NF-κB signaling pathway
and then activate the NLRP3 inflammasome to trigger the
secretion of IL-1β and IL-18, therefore eventually initiating

the inflammatory cascade (132–134). During this process,
autophagy scavenges the damaged mitochondria through a
collaboration between p62 and LC3, that p62 selectively
recognizes damaged mitochondria by its UBA domain, which,
collectively, combines with LC3 and ensures the lysosomal
degradation of damaged mitochondria, thereby interrupts the
inflammatory cascade (134–136). As mentioned before, the
macrophage inflammation has been demonstrated to induce
osteoclastogenesis and bone loss, while the conversion from pro-
inflammatory M1 toward anti-inflammatory M2 phenotypes has
been suggested to improve bone repair (116, 117). Therefore,
this autophagy-mediated regulation on macrophage response
should be considered as beneficial for bone regeneration. The
nanomaterials-derived autophagy induction has been found to
potentially introduce a polarization toward M2 macrophage and
thereby improve osteogenesis (137), which further suggests that
autophagy could be a potential immunomodulation target in
regenerative medicine, especially for therapies against disorders
with inflammatory bone loss, such as arthritis (138), periodontitis
(139), periapical lesions (140).

Besides its role in the innate immunity, autophagy also
acts as a key regulator in the adaptive immune response,

such as T cell activation and polarization. Autophagy promotes
major histocompatibility complex (MHC) class II-mediated
antigen presentation via inducing the fusion of antigens to
LC3 in CD4+ T cells (141), which facilitates the elimination of
autoreactive CD4+ T cells (123). On the other hand, although
autophagy-dependent antigen presentation is required in in
antimicrobial response of dendritic cells (DCs) (141, 142), the
autophagy-deficient DCs show hyper-stable interactions with
T cells and thereby enhance T cell activation, suggesting the
modulatory role of autophagy to prevent excessive T cell
response (143). Consistent with this idea, a study has found
that graphene quantum dots (GQDs) induce the tolerogenic
phenotype of DCs in an autophagy-dependent manner, which
show reduced capacity in antigen-presenting and thereby reduce
T cell inflammatory response via introducing the polarization
of Th1 and Th17 cells toward Th2 and Treg cells, respectively
(144). Autophagy also directly inhibits nuclear factor-κB (NF-κB)
activation in in antigen-activated T cells and thereby suppresses
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FIGURE 2 | A proposed effect in osteoimmunology regarding biomaterial with the property of inducing autophagy (autophagy-biomaterial). The autophagy-biomaterial

should induce bone repair by suppressing the inflammatory response. On one hand, autophagy-induction directly reduces macrophage inflammation and IL-1β

secretion. The decreased IL-1β also impedes the polarization and function of Th17 cell (Th17). On the other hand, autophagy-induction in dendritic cell (DC) interrupts

its interaction with T cells, thereby inhibiting T cell inflammatory response via introducing the polarization from Th1 toward Th2 cells, as well as that from Th17 to Treg

cells. The Th1 to Th2 conversion would in turn reduce M1 polarization while induce M2 polarization. Hence, the autophagy-biomaterial creates an immune

microenvironment favoring bone regeneration: the limited inflammatory responses of T cell and M1 macrophage reduce osteoclastogenesis, while the conversion of

M1 to M2 macrophages improves osteogenesis.

inflammation (145). On the other hand, autophagy prevents the
secretion of macrophage-derived IL-1β (132–134), a cytokine
known as promoting Th17 cell response via collaboration with
IL-6 and TGF-β (59). In mice with Atg5-deficient myeloid cells,
CD4+ Th17 cell response is induced (59), further suggesting
the role of autophagy in preventing inflammation (Table 1).
Although inflammatory cytokines such as IL-17 has been
reported to induce osteogenesis, excessive IL-17 production
results in enhanced RANKL secretion and osteoclastogenesis
(73, 74) and therefore is still considered as detrimental for
bone regeneration. Especially, autophagy-mediated conversion
from Th1 to Th2 cells would in turn induce the polarization
from M1 to M2 macrophages (146, 147), a central part in
bone regeneration (116, 117). Hence, it could be presumed
that autophagy-derived immunomodulation on T cells creates a
microenvironment favoring bone repair.

The role of autophagy in osteoimmunology has been further
demonstrated in the pathogenesis of autoimmune rheumatic

diseases, such as rheumatoid arthritis (RA), a disease with
abnormities in organs including joints, heart, vascular system,
lungs, and skin (148, 149). Chronical inflammation, as well as
bone and cartilage destruction are typical syndromes in RA (150),
which mainly due to the interactions within local cells, known
as immune cells (such as T and B cells, macrophages), synovial
fibroblasts, chondrocytes, as well as osteoclasts and osteoblasts.
As autophagy plays decisive roles in osteoclastogenesis, the
inhibition of autophagy successfully reduces bone destruction
and osteoclast formation in experimental arthritis mouse models
(151), suggesting drugs with autophagy inhibition could be
used to prevent bone loss in RA patients (148). In addition,
autophagy protects cells from apoptosis—a crucial mechanism
to extinguish excessive inflammation (132–134, 148), therefore
playing essential roles in the pathogenesis and progression of
RA, via regulating the balance between immune cell survival and
death (148). Induced autophagy/reduced apoptosis have been
observed in synovial fibroblasts and synovial tissues obtained

Frontiers in Endocrinology | www.frontiersin.org 6 July 2019 | Volume 10 | Article 490

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Xiao and Xiao The Role of Autophagy in Osteoimmunology

from RA patients (152–154), while autophagy inhibition has
been found to reduce synovial inflammation in a collagen
induced arthritis (CIA) rat model (148, 155). Autophagy
hyper-activation has been found in CD4+ T cells obtained
from CIA mouse, and autophagy is considered to regulate
T and B lymphocytes homeostasis to maintain the RA
chronical inflammatory response (148, 156). Besides, autophagy
dysregulation in endothelial cells is considered as responsible for
atherosclerosis in RA (157). Especially, autophagy participates
in the pathogenesis of RA via inducing the generation of
citrullinated peptides, which consequently interrupting immune
tolerance (150). The anti-cyclic citrullinated peptide (anti-CCP),
an autoantibody (against citrullinated peptides) produced by
immune cells upon activation of self-antigens, is a general marker
for clinical RA diagnosis (150, 158, 159). The RA patient-
derived anti-CCP antibody (Ab) has been found to induce
osteoclastogenesis and bone loss (160). Autophagy is recently
considered to participate in both the presentation of citrullinated
peptides and the generation of anti-CCP Ab (148). Autophagy
is required for the antigen presenting cells (APCs) to perform
the presentation of citrullinated proteins (161). Furthermore,
autophagy is involved in the citrullination processes of Normal
Human Bronchial Epithelial (NHBE) cells and human synovial
fibroblasts (150, 162). Increased citrullinated peptide production
has been observed following autophagy-induction in human
synovial fibroblasts from RA patients, and the autophagy level
is significantly associated with that of anti-CCP Ab in early-
stage RA patients (150), suggesting the fundamental role of
autophagy in RA establishment via inducing the generation
of citrullinated peptides (150, 163). All these studies indicate
that autophagy-derived modulation on osteoimmunology plays
a central part not only in physiological bone homeostasis but
also in pathological bone diseases, which needs further study in
the future.

FUTURE REMARKS & CONCLUSION

Many questions still remain un-resolved regarding the role
of autophagy in osteoimmunology. For example, although
autophagy is indispensable in osteoclastogenesis, rapamycin (also
named as sirolimus), an autophagy inducer via inhibition of the
Ser/Thr protein kinase mTOR (mammalian target of rapamycin)
(164, 165), has been found to reduce osteoclastogenesis and
bone resorption in a mouse model of arthritis, an effect
similar to anti-TNF (by Infliximab) treatment (166). It is also
found that rapamycin reduces osteoclastogenesis in young rats
(167) and post-transplant bone resorption in renal transplant
patients (168). This is quite contrary to the positive effect
of autophagy in osteoclast differentiation and function as
mentioned before. It is presumed that autophagy plays a more
maintenance than regulatory role in the differentiation of
osteoclast, which is induced and kept in a certain level in response
to energy/metabolism variations or intracellular accumulation of
damaged organelles such as mitochondria. Whereas, in immune
response, autophagy might act more as a regulator to quench
the inflammation fire (7), which in turn reduce bone resorption

(Figure 2). The rapamycin-mediated inhibition of bone loss
might be achieved via immunomodulation, suggests that
autophagy is an attractive target for osteoimmunology regulation
to improve bone tissue regeneration (Figure 2). Autophagy
might also participate in the mutual regulations between
immune-skeletal systems. Previous studies have suggested that
the immunosuppressive role of MSCs is achieved through
the programmed death 1/ programmed death-ligand 1 (PD-
1/PDL1) (169), an autophagy-related signaling pathway (170).
Another study has found that the autophagy regulator p62 plays
a central role in maintenance of the “macrophage-osteoblast
niche,” which is indispensable for the retention of HSCs in
bone marrow (171). It is also found that compared with the
undifferentiated MSCs, the osteogenically differentiated MSCs
not only induce the recruitment of macrophages, but also
regulate local macrophage response in a VEGFA–C-X-C motif
chemokine 12/C-X-C chemokine receptor type 4 (VEGFA-
CXCL12/CXCR4) axis dependent manner (172). As CXCR4
signaling has been reported to regulate autophagy via the
cross-talk with mTOR (173–175), hence, autophagy should
be involved in MSC-mediated regulation on immune cells.
Furthermore, It could be predicted that immune cells, especially
macrophage, regulate bone remodeling in an autophagy-
dependent manner, as both the M1 and M2 macrophage-
derived cytokines have been found to modulate autophagy,
such as IL-1 (176), TNF-α (177–179), IL-10 (180–182), TGF-
β (183, 184); the fundamental role of M1-M2 conversion in
osteogenesis might be partially due to different autophagy levels
and metabolism states during the differentiation from osteoblast
to osteocyte.

In summary, autophagy, a conserved “self-eating” pathway
present in all mammalian cells, plays a complex role in
osteoimmunology, that at one level, autophagy maintains the
cellular homeostasis during differentiation of osteoclast and
osteoblast, facilitates the survival and function of osteocyte,
and more importantly, direct the immune response to avoid
the damage of excessive inflammation. Therefore, the definition
of autophagy as “self-eating” should be more appropriate as
“self-editing” in maintaining bone homeostasis. This regulatory
role in osteoimmunology suggests autophagy could be a
novel therapeutic target (e.g., autophagy-inductive biomaterial)
to improve bone regeneration in the future translational
medicine (Figure 2).
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