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Abstract

Both molecular marker and gene expression data were considered alone as well as jointly to serve as additive predictors for
two pathogen-activity-phenotypes in real recombinant inbred lines of soybean. For unobserved phenotype prediction, we
used a Bayesian hierarchical regression modeling, where the number of possible predictors in the model was controlled by
different selection strategies tested. Our initial findings were submitted for DREAM5 (the 5th Dialogue on Reverse
Engineering Assessment and Methods challenge) and were judged to be the best in sub-challenge B3 wherein both
functional genomic and genetic data were used to predict the phenotypes. In this work we further improve upon this
previous work by considering various predictor selection strategies and cross-validation was used to measure accuracy of in-
data and out-data predictions. The results from various model choices indicate that for this data use of both data types
(namely functional genomic and genetic) simultaneously improves out-data prediction accuracy. Adequate goodness-of-fit
can be easily achieved with more complex models for both phenotypes, since the number of potential predictors is large
and the sample size is not small. We also further studied gene-set enrichment (for continuous phenotype) in the biological
process in question and chromosomal enrichment of the gene set. The methodological contribution of this paper is in
exploration of variable selection techniques to alleviate the problem of over-fitting. Different strategies based on the nature
of covariates were explored and all methods were implemented under the Bayesian hierarchical modeling framework with
indicator-based covariate selection. All the models based in careful variable selection procedure were found to produce
significant results based on permutation test.
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Introduction

The development of efficient statistical methods which can

provide accurate prediction of the unobserved phenotype based on

genomic profile of an individual is the target in many research

fields including human, animal and plant genetics [1–3].

Phenotype prediction methods are often based on classification

and regression trees [4]. There has been recent interest to apply

Bayesian variable selection [5] and frequentist regularization

methods [6] to perform parameter estimation and variable

selection simultaneously in phenotype-genotype and phenotype-

expression association analyses. These methods also performed

well in selecting important subset of trait-associated loci to estimate

genomic breeding values in animals and plants [7–10]. Lee et al.

(2008) [2] considered that methods for predictions of unobserved

phenotypes and genomic breeding values have same goal and can

be successfully substituted for one another. Typically such

prediction methods consider a single type of genomic data

(molecular marker, gene expression or protein expression) for

prediction at a time even if prediction accuracy may be improved

by considering multiple data types simultaneously [1].

Rapid advancements in laboratory techniques have made a

cheap production of a gigantic amount of genomic molecular

marker and expression data (that is putative predictors) possible.

The simple statistical screening methods to find phenotype-

genotype association or phenotype-expression association are still

much used in practice because high dimensionality of the genomic

data prevents use of more advanced statistical variable selection

methods due to their computational demands. This state-of-the-art

data combined with use of outdated statistical tools controversy

have made a question of applicability of dimension reduction

techniques very acute. Thus, several statistical initial screening

methods have been developed which can filter large sets of

predictors to the smaller sized sets so that more advanced methods

can be applied to the selected predictors in the subsequent stage.

By reducing size of the predictor set, the variable selection

problem becomes less ill-posed as number of predictors is starting

to exceed the number of individuals. Also a technique called

‘‘preconditioning’’ which can reduce noise from the variable

selection experiments have received substantial attention recently

among statisticians (see [11–12]). However, in such two-step

procedures, the most common reduction tool in practice seems to
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still be a simple correlation coefficient calculated between the

phenotype and the putative candidate (marker locus or gene

expression) in question.

In this paper, we have applied Bayesian methods in the context

of association mapping to predict unobserved phenotype values of

the soy plants with single feature polymorphism (SFP) genotype

data, gene expression data and also both of these data types

combined. We will loosely refer to the genomic locations like

SFPs and genes as ‘‘markers’’. Prediction is done using Bayesian

models which perform simultaneous variable selection and

parameter estimation. Our predictions were ranked as the best

performing results for sub-challenge B3 of DREAM5 (the 5th

Dialogue on Reverse Engineering Assessment and Methods

challenge). The further improvements of these models are

presented here and their accuracies are assessed in comparison

to our original B3 models.

Materials and Methods

Materials
The data explored here is based on genetic and functional

genomic studies on soybean provided as a part of DREAM5. The

data sets along with descriptions are available from http://wiki.

c2b2.columbia.edu/dream/index.php/Challenges and in [13]

where the mechanism of data generation has been described.

Recombinant Inbred Lines (RILs) were produced by many

generations of selfing starting with two distinctly different inbred

lines with substantial difference in susceptibility towards a major

pathogen. Genotype measurements, in the form of single feature

polymorphism (SFP), were available for 941 locations on the

genome. Gene expression measurements on 28395 genes were also

available. In all, SFP measurements were available on 260 plants

and gene expression measurements were available for an

overlapping set of 260 plants. There were 230 common individuals

for whom both SFP and gene expression measurements were

available.

The response variables in this data were two different

measurements on pathogen activity, which will be referred to as

‘‘phenotype(s)’’. Both the phenotypes represent measures of

amount of pathogen in the infected tissue sample and relate to

severity of infection. The first phenotype (denoted as phenotype-1)

is measured as ‘percent present’ and the second (denoted as

phenotype-2) is captured as ‘scale factor’. Interestingly both the

phenotypes were measured on continuous scale and their

distributions were approximately normal. Because of this, we use

parametric Pearson correlation coefficient instead of Spearman

correlation for accuracy assessment in following if not stated

otherwise.

The original data sets came with suggested learning and test

sets (given split-sample data) for carrying out various predictive

exercises. The original requirement of the challenge was to

analyse the split-sample data provided and the best results

were obtained by us and these were 0.28 (0.19) and 0.24 (0.18)

for the two phenotypes according to Spearman (Pearson)

correlation. However initial exploratory analyses of the

corresponding subsets of phenotype data suggested that these

sets unfortunately may differ from each other in their

underlying statistical distributions, although the sets were

created by random sub-sampling (Figure 1). Thus, prediction

accuracies of the methods in following are assessed by using a

generalized strategy.

The prediction assessment strategy as suggested originally is

known as split-sample or hold-out method. A generalization of this

technique, which is also known to be more powerful, is k-fold

cross-validation method [14-15]. In this process the entire data set

is split into k-(near) equal subsets and prediction algorithm is

trained on the data separately k-times each time leaving one subset

out. Prediction is then assessed by measuring the predicted

outcome/response of the unseen part of the data not used for

training. Ideally training set should be as large as possible; however

this also means that the size of test set will be small. In order to

exhaust the entire data covering by small test sets would imply

many repetitions of the training and prediction procedure,

increasing the computing time linearly. As a compromise between

learning set size and computation time we chose k = 5. Accordingly

learning sets were created randomly, however post checks were

made to ensure the all the subsets of phenotypes (the main

variables of interest) have similar distribution on all k-sets

(Figure 2).

Methods
In following, we will consider three different multilocus

regression models depending on the type of the covariate data

included into the model: (1) only SFP data, (2) only gene

expression values, or (3) both SFP and gene expression data

jointly. We also carried out different strategies to select important

covariates into the regression models. Summary of these are

presented in Table 1, where the columns from left to right presents

a rough flow-diagram of the analysis procedure.

Predictive model
The association model in general for individual i can be written

as:

yi~az
X

l[M

Il|f (bl ,Xi,l)zei, ð1Þ

where M is the set of all markers (i.e. SFPs and/or gene

expressions), X = (Xi,l ) is the matrix of observed data with (i,l)th

entry corresponding to that of plant i and marker l. In case of

gene expression data, these entries contain values of transcription

abundances and in SFPs, they are genotype codes with

numbering depending on the parameterization of the model;

for example, value zero (Xi,l~0) may correspond to the one

genotype and the value one (Xi,l~1) for the other genotype. If a

direct constraint on the b parameters are used then coding for

genotypes are used to identify appropriate coefficient and thus is

flexible. Whereas if b are unconstrained then the entries in X

could be binary to implement a constraint on betas. The function

f is chosen appropriately depending on the nature of explanatory

variables in X. For expression data and SFP data with genotype

codes zero and one, it is simply f (bl ,Xi,l)~blXi,l . The parameter

a represents the intercept, b
0
�s are the coefficients, the latent

variables Il ,l~1,::,M govern inclusions/exclusions of the ex-

planatory variables into the model and ei are the independent

error terms following normal distribution with zero mean and

unknown variance s2.

Pre-selection of the best ranking predictors
In preliminary study (Table 1) it was found that use of all 941

SFPs/2840 gene expressions in the model provides excellent in-

data predictions (i.e., goodness-of-fit) but not satisfactory out-data

predictions. Thus this indicated that a possible problem of over-

fitting has occurred. Therefore we focus on various pre-selection

methods described below. Inclusion of the selected covariates in to

the model is either directly governed by a random variable taking

0–1 values (referred as indicator models) or otherwise inclusion or

Bayesian Prediction of Quantitative Traits
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exclusion of each predictor was prefixed (referred as non-indicator

model). Note that non-indicator models can also be expressed as a

special case of indicator model using degenerate random variables

for indicators.

Thus all the proposed models can be expressed as Bayesian

regression model with spike-n-slab method for variable selection

similar to those proposed for association models [16–18] using

subset of the markers to predict phenotype value (yi) of an

Figure 1. Normal Q–Q plots and Box-plots for the given sets of data. For Q–Q plot the observed values are in X-axes and expected normal
values are in Y-axes.
doi:10.1371/journal.pone.0026959.g001
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individual plant i. We assume a-priori that there is only a small

subset of important markers that are useful to predict the

phenotype. In these predictive models, subset selection of

important marker effects to the predictive model (after pre-

selection) is based on use of random indicator variables to be

estimated (Il ,l~1,::,M ), all of which can be either equal to one

(inclusion) or zero (exclusion) depending on the importance of

particular SFP. Here, M is a number of markers.

Priors for a, b, I and s2. Prior specification is intrinsically

subjective and specifying prior that will satisfy everyone and/or

every aspect might be un-achievable. We adopt the method

where priors reflect our intuitive knowledge but are also useful in

avoiding some potential pitfalls and helping to reduce the

computational burden. Typically, we assume Gaussian errors

with unknown variance under inverse-Gamma distributed prior.

We assume a standard Normal prior distribution for the

intercept parameter a. The coefficient parameters (marker

effects) are also assumed to be Gaussian with marker and

marker type specific distributional choice for the variance

parameters. Typically in indicator-based variable selection

models the prior probability for each SFP to be involved in

the model is P(Il~1)~sl , where sl can be: a) a given constant or

fractional value (where use of small value means strong shrinkage

and sparse model representation) depending on the type of a

marker, b) given extreme values of 0 or 1 and c) assumed to be

Uniformly distributed random variable between zero and one.

Choice (b) above enables non-indicator models to become special

case of indicator-based models.

The models were implemented in WinBUGS [19] software

which is specialized software to carry out Markov chain Monte

Carlo simulation from posterior distribution of complex models.

Variable selection and data- reduction efforts
It is known that including only the most associated subset of

trait loci (say, 5–15 markers) from the genome-wide association

studies to the predictive model suffers from low predictive power

[20]. Also for small and noisy data sets, common phenomena

known as over-fitting (i.e., a model shows good fit for the data at

hand but provides poor predictions for unseen data) may easily

occur [21] when number of covariates is rather large even if

Figure 2. Percentile distributions of the original data and 5-folds created for k( = 5)-fold cross validation.
doi:10.1371/journal.pone.0026959.g002
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Table 1. Correlation of prediction for different variable selection processes and model types are presented according to data types
(carried out separately for each phenotype).

Cross validation
subset Variable selection

Further data
reduction Model

In-data/goodness
of fit

Out-data/out-of-sample
prediction

Pheno-type-1 Pheno-type-2 Pheno-type-1 Pheno-type-2

SFP-data

Split-sample None Shrinkage3 Indicator
model

0.84 0.83 20.05 0.08

(0.74) (0.81) (20.12) (0.01)

Best performance in DREAM5 NA NA NA NA

k ( = 5) fold cross
validation

T-test based1 None Non-indicator
model7

0.44 0.49 0.33 0.26

(0.34) (0.47) (0.25) (0.26)

Vague prior4 Indicator
model8

0.44 0.59 0.33 0.25

(0.34) (0.56) (0.25) (0.25)

Expression-data

Split-sample Correlation based2 Shrinkage3 Indicator
model

0.79 0.88 0.22 20.06

(0.77) (0.86) (0.26) (0.03)

Best performance in DREAM5 NA NA (0.31) (0.26)

k ( = 5) fold cross
validation

Correlation based2 Supervised
PCA5

Non-indicator
model

1.00 1.00 0.36 0.37

(0.88) (0.88) (0.32) (0.32)

Common subset
selection6

Non-indicator
model7

0.48 0.71 0.41 0.47

(0.42) (0.66) (0.36) (0.38)

Common subset
selection6 and
vague prior4

Indicator
model8

0.46 0.69 0.39 0.47

(0.40) (0.62) (0.33) (0.38)

SFP and Expression-data

Split-sample Genes: Correlation
based2

Shrinkage3 Indicator
model

0.91 0.94 0.19 0.18

(0.91) (0.92) (0.31) (0.24)

Best performance in DREAM5 NA NA (0.31) (0.24)

k ( = 5) fold
cross validation

SFP: T-test based1

Genes: Correlation
based2

Common subset
selection6

Non-indicator
model7

0.63 0.87 0.52 0.50

(0.57) (0.84) (0.48) (0.45)

Common subset
selection6 and
vague prior4

Indicator
model8

0.61 0.77 0.48 0.47

(0.56) (0.73) (0.44) (0.42)

Pearson-correlation is presented first followed by Spearman correlation within brackets.
1SFPs are ranked according to their (absolute) t-statistics (marginal) and entries are selected from top.
2Genes are ranked according to their (absolute) correlation between expression and phenotype. The top 10% were selected. Expression information on 260 plants used
for this purpose.

3Shrinkage parameter based (a-priori independent) prior distribution for inclusion-indicator variable in model was used with shrinkage of 0.1 for SFPs and 0.01 for gene
expression data.

4Vague/Uniform(0,1) prior distribution for inclusion-indicator variable in model was used for individual SFP/gene.
5Top components from PCA of the gene expression data involving only those genes selected first based on phenotype/expression correlation.
6Correlations of expression with phenotype were computed for each gene based on a) all 260 plants in the data b) also for each of the 5 learning sets created by 5-fold
cross validation. Genes common in these 6 sets with highest correlation were identified and top subsets used for analysis.

7The results presented are the best using a top subset for each phenotype separately. The cumulative top sets were created and explored for prediction with up to 50
SFPs and/or 100 gene expression measurements.

8Predictive results obtained using the same top subset producing best results with a non-indicator model, however since the model is indicator based the effective
number of covariates are less than that used in the non-indicator based model.

doi:10.1371/journal.pone.0026959.t001
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model is simple (e.g. as basic a model as regression). Both these

problems can be reduced by appropriate choice of covariates/

explanatory variables. For association studies, applications of

state-of-the-art statistical variable selection methods have been

carried out wherein the models include all markers simulta-

neously [22–23]. It is also known that in high-dimensional

problems with small sample size, use of pre-selection methods

(e.g., variable ranking methods; [24]) to carefully select subset of

predictors as inputs for more advanced methods improves

predictions [25].

The kind of data that we have used here is becoming more

commonly available and it has both the above aspects, that is

studying association aspect is of importance as well as putative

covariates from high throughput techniques are available where

actual sample size is comparatively not large. Thus exploring

appropriate variable selection becomes essential for useful further

application of models thus developed. The following alternative

strategies were considered.

SFP data-shrinkage
The size of the original marker set was not large, covering 941

SFP measurements for each plant, and thus drastic initial steps to

reduce size may not be necessary. In our initial attempt, a

shrinkage parameter value of 1/10 was used as prior probability of

inclusion into the regression model for each SFP individually (see

model 1 above). This corresponds to a-priori assumption of

approximately 100 SFPs to be effective in the model.

SFP data-t statistics
Alternately SFPs are ranked according to their (absolute) value

of the t-statistic which was used to measure the marginal relevance

of an SFP to predict a phenotype and this is repeated for each

phenotype separately. The two phenotypes produced rather

different rankings of the SFPs according to this criterion. The

cumulatively chosen top subsets of SFPs were then used in the

predictive model for each individual phenotype separately.

SFP data-Indicators with vague-prior
The t-statistic described above is only measuring marginal

predictive performance and therefore a subset of SFPs selected

based on their marginal significance may result including some

redundant predictors into the model. Thus in addition to the t-

statistics a further reduction or control on inclusion can be

achieved by assigning indicator variables to control inclusion of

markers in the model. The indicator variables were assumed to

have inclusion probabilities distributed as Uniform(0,1) distribution.

Thus if a subset of size k top SFPs are included in the model then

prior inclusion probability further assumes a-priori that only k/2

markers are effective in the model.

Expression data – phenotype/expression-correlation
The genes are ranked according to their (absolute) correlation

between transcript abundance and phenotype measurements over

the plants. Information on all 260 plants, with expression data,

were used for this purpose and top 10% genes were selected as a

primary set of genes for all expression data related analyses. Once

again the lists were specific for each phenotype.

Expression data - shrinkage
Similar to the SFP data shrinkage parameter based on (a-priori

independent) degenerate prior distribution for inclusion of a gene

in the model was used with prior shrinkage probability of 0.01 for

gene expression data.

Expression data-subset selection
The k-fold cross validation method creates k learning sets and

phenotype/expression correlation for each of these subsets of

individuals (in a particular learning set) was derived. A surprising

amount of variability was noticed amongst the top genes thus

listed. Only 237 genes for phenotype-1 and 180 genes for

phenotype-2 were common in all 5 subsets amongst the top 5%

genes. Then top genes common in all 5-lists were cumulatively

taken to form subsets (for each individual phenotype separately).

Alternatively, bootstrap re-sampling technique may be used to

estimate the variability in phenotype/expression correlation of

genes. In this method, the selection procedure would be

independent of choice of specific k-fold stratification of the data

and genes found to have high variation among the (correlation-

wise) top genes may be avoided for further analysis. This strategy is

somewhat related to so called ‘‘stability selection’’ of [26] which

considers variable selection problem to decide which subset of

variables to choose while our interest here is in out-of-sample

prediction. While the above strategy is fine from variable selection

point of view, it suffers from ‘‘use-of-data-twice’’ type of treatment

from prediction point of view. This is because the test set data is

already used once to determine variability of the candidates in the

learning stage. For possible solution, see the Discussion section.

Expression data-Indicators with vague-prior
Similar to marginal testing of SFPs, subset selection based on

the highest phenotype/expression correlation will also result in

some redundancy among selected predictors in the model. Similar

to that applied to the SFPs, further stringency on inclusion in the

model is attempted for gene expressions by introducing suitable

indicator variables with vague prior probabilities.

Expression data – supervised PCA
Principal Component Analysis (PCA) was carried out for the

expression measurements of the top 10% genes first selected based

on the highest marginal phenotype/expression correlation. The

top principal components explaining majority of the phenotypic

variation are then used as predictors in the model. This method is

known as supervised PCA [27].

It was noted that most of the genes pertaining to the 941 SFPs

on which genetic data was collected were also present in the set of

genes for which expression measurements were collected. As an

essential part of variable reduction effort it was investigated if the

information conveyed by the two types of data has redundancy so

that only unique information from both can be used. However the

marginal signals as captured by the t-statistics of the SFPs and

phenotype/expression correlations of the genes have no evident

relationship/connection with each other in two phenotypes (see

Figure 3). In the scatter plots of Figure 3, pairing of each SFP and

gene expression was done based on the common probes. Thus,

both types of data on these common genes were considered to

carry complementary information on further analyses.

Sampling variability related issues
It is known that because of high degree of variability in

expression of genes across samples, it is often difficult to capture a

truly representative sample through handful of subjects. The

current data make no exception in this.

To assess the effect of variability of gene expression on the

predictive ability of the respective gene, we carried out a bootstrap

re-sampling exercise. Predictive ability of a gene was quantified by

a (Pearson) correlation between transcript abundance and

phenotype over the re-sampled plant data sets of each gene. This

Bayesian Prediction of Quantitative Traits
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effort indicated the likely independence between the mean and the

standard deviation of such correlations. That is a gene can have on

an average high correlation with phenotype but could have any

possible variation (across re-sampled data sets) and similarly the

most stable genes (across re-sampled data sets) can have any

degree of predictive ability (See Figure S1 and Text S1 in

Supporting Information). In such data sets, good performance in

the sense of having high correlation and high stability at the same

time would be difficult to achieve without utilizing test set

information already in the learning stage as was done above in the

Expression data-subset selection.

Results

Prediction based on SFP data only
Correlations between observed and predicted phenotype values

in Figure 4 indicate the following: In-data prediction for both

phenotypes improves with increase in number of SFPs in the

model. Out-data prediction for phenotype-2 improves (in general)

with larger number of SFPs in the model. Out-data prediction for

phenotype-1 however improves only up to a small number of SFPs

(around 15–20) in the model. As expected, deviance always seems

to improve with more SFPs in model which basically reflects the

gain in goodness-of-fit or quality of in-data prediction (Figure 5).

Prediction based on only expression data
Correlations between observed and predicted phenotype values

indicate that in-data prediction for both phenotypes improves with

increase in number of genes in the model (Figure 4). Out-data

prediction for phenotype-2 improves (in general) with larger

number of genes in the model. Out-data prediction for phenotype-

1 however behaves non-monotonically with increase in number of

genes. As before deviance improves with more complex model

(Figure 5).

Prediction based on joint SFP and expression data
As before the picture based on correlations between observed

and predicted phenotype lead us to conclusions similar to above:

including more predictors in the model improves prediction

accuracy (Figure 4). Phenotype-2 out-of-sample prediction does

get better with increased complexity/size of model, whereas

limited number of markers are preferred for phenotype-1.

Goodness-of-fit as measured in-data prediction or deviance

improves with increase in number of either SFP or genes with

expression data (Figure 5).

From different data types analyzed here, we can roughly say

that, use of both data types simultaneously improves out-data

prediction accuracy compared to the accuracy obtained using only

a single data type at a time (Table 1). This is in line with suggestion

of [1], but differs from what we have earlier seen in association

study context [17] or with the view that impact of genetic

polymorphisms on phenotypes operate indirectly via the gene

expressions (intermediate phenotypes) [28–29]. In terms of

Pearson correlation coefficient, prediction accuracy for pheno-

type-1 improved from 0.41 to 0.52 in one of our models and from

0.39 to 0.48 in another model (Table 1). For phenotype-2, we do

not see similar advantage for out-sample prediction accuracy as for

phenotype-1.

Benefits of Variable Selection
The models attempting to use entire or most part of the data

without adequate subset selection produces near perfect within-

data fit, but they could easily perform poorly in prediction of

unseen data (Table 1). Thus, a careful subset selection of predictors

would be essential in building a good predictive model which is

also visible in our results.

After applying t-test/correlation based pre-selection of the

markers we further compared performances of the indicator

models (i.e. with random variable prior probability) and non-

indicator models (i.e. degenerate distribution with extreme values

for prior probability) with different choices of parameters. It

appeared that if the effective numbers of covariates are kept same

in indicator and non-indicator model the indicator model

produces better in-data prediction and comparable out-data

prediction. This is not surprising since to make the effective

number of covariates comparable in the two models the potential

set of SFP and/genes for indicator model will be larger allowing

the model to explore more complex models yielding better in-data

prediction. To remove this added advantage of the indicator

models and make the comparison more stringent we applied

indicator models on the same subsets of SFPs and/genes that

produced the best results (among the ones explored here) with the

non-indicator model. It should be noted that thus the indicator

models effectively uses approximately only half the covariates due

Figure 3. Scatter plots of SFP-specific t-statistics and phenotype/expression correlations of the probes common between the SFP
data and gene expression data.
doi:10.1371/journal.pone.0026959.g003
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to the added prior on indicator probability. Surprisingly the

indicator models produced equally good or comparable results for

out-data prediction (Table 1).

It is expected that since the indicator-based model is able to use

and explore larger set of prospective predictors compared to

(fixed/pre-specified) non-indicator model it would be able to

provide insight in choice of preferable sets of covariates.

Unfortunately from this aspect the results on this particular data

were not helpful.

However comparison of variable selection measures as given by

t-test/(absolute) correlation (i.e., marginal estimates) and posterior

estimates of relevance from joint distribution based on vague

Figure 4. Correlations calculated between observed and predicted phenotypes with varying numbers of covariates in the model.
doi:10.1371/journal.pone.0026959.g004
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priors (i.e. joint estimates) based on indicator models were carried

out. The relevance measures used here are weighted genetic

variation for SFPs [16] and weighted coefficient for gene with

expression measurements. These quantities are simply calculated

as indicator times the coefficient (or the absolute difference

between two coefficients). As we know the joint and marginal

behaviors does not necessarily need to have any relationship.

However, there are linear relationships with significant coefficients

in most cases, in particular for phenotype-1 (Figure 6), noted

exception being for phenotype models involving gene expression

data. Thus although a direct application of indicator model was

not useful in providing information on the overall number of

variables that would suffice to predict the phenotypes well, still the

estimated inclusion probabilities of individual predictors show

partial concordance with the marginally selected sets of predictors.

This could be indicative that large number of interaction effects

may not be present in the underlying genetic architecture of the

trait. A smaller but significant set of interactions might of course be

very well useful.

Gene-set enrichment analysis
Most of the published works on gene-set enrichment analysis are

based on situations where phenotypes have distinct categories of

outcome, like cancer types, or treatment/control etc [30].

However for the current problem the phenotype of interest has

continuous outcome, thus making it difficult to obtain single

measurements representing enrichment of those gene sets that are

meaningful biologically and also contributes critically in ‘‘predic-

tion of the phenotype’’.

Thus, we studied chromosomal level enrichment of genes and

enrichment of the gene sets involved in different biological

processes [31]. This was done by collecting Gene Ontology

(GO) and chromosomal annotations from public databases for the

genes on which we have expressions or SFP measurements

available in the current data set. The different nature of the

explanatory covariates used in the model, viz. SFP and expression

data, made it further difficult to provide a consolidated enrichment

picture of the underlying processes.

Therefore we summarized the enrichment of these genes from

two complimentary contributions by them. Based on the genetic

data the summary measure reflects criticality of the average

genetic variation in a particular gene-sets in prediction of

phenotype. This is measured by the average weighted genetic

variation of the SFPs involved in the process. The expression data

on the other hand enables us capture the functional variability of

the genes involved in a process. The coefficient of a particular

gene in the predictive model captures individual contribution of

that gene in the prediction. However these when averaged over

several genes involved in a pathway might present altogether a

different picture. This is measured by the weighted coefficients

for the genes involved in the process and was calculated jointly

for the gene set.

Firstly note that both these measures include probability of

enrichment as well as magnitude of enrichment. Secondly the

contribution of any gene/marker could very well be affected by

presence or absence of other genes and/or markers in the model.

As a result, as we will see in subsequent exploration, results and

interpretations may very well have to be context specific.

For biological processes, the nature of the inclusion coefficients

(corresponding to gene expressions) remained broadly the same in

presence and in absence of SFPs in the model and this seems to

the case for both phenotypes. (Average) weighted genetic

variations of the SFPs however do differ with and without

expression data in model. Also this departure is not similar for the

two phenotypes (Figure 7). For phenotype-1 the effect is mostly in

the magnitude where the pattern over different processes

remaining the same. For phenotype-2 both the pattern and

magnitude were affected.

The comparative pattern of chromosomal level enrichment

picture based on SFPs is somewhat opposite to what was observed

for the biological processes. That is, the presence or absence of

gene expression information in the predictive model affected to the

magnitude of the weighted genetic variation for phenotype-2,

whereas the estimates for phenotype-1 under the two models

appeared to be roughly mirror images of each other (Figure 8).

As mentioned earlier the joint and marginal behaviors of the

covariates need not be comparable. Also joint behavior depends

on the presence of set of other covariates in the model. We have

explored the joint and marginal nature of the different types of

covariates with respect to their biological attributes. For example,

gene ontological information on top SFPs and genes selected based

on joint and marginal estimates of relevance were considered

(Tables S1 and S3 in Supporting Information). For SFPs (treating

each phenotype separately) three different relevance measures

were considered 1) marginal t-test, 2) weighted genetic variation

estimated from (indicator) model with SFPs only and 3) weighted

genetic variation estimated from (indicator) model with SFPs and

expression data. Similarly for gene expression data three different

relevance measures were considered 1) correlation, 2) weighted

inclusion coefficient estimated from (indicator) model with

expression data only and 3) weighted inclusion coefficient

estimated from (indicator) model with SFPs and expression data.

SFPs in top ten according to any one of these measures were

considered as top in the overall list. Also the biological processes

annotated in the top covariates SFPs were also obtained (see Table

S2 for SFPs and Table S4 for gene expression in Supporting

Information).

Discussion

Using RIL data of Soybean, we have compared different

strategies to select important subset of SFPs for phenotype

prediction using two different pathogen phenotypes. The ability

to predict complex phenotypes from genotyping and/or gene

expression is a keys aspect that could lead to personalized

medicine. Our initial attempts to analyze this data and predict the

phenotypes were found to be the best among those participating in

DREAM5-Systems Biology B3 challenge.

Figure 5. Deviance (in vertical axis) with varying number of
SFPs (in X-axis) and expression data (in Y-axis) into the model.
doi:10.1371/journal.pone.0026959.g005
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Rapid advancements in laboratory techniques have made it

possible to affordably produce large amount of genomic molecular

marker and expression data. The simple statistical screening

methods to find phenotype-genotype association or phenotype-

expression association are still much used in practice because high

dimensionality of the genomic data prevents use of more advanced

statistical variable selection methods due to their computational

demands.

The results indicate that indicator-based model without any

preconditioning could provide perfect fit for the given data but

Figure 6. Comparison of variable selection measures. In axis (absolute) t-statistic/correlation (i.e. marginal estimates) are presented and in Y-
axis estimated weighted genetic variation (for SFPs) or weighted coefficients (for genes) from joint distribution based on vague priors (i.e. joint
estimates) are presented.
doi:10.1371/journal.pone.0026959.g006
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might perform poorly when extrapolated for unseen data.

However similar indicator models combined with judiciously

carried out variable selection appeared to provide the best (or near

best) predictive results for all data types considered in the

illustration.

With increasing availability of genomic high-throughput data

along with the shift in our objective of simple biomarker

identification to phenotype prediction, the problems (in predictive

ability of the model) as experienced here is expected to occur in

other situations as well. That is we believe that these problems are

not specific to the data or problem at hand. Thus we felt it would

be useful to explore different intuitive and rigorous variable

selection and/or data reduction techniques. Keeping in mind that

there is also the added complexity of differing data sources/types it

was essential to make these investigations context specific. Attempt

was made to strike a balance in exploring different methods and

use of different sources of information.

Certain peculiarities in the phenotype distributions were also

noticed, in particular for the first phenotype. The first phenotype

seemed to have heavier right tail. For the current analyses an a-

priori Normal distribution was assumed which in combination of

prior distributions of coefficients and other parameters in the

model constituted a Student’s t-like distribution with heavier tails.

It is known that although t-type distributions allow more mass to

the tails than the Normal distribution they are symmetric.

However the first phenotype appears to be asymmetric when

compared to the second phenotype measured from the same

subjects. This could very well be the reason why predictive

performance for the first phenotype is consistently poorer than the

second phenotype in all the different data and variable selection

efforts explored here. Thus, use of skewed distributions (like

Gamma) might be worth exploring in the future.

Lack of stability among selected variables in high-dimensional

data could influence the performance of any predictive model.

Because a degree of variability (across samples) in data type like

gene expression might be high, it is unrealistic to expect a finite

(often small sized) learning set to truly capture/reflect the

underlying variability. Thus more often than not test sets elements

would fall outside the data domain (e.g. as is captured by the

Regressor Variable Hull for multiple regression; [32]) of the

learning set. While testing performance of a predictive model one

might attempt to circumvent this issue by creating appropriate

learning and test sets, where test set would not fall in the region of

extrapolation compared to the sample in the learning set. For

small set of selected regressors and with sufficiently large data this

can be achieved by using the properties of Hat matrix [32].

However it is not suited for high-dimensional data as we have here

and thus it is an open problem. A small demonstration has been

provided in the Supporting Information (see Figure S2 and Text

S1).

The methodological contribution of this paper is in exploration

of variable selection techniques to alleviate the problem of over-

fitting. All the models based in careful variable selection procedure

were found to produce significant results based on permutation

test. Different strategies based on the nature of covariates were

explored and all methods were implemented under the Bayesian

Figure 7. GO biological process enrichment estimated using indicator model (with 100 SFPs and/or 200 gene expressions).
doi:10.1371/journal.pone.0026959.g007
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hierarchical modeling framework with indicator-based covariate

selection.

Supporting Information

Figure S1 Plots of gene-frequencies for different values of mean

and variances of correlations. Bootstrap samples of size 200

(plants) were taken from the 260 plants. Correlation between each

gene’s expression and phenotype was calculated for each such

subsample. Then for each gene mean and stander deviation (std.)

over 100 such bootstrap subsamples were computed. Below top

row pertains to phenotype-1 and bottom row pertains to

phenotype-2. Note that the horizontal axis with negative values

represents mean and the horizontal axis with positive values only

represent the standard deviation. Left panel: Equidistant bin

points were identified for mean and std., (%) frequency of genes in

these categories were cross tabulated and plotted. Right panel:

Equal percentile points were identified for mean and std., (%)

frequency of genes in these categories were cross tabulated and

plotted.

(TIF)

Figure S2 Correlations between out-of-sample predictions and

corresponding observed values of phenotypes were computed for a

wide range of models under two different learning set creation

schemes. The two schemes for learning and testing creations are as

follows. In the first scheme k( = 5) equal sized folds (of 52 samples)

of the total sample (of 260) were created focusing on homogeneity

of phenotypes only across the folds. In another scheme attempts

were made to assure that the samples in test set are not in the

region on of extrapolation of the learning set. This was done by

partial homogenization of the samples using PCA. In this method

the learning set was of size 208 and the test set was of 52. For data

reduction and predictive model formation, Supervised principal

component analysis (SPCA) followed by multiple regression was

carried. Input variables in the regression model were selected

based on 48 different cut-off values on correlation and 34 different

choices on number of principal components to use as predictors.

In all 1632 models were attempted for each scheme of test set

creation. For both K-fold and split sample method, no information

from test set was used to carry out data reduction or to form the

predictive model. Top row-1 presents results for phenotype-1 and

the bottom row those for phenotype-2. Note that the left pane

presents results corresponding to 5 fold validation and the right

panel presents those for split sample analysis.

(TIF)

Table S1 Gene Ontological information on top SFPs selected

based on joint and marginal estimates of relevance. For each

phenotype separately three different relevance measures were

considered 1) marginal t-test, 2) weighted genetic variation

estimated from (indicator) model with SFPs only and 3) weighted

genetic variation estimated (indicator) model with SFPs and

expression data. SFPs in top ten according to any one of these

measures were considered as top in the overall list.

(DOC)

Figure 8. Chromosomal enrichment estimated using indicator model (with 100 SFPs and/or 200 gene expressions).
doi:10.1371/journal.pone.0026959.g008
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Table S2 The biological processes annotated in the top SFPs

(see table S3 for description of top SFPs) with number of SFPs with

the respective annotation.

(DOC)

Table S3 Gene Ontological information on top genes selected

based on joint and marginal estimates of relevance. For each

phenotype separately three different relevance measures were

considered 1) correlation, 2) weighted inclusion coefficient

estimated from (indicator) model with expression data only and

3) weighted inclusion coefficient estimated (indicator) model with

SFPs and expression data. Genes in top twenty according to any

one of these measures were considered as top in the overall list.

(DOC)

Table S4 The biological processes annotated in the top genes

(see table S3 for description of top genes) with number of genes

with the respective annotation.

(DOC)

Text S1 Contains further notes on supplementary Figures S1

and S2.

(DOC)
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