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ABSTRACT
The exploration of drug-target interactions (DTI) is an essential stage in the drug
development pipeline. Thanks to the assistance of computational models, notably in
the deep learning approach, scientists have been able to shorten the time spent on
this stage. Widely practiced deep learning algorithms such as convolutional neural
networks and recurrent neural networks are commonly employed in DTI prediction
projects. However, they can hardly utilize the natural graph structure of molecular
inputs. For that reason, a graph neural network (GNN) is an applicable choice for
learning the chemical and structural characteristics of molecules when it represents
molecular compounds as graphs and learns the compound features from those graphs.
In an effort to construct an advanced deep learning-basedmodel for DTI prediction, we
propose Deep Neural Computation (DeepNC), which is a framework utilizing three
GNN algorithms: Generalized Aggregation Networks (GENConv), Graph Convolu-
tional Networks (GCNConv), and Hypergraph Convolution-Hypergraph Attention
(HypergraphConv). In short, our framework learns the features of drugs and targets by
the layers of GNN and 1-D convolution network, respectively. Then, representations
of the drugs and targets are fed into fully-connected layers to predict the binding
affinity values. The models of DeepNC were evaluated on two benchmarked datasets
(Davis, Kiba) and one independently proposed dataset (Allergy) to confirm that they
are suitable for predicting the binding affinity of drugs and targets.Moreover, compared
to the results of baseline methods that worked on the same problem, DeepNC proves
to improve the performance in terms of mean square error and concordance index.

Subjects Bioinformatics, Drugs and Devices, Computational Science, Data Mining and Machine
Learning
Keywords Drug-target interaction, Binding affinity, Drug discovery, Deep learning, Graph neural
networks, Cheminformatics

INTRODUCTION
Cheminformatics in drug discovery
The great increasing of data in the field of chemistry over the last few decades has been
witnessed, as well as the data science approaches created to analyze it. In this uprising,
machine learning is still the most significant tool for analyzing and understanding chemical
data (Lo et al., 2018). Machine learning is a branch of artificial intelligence that targets at
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developing and using computational models to learn from data and to also generate more
new data. Machine learning, particularly deep learning, is becoming progressively more
important in operations that deal with large amounts of data, such as drug discovery.

Drug discovery is the work carried out to find the functions of bioactive compounds
for the development of novel drugs, i.e., searching for the candidates for new medicines
(Tran et al., 2021). Traditionally, drug discovery can be considered an iterative screening
process. First of all, the biochemical target is chosen; it should be known that target is a
biomolecule of an organism that can be bound by amolecular structure and has its function
modulated (Rifaioglu et al., 2019). The next step is to find, through chemical experiments,
the compounds which interact with chosen target; these compounds are then called hits. A
hit is pretty far from having an approved novel medical drug, however, it can be considered
potential to be a drug candidate. Various wet-lab experiments will be performed to achieve
validated hits—the hits with acceptable robustness, and then the leads—the subset of
validated hits selected by parameters such as patentability and synthesizability. Many more
examinations will be carried out to see which lead has physical and chemical properties
such that it can be used in practice, resulting in having a smaller set called optimized leads.
Finally, optimized leads will go through toxicity tests to become clinical candidates (Chan
et al., 2019).

Considering the daunting tasks and large costs of the drug discovery process,
computational applications become potential to be assisting tools in many stages of
the process. This purpose is one of the motivations for the creation and development of
cheminformatics field.

Cheminformatics is the domain where scientists adopt computer science techniques
and tools to solve the problems in chemistry. It is a crucial research topic in drug discovery
and drug development, since it focuses on challenges like chemical information analysis, as
well as molecular data exploration. In the progressive cheminformatics, machine learning
and deep learning are widely applied to method huge chemical knowledge and to get
novel drugs. However, there is still an existing challenge which is that classical machine
learning algorithms require data of a rigid format, e.g., vectors of fixed length, which is not
enough to describe chemical structures. The amount of research that requires deep learning
techniques to learn important structural information of chemical data are increasing. Thus,
algorithms particularly designed to handle graph data are earningmore andmore attention.
Such algorithms are presently known as graph neural networks (GNN).

The rest of this article briefly covers the works of GNN from the beginning days until the
up-to-date researches and significant applicable research works in cheminformatics. The
overall architecture of the proposed model using GNN contains detailed information from
the experimental work: data collecting and processing, selection of evaluation metrics, the
results of training an discussion. The article ends with the concluding remarks.

Research contributions
In this study, we introduce a deep learning-based framework for DTI prediction, which
we call DeepNC. We utilized three GNN algorithms: Generalized Aggregation Networks,
Graph Convolutional Networks, and Hypergraph Convolution-Hypergraph Attention,
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which were originally proposed in the research works by Li et al. (2020), Kipf & Welling
(2017), and Bai, Zhang & Torr (2021), respectively. These algorithms play an important
part for the whole model in the stage of learning the graph-based input data and creating
graph-based representation of that data.

The study also presents an independent drug-target binding affinities dataset which is
called the allergy dataset. The purpose of building the allergy dataset is to create a novel
DTI collection that can be put in computational DTI prediction models, serving the aim
of searching for new potential allergy drugs. In our scope of research, we defined allergy
drugs as the approved drugs that are able to treat allergic reactions in humans; each allergy
drug has one or more targets which are known as allergy drug targets. The dataset contains
these allergy drug targets and the compounds that have appropriate binding affinity values
towards these targets. The construction of this independent dataset will be further explained
in ‘Datasets’’ section.

PRELIMINARIES
Graph neural networks
Graphs are a form of knowledge whose structure contains a group of nodes, which
represent a group of objects, and a group of edges linking them, which symbolize the
objects’ relationship. In recent times, as a result of robust communicative power of graphs,
analyses of data science processing graphs with machine learning are abundant and being
more developed and progressed, i.e., graphs may be used as representations in various areas
such as social networks (Kipf & Welling, 2017; Hamilton, Ying & Leskovec, 2017), physical
systems (Sanchez-Gonzalez et al., 2018; Battaglia et al., 2016), protein-protein interaction
networks (Fout et al., 2017), knowledge graphs (Hamaguchi et al., 2017), and plenty of
different research areas (Dai et al., 2017).

One of the most basic model of graph neural network was introduced by Scarselli et
al. (2009). The framework suggests that the propagation functions be applied repeatedly
until the node’s representations reach a stable state. A node v in the graph is characterized
by its state embedding hv ∈ RD and related nodes; respectively, an edge e is associated
with its edge features he ∈ RC . This GNN fundamental function is to learn and to create
an embedding hv for the state of the node v. The embedding is a vector of b-dimension
that contains information of node v ’s neighborhood, and is next applied to calculate and
construct an output embedding ov .

Graph convolution network
The architecture of Graph Convolution Network (GCN) was one of the early frameworks
introduced by Kipf & Welling in the research work Kipf & Welling (2017). This graph
convolution network was constructed based on the fundamental rule that says the features
of each node in a message-passing layer are updated by aggregating the features of its
neighbours. Kipf proposed a layer-wise propagation rule as that can be applied on a graph
convolutional network of many layers. The rule is written as follow:

H (l+1)
= σ (D̃−

1
2 ÃD̃−

1
2H (l)W (l)) (1)
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Figure 1 Illustration of a multi-layer graph convolutional network.
Full-size DOI: 10.7717/peerj.13163/fig-1

knowing that H (0 ) = X,W (l) represents a layer-specific trainable weight matrix, σ (.) is an
activation function, H (l)

∈Rn×d is the activation matrix in the l th layer.
For an n-vertice graph, its adjacency matrix is denoted as A ∈Rn×n where:

Aij =

{
1 if eij ∈ E
0 if eij 6∈ E

(2)

and degree matrix is denoted as D ∈ Rn×n where:

Dii= d(vi) (3)

then Ã is computed as Ã = A + IN with IN is the identity matrix and D̃ii=
∑

j Ãij .
The definition of the GCN is demonstrated as:

Z = D̃−
1
2 ÃD̃−

1
2X2 (4)

where 2 ∈RC×F is a matrix of filter parameters with C input channels (i.e., every node
will have a C-dimensional feature vector) and F filters for the feature.

The concept of GCN can be visualized in Fig. 1 in which a graph representation is fed
into convolutional networks to learn the graph output at the l-th layer.

Generalized aggregation graph network
For the purpose of training deeper GCN based on the basic GCN, Li et al. (2020) created a
simple message-passing -based GCN that meets the message-passing requirements. Firstly,
at the l-th layer, we consider thatm(l)

v ∈RD is node v ’s aggregated message,m(l)
vu ∈RD is an

individual message for each neighbor u ∈ N (v) of node v. The neighbor’s message, node
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v ’s aggregated message and its features are updated as following equations:

m(l)
vu = ρ

(l)(h(l)v ,h
(l)
u ,h

(l)
evu) (5)

m(l)
u = ζ

(l)(m(l)
vu ) (6)

h(l+1)v =φ(l)(h(l)v ,m
(l)
v ) (7)

in which ρ(l), ζ (l), and φ(l) are learnable or differentiable functions for respectively message
constructions, message aggregation, and node update at the l-th layer.

Li expanded Eq. (12) by defining the message construction ρ(l) as follow:

m(l)
vu = ρ

(l)(h(l)v ,h
(l)
u ,h

(l)
evu)=ReLU(h(l)u +ϕ(h

(l)
evu) ·h

(l)
evu)+ε (8)

where ReLU is a rectified linear unit that outputs values to be greater or equal to 0; ϕ(.)
is an indicator function giving 1 when there are edge features, and 0 for otherwise; ε is a
small positive constant chosen as 10−7.

The message aggregation ζ (l) function was proposed to be either SoftMax Aggregation
or PowerMean Aggregation. In order to construct these two functions, Li also suggested
a concept called Generalized Message Aggregation Function: a generalized message
aggregation function ζx(.) is defined as that is parameterized by a continuous variable
x to produce a group of permutation invariant set functions. From this definition, they
continued to propose the Generalized Mean-Max Aggregation: ζx(.) is a generalized
mean-max aggregation function if a pair of x = {x1, x2} exists such that for any message,
limx→x1ζx(·)=Mean(·) and limx→x2ζx (·)=Max(·). Given any message set mvu ∈ RD,
SoftMax Aggregation and PowerMean Aggregation are generalized functions respectively
defined as:

SoftMax_Aggβ(·)=
∑

u∈N (v)

exp(βmvu)∑
i∈N (v)exp(βmvi)

(9)

PowerMean_Aggp(·)=

 1
|N (v)|

∑
u∈N (v)

mp
vu

 1
p

(10)

where β is a continuous variable called inverse temperature, and p is a non-zero continuous
variable denoting p-th power.

Finally, in the phase of node update, Li applied a message normalization layer to the
node update function, hence the function Eq. (14) became:

h(l+1)v =φ(l)(h(l)v ,m
(l)
v )=MLP

h(l)v + s ·
∥∥h(l)v ∥∥2 · m(l)

v∥∥∥m(l)
v

∥∥∥
2

 (11)

whereMLP (·) is a multi-layer perceptron, and s is a learnable scaling factor. In practice, s
is set to be a learnable scalar with an initialized value of 1.

Hypergraph convolution and hypergraph attention
Most existing studies on GNNs consider the graphs as simple graphs, i.e., each edge in a
graph only connects two nodes. To describe more complicated graph structure in practical
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Figure 2 Depiction of a simple graph and a hypergraph. (A) A simple graph of six nodes and six edges
(B) The adjacency matrix of the simple graph (A) (C) A hypergraph of seven nodes and three hyper-edges
(D) The incidence matrix of the hypergraph (C).

Full-size DOI: 10.7717/peerj.13163/fig-2

applications, the concept of hypergraph, the case where one edge can link more than two
nodes (vertices), has been further studied. In this case, we can consider G = (V , E) as a
hypergraph of n nodes andm hyper-edges. Each hyper-edge e ∈ E is presented by a positive
weight value Wee and all the weights build up a diagonal matrix W ∈Rm×m. While an
adjacency matrix A, as defined by (9), is used to represent a simple graph, it is an incidence
matrix H ∈Rn×m that is employed to represent the hypergraph G: the element Hie of H is
1 when the hyper-edge e has a link to node vi, otherwise it is 0.

Figure 2 depicts the visual distinction between a simple graph and a hypergraph, which
are (A) and (C), respectively. Each edge of (A), shown by a line, simply connects two nodes
in a basic graph. Each hyperedge of (C), marked by a colored ellipse in a hypergraph,
connects more than two vertices. Matrix (B) and (D) are respectively the representation
form of the simple graph (A) and the hypergraph (C).

In terms of methodology, hypergraph convolution approximates each hyperedge of the
hypergraph with a set of pairwise edges connecting the hyperedge’s nodes, and the learning
issue has been treated as a graph-learning problem on the approximation.

To define a convolution in a hypergraph, Bai, Zhang & Torr (2021) assumed that more
propagation functions should be applied on the nodes linked by a common hyperedge,
and the hyperedges with larger weights deserve more confidence in such a propagation.
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The proposed the hypergraph convolution is demonstrated as:

x(l+1)i = σ

 n∑
j=1

m∑
i=1

HieHjeWeex
(l)
j P

 (12)

where x(l)i is the embedding representation of node vi in the l-th layer, σ is a non-linear
function which can be, for example, eLU (Clevert, Unterthiner & Hochreiter, 2016) and
LeakyReLU (Maas, Hannun & Ng, 2013), and P is the weight matrix between l-th and (l+
1)-th layer. Equation (12) can also be described in a matrix form as:

X (l+1)
= σ (HWHTX (l)P). (13)

Bai also stated that stacking multiple layers like the operator Eq. (20) could result in
numerical instabilities and a possible risk of vanishing gradients in a neural networks.
Hence, a symmetric normalization was imposed on Eq. (19) and made it become:

X (l+1)
= σ (D−

1
2HWB−1HTD−

1
2X (l)P) (14)

where D ∈ Rn×n and B ∈ Rm×m are respectively the degree matrix and hyperedge matrix
of hypergraph G, defined as:

Dii=

m∑
e=1

WeeHie (15)

Bee =
n∑

i=1

Hie . (16)

According to Velickovic et al. (2018) and Lee et al. (2019), hypergraph convolution also
owns a sort of attentional mechanism. However, such mechanism is not able to be learned
nor trained in a graph structure (represented by the incidence matrix H). The purpose of
attention in hypergraph is to learn a dynamic incidence matrix, followed by a dynamic
transition matrix that can better reveal the intrinsic relationship between the nodes. Bai,
Zhang & Torr (2021) suggested to solve this issue by applying an attention learning module
on the matrix H. The overall demonstration of hypergraph convolution—hypergraph
attention is displayed in Fig. 3 as follow.

Related works
As presented in the first section, drug discovery is an essential purpose of the development
of cheminformatics field. Specifically, significant tasks in cheminformatics that are now
strongly supported by computational algorithms, especially deep learning, can include
activity prediction, de novo generation, ADMET prediction, interaction prediction, and
binding affinity prediction.

Activity prediction refers to a type of classification in which we study to see whether a
specific drug has activity against one or more specific targets. A remarkable work in activity
prediction using deep learning was presented byWallach, Dzamba & Heifets (2015). In this
research, Wallach used a deep CNNs model that could learn structure-based molecular
data and succeeded in predicting active molecules against their chosen targets.

Tran et al. (2022), PeerJ, DOI 10.7717/peerj.13163 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.13163


Figure 3 Schematic depiction of hypergraph convolution for a hypergraph of seven nodes and three
hyper-edges.

Full-size DOI: 10.7717/peerj.13163/fig-3

Differently, de novo generation basically aims at generating novel molecules. Leading
in adopting GNNs for de novo generation, De Cao & Kipf (2018) introduced a graph
learningmodel which was originally a GANs (Generative Adversarial Networks) framework
operating on graph data. The model was proved to be able to generate diverse and novel
molecules. For the same objective, Bresson & Laurent (2019) took advantage of graph auto
encoder: they made GCNs layers to learn the representations of molecular data, next
imposed them in a latent space, and then learned to reconstruct them back to graph data.
Moreover, the graph generative model by Lim et al. (2019) successfully learned the scaffolds
of molecules and constructed unseen molecules during learning.

Meanwhile, ADMET prediction is a drug discovery approach that can comprise of
two path of resolution: predictive modeling, and generative modeling. In the scope
of cheminformatics research, ADMET stands for absorption, distribution, metabolism,
elimination, and toxicity, which are fundamental and crucial properties of drug candidates
for their efficacy and safety in practical use. For ADMET prediction, firstly, we decide
the molecular properties that we would like the drug to have. In predictive modeling, we
aim at searching among existing compounds to find the ones that possess such properties.
Suggested deep learning model by Feinberg et al. (2020) using graph convolutional neural
networks had shown that GNN could learn from adjacency matrix and feature matrix of
data to predict ADMET properties with higher accuracy compared to random forests and
deep neural networks. Inversely, in generative modeling, computational models are made
to generate molecules whose properties are matching the expected properties. A notable
work in this problem was the research proposed by Segler et al. (2018).

Similar to activity prediction, ligand-protein interaction prediction is also a classification
problem, but it takes the information of ligand and protein simultaneously. One of early
researches in this approach is suggested by Gonczarek et al. (2018). Their deep learning
architecture was utilized to learn structure-based data of molecules and proteins, and to
predict molecule-protein interaction. Next, the end-to-end model which combined GNN
and CNN introduced by Tsubaki, Tomii & Sese (2019) had proved to earn better evaluation
results than various existing interaction prediction methods, such as a k-nearest neighbor,
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random forest, logistic regression, and support vector machine. In their model, GNN was
applied to learn the ligands’ molecular fingerprints, and CNN was for proteins learning.

Lastly, binding affinity prediction is quite comparable to ligand-protein interaction
prediction. This, however, is a regression problem that provides real values reflecting the
relationship between ligands and proteins. It can be said that ligand-protein interaction
prediction and binding affinity prediction are relatable because the affinity values can tell
how strong the ligand-protein interaction is. In our article, binding affinity is alternatively
referred as drug-target interaction (DTI). Current most studied learning methods for
DTI prediction can be categorized into two approaches: supervised learning-based
methods, for example: the study of Yamanishi et al. (2008), and semi-supervised learning-
based methods, for which the research of Peng et al. (2017) is a remarkable work. One
noticeable DTI prediction outcome came from the research of Karimi et al. (2019): in their
DeepAffinity model, firstly, they engineered associate degree end-to-end deep learning
model combining repeated neural networks (RNN) and convolutional neural networks
(CNN) for learning representations of compounds and supermolecule targets, and for
the prediction of compound-protein affinity; secondly, they expanded the model by using
graph CNN, which is a basic form of GCN, to learn 2-D representations of compounds
from SMILES strings. The latter model with GCN did beat the former one which was
unified RNN-CNN when comparing results, and importantly it has shown that graph data
and graph neural networks are potential for designing deep learning models and affinity
prediction. Separately, other remarkable researches for DTI prediction using GNNs can
include proposed work PADME (Feng et al., 2018) and GraphDTA (Nguyen et al., 2021).
Experimental results from GraphDTA have shown superior performance of GNNs models
over DeepDTA (Öztürk, Özgür & Ozkirimli, 2018) and WideDTA (Öztürk, Ozkirimli &
Özgür, 2019) model, which are also well-known baseline non-GNNs cheminformatics
researches that put the fundamental design for deep learning DTI prediction. The common
characteristic of these four studies (PADME, DeepDTA, WideDTA, GraphDTA) is that
they are all data-driven methods, which means their models are built to automatically learn
the features of the inputs (Abbasi et al., 2020). Beside above frameworks where drugs and
targets features are learned independently and simultaneously, research work of Li et al.
(2021) suggested a new approach when they treated each pair of drug-target as one unit
and learn the representation for each pair by GCN; the affinity values are predicted by a
following deep neural network.

MATERIALS & METHODS
Design of DeepNC
In this section, we are going to explain our proposed model DeepNC whose primary
components are visualized in detail in Fig. 4. Our model comprises of three main blocks:
the first block (1)’s job is to translate the input data into the format that can be fed into the
convolutional layers. For drugs, the input data is in form of SMILES strings and these strings
will be converted into graphs containing information of the drug compounds features;
meanwhile, the input targets which are initially in form of ASCII strings called target
sequence will be embedded into vector representation for the next 1-D convolutional layers.
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Figure 4 Diagram of proposed DeepNC architecture.
Full-size DOI: 10.7717/peerj.13163/fig-4

Next, the second block (2) contains convolutional layers that will learn the drugs and targets
features: GNNs layers learn drugs features to create drugs graph-based representation and
at the same time, 1-D convolutional layers learn targets features to generate targets
representation. In the third block (3), the representations are concatenated and fed into
fully connected layers to calculate the binding affinity values. Details of each block will be
discussed in the following sub-sections.
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Representation of drug
To connect chemistry language with computing language, we employ SMILES, which
represents molecular compounds as ASCII characters strings, to be the format of input
drugs data. SMILES stands for Simplified Molecular-input Line-entry System—a system
that denotes chemical compounds as line notation: molecules are described in alphabets
and characters.

The SMILES strings of drug compounds will be converted into molecular graphs which
contains important features of drugs and which is the data format that can be fed into
GNNs layers. Eachmolecular graph has to have these information: the number of atoms (of
the compound), atom features and edge index. In graph-learning language, edges represent
the bonds between atoms and the atoms are alternatively called nodes. Atom features of
a molecule is a set of features describing a node in the graph. In this study, we used five
classes of information to demonstrate atom features: the atom symbol (symbols that are
present in the SMILES strings), the number of adjacent atoms, the number of adjacent
hydrogen, the implicit valence of the atom and whether the atom is in aromatic structure.
In order to create molecular graphs from SMILES for learning tasks, we employed RDKit
(RDKit, 2022) and PyTorch (Paszke et al., 2017).

Representation of target
In studied drug-target datasets, each target is demonstrated in a protein sequence. Such
sequence is an ASCII string representing amino acids and is obtained from UniProt
database (Jain et al., 2009) using the target’s gene name. Specifically, there are 20 amino
acids in nature which contribute to create a protein.

Drug-target interaction
Interaction between a drug and a target can be recognized by the value of binding affinity.
Binding affinity is defined as a measurement that can be used to estimate the strength
of the interaction between a single biomolecule and its binding partner, which is also
termed as ligand. It can be quantified, providing information on whether or not molecules
are interacting as well as assigning a value to the affinity. Typically, when measuring
binding affinity, researchers are interested in several parameters, but mostly in the unit of
measurement called the dissociation constant (Kd), which defines the likelihood that an
interaction between two molecules will break (Gilson, 2010).

Graph convolutional layers
The proposed DeepNC framework includes two variants namely GEN and HGC-GCN,
as shown in the diagram in Fig. 3. The variant GEN contains three GENConv layers and
one global add pooling layer, while the variant HGC-GCN contains 2 HypergraphConv
layers, one GCNConv layer and one global max pooling. These layers are used to produce
graph-based representation of input drugs.

GENConv is a generalized graph convolution layer adopted from the research work (Li
et al., 2020) which has earlier been mentioned in Generalized Aggregation Graph Network.
From formula Eqs. (7) and (11), we simplified the message construction function as:

x ′i =MLP(xi+AGG{(RELU (xj+eij)+ε|j ∈N (i)})) (17)
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Figure 5 Diagram of a GENConv layer.
Full-size DOI: 10.7717/peerj.13163/fig-5

Table 1 Summary of studied datasets.

Datasets Number of
targets

Number of
compounds

Number of
interaction
pairs

Davis 442 68 30056
Kiba 229 2111 118254
Allergy 35 286 372

whereMLP (·) is a multi-layer perceptron and the aggregation scheme to use is softmax_sg.
The global add pooling layer in GEN returns batch-wise graph-level-outputs by adding
node features across the node dimension. The GENConv layer can be depicted by Fig. 5.

HypergraphConv is a hypergraph convolutional operator adopted from the research
work (Bai, Zhang & Torr, 2021) which has been explained in Hypergraph Convolution and
Hypergraph Attention. The operator is simplified from Eq. (13) and presented as:

X ′=D−1HWB−1HTX2 (18)

where H ∈{0, 1}N×M is the incidence matrix, W ∈RM is the diagonal hyperedge weight
matrix, and and D, B are the corresponding degree and hyperedge matrices. An attention
will be added to this layer. Illustration of a HypergraphConv layer has been shown in Fig. 3.

GCNConv is a graph convolutional layer extracted from the research (Kipf & Welling,
2017). The operator of the layer is written as:

X ′= D̂−
1
2 ÂD̂−

1
2X2 (19)

Datasets
Our proposed model is evaluated on two different datasets: Davis and Kiba. Numbers
of compounds and targets of each dataset are noted in Table 1. Davis is a Kinase dataset
that was introduced by Davis et al. (2011), containing 25,046 pairs of drug-target having
binding affinities measured as Kd with values ranging from 5.0 to 10.8 (nM). Meanwhile,
Kiba dataset was contributed by Tang et al. (2014), and it has binding affinities measured
as Kiba score with values ranging from 0.0 to 17.2. The SMILES strings of compounds from
both datasets were originally obtained from the PubChem compound database (Wang et
al., 2017) based on their PubChem CIDs and their protein sequences were extracted from
the UniProt protein database.

Beside two above baseline datasets, we are building a potential dataset called ‘allergy
drugs’ dataset and also involving it in training and evaluating DeepNC. This dataset are
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formed by firstly investigating and collecting the drugs which are used to treat allergic
reactions, which are referred as ‘allergy drugs’ in this research, and their respective targets;
the list of allergy drugs and their targets is achieved from DrugBank; secondly, finding
and aggregating the ligands that have interactions with the allergy drug targets and noting
down together with their Kd values. Specifically, chosen ligand-target pairs have Kd ranging
from 1.0 to 15.0 (nM). SMILES strings of compounds and Kd values were extracted from
BindingDB database and the target sequences were extracted from the UniProt protein
database based on accession numbers. Motivated by the aim of searching for medication
solutions for allergies treatment, this proposed dataset is our effort in contributing in the
research and discovery of allergy drugs. Summarized information of this independent
dataset is also noted in Table 1.

Evaluation metrics
Twometrics that are used to evaluate the model performance are mean square error (MSE)
and concordance index (CI). MSE reflects the difference between the predicted values and
the expected (actual) values. During training, a learning model attempts to reduce the gap
between the actual value and the prediction. We used MSE as the loss function because we
are working on a regression problem, where P is the prediction vector and Y is the vector
of actual n outputs. The number n denotes the sample size. MSE is determined using the
following formula:

MSE =
1
n

n∑
i=1

(Pi−Yi)2 (20)

In order to state whether the order of a predicted value of two random drug-target
pairs is identical to the order of the true value, we use the Concordance Index (CI). The
calculation of CI is in accordance with (21)

CI =
1
Z

∑
δi>δj

h(bi−bj) (21)

where bi is the predicted value for the larger affinity δi, bj is the predicted value for the
smaller affinity δi, Z is a normalization constant, h (x) is the step function presented as:

h(x)=


1 if x > 0
0.5 if x = 0
0 if x < 0

(22)

Training settings
Hyperparameters applied on the GNN variants used in the training of DeepNC are
summarized in Table 2. The learning has performed with 1,000 epochs, and the network’s
weights were updated using a mini-batch of size of 512. To train the networks, Adam have
employed as the optimization algorithm. With the default learning rate of 0.0005. Table 2
summarizes the settings for the model trainings.
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Table 2 Parameters setting for DeepNCmodels.

Parameters Settings

Learning rate 0.0005
Batch size 256
Epoch 1000
Optimizer Adam
Graph convolutional layers in GEN 3
Graph convolutional layers in HGC-GCN 3

Figure 6 Performance of DeepNC and GraphDTA training models on the Davis dataset. (A) MSE Val-
ues, (B) CI Values.

Full-size DOI: 10.7717/peerj.13163/fig-6

RESULTS
Models’ training progress charts
We utilized the MSE and CI values to assess the performance of proposed models in
DeepNC and to compare it with the current state-of-the-art methods Simboost (He et al.,
2017), DeepDTA (Nguyen et al., 2021) and GraphDTA (Öztürk, Özgür & Ozkirimli, 2018),
which we chose as baselines. As mentioned in Related works, GraphDTA has improved
the performance of models from DeepDTA and WideDTA by replacing the CNN layers
for drug representation with GNN layers. Accordingly, our research is not only meant to
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Figure 7 Performance of DeepNC and GraphDTA training models on the Kiba dataset. (A) MSE Val-
ues (B) CI Values.

Full-size DOI: 10.7717/peerj.13163/fig-7

outperform non-GNNmethods (SimBoost, DeepDTA) but is aiming at enhancing current
GNN models (GraphDTA) as well.

Figsures 6–8 display the values of MSE and CI of each epoch being trained by DeepNC
(GEN, HGC-GCN) and GraphDTA (GCN, GAT, GIN, GAT-GCN), observed on three
datasets.

On each figure with 2 charts, we notice that MSE and CI values of GEN and HGC-GCN
in general are better than those values of the other four models, i.e., the MSE is smaller
(when MSE line is lower) and CI is larger (when CI line is higher).

To compare the training of DeepNC models with and without validation, the results are
presented in Figs. 9–11. It should be noted that trainings without validation are conducted
on the train set of each dataset and then the models are used to predict on the test set.
Meanwhile, trainings with validation starts with models being trained on 80% of the train
set and after that the models are used to prediction on the rest 20%, which is referred as
the valid set. For training with validation by each model, the valid set is randomly split
from the train set when we run the Python program.
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Figure 8 Performance of DeepNC and GraphDTA training models on the Allergy dataset. (A) MSE
Values (B) CI Values.

Full-size DOI: 10.7717/peerj.13163/fig-8

Evaluation results
Experimental results of DeepNC and the baseline methods are remarked in Tables 3–7. We
compare our models to SimBoost (He et al., 2017) (non-deep learning method), DeepDTA
(Öztürk, Özgür & Ozkirimli, 2018) (non-GNN deep learning) and GraphDTA (Nguyen
et al., 2021) (deep learning with GNN architecture). It should be noted that results are
extracted from the models’ training on the test sets. For Davis dataset, training results are
noted in Tables 3 and 4. Tables 5 and 6 contain results for training with Kiba dataset.

Tables 3 and 5 show MSE and CI values of models being trained on Davis and Kiba
dataset. Meanwhile, Tables 4 and 6 report the values of r2m which evaluate the external
predictive performance of QSAR models, in which r2m >0.5 for the test set means that the
models are determined to be acceptable.

For the independent dataset Allergy, we only reported training results by MSE and CI
values in Table 7.

For all datasets, noted results show that GEN and HGC-GCN have smaller MSE
values, and larger CI values than those of the benchmark models. In terms of MSE, the
results suggest that model GEN of DeepNC performed better than SimBoost, DeepDTA
(p-value of 0.008 for both) and GraphDTA (p-value of 0.002); and model HGC-GCN
of DeepNC performed better than SimBoost (p-value of 0.004), DeepDTA (p-value of
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Figure 9 (A–D) DeepNCmodels’ performance on the Davis dataset.
Full-size DOI: 10.7717/peerj.13163/fig-9

0.016) and GraphDTA (p-value of 0.002) on Davis dataset. Similarly, on Kiba dataset, the
performance results suggest that model GEN of DeepNC predicted better than SimBoost
(p-value of 0.002), DeepDTA (p-value of 0.004) and GraphDTA (p-value of 0.0001); and
model HGC-GCN performed better than SimBoost (p-value of 0.062), DeepDTA ( p-value
of 0.098) and GraphDTA (p-value of 0.016).

DISCUSSION
In this work, we propose a framework method for predicting drug-target binding affinity,
called DeepNC which represents drugs as graphs. Using deep convolution networks on
GNN algorithms show that DeepNC can predict the affinity of drugs-targets better than
not only non-GNN deep learning methods such as SimBoost and DeepDTA, but also
GNN method (GraphDTA) and shown significant improvements over thoses methods.
DeepNC perform consistently well across two separate benchmark databases in MSE, CI
performance measures. Table 3 grants the performance on method, target representation,
drug representation in MSE and CI for various approaches to predict the Davis dataset.
The best MSE value from the baseline methods is 0.261 by DeepDTA, for both drugs and
proteins are represented as 1D strings. Training on the same dataset by DeepNC, for MSE
values, the model GEN has gained 0.233 and HGC-GCN gained 0.243, which has improved
±0.028 of MSE and improved ±0.009 of CI when compared to DeepDTA.
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Figure 10 (A–D) DeepNCmodels’ performance on the Kiba dataset.
Full-size DOI: 10.7717/peerj.13163/fig-10

In Table 5, we observed results of the larger Kiba dataset. The baseline method of
GraphDTA’s GCN has theMSE of 0.185 and CI of 0.862. The proposed GEN fromDeepNC
has outperformed by values of MSE and CI which are 0.133 and 0.897 respectively. Those
results given by HGC-GCN are 0.172 and 0.872. Hence, we noticed that DeepNC has
provided better result of MSE by ±0.048 and CI by ±0.035.

Beside the testing on benchmark datasets, we have experimented with the Allergy
dataset. Here we consider Graph attention networks (GAT), Graph Isomorphism (GIN),
GAT-GCN, and GCN from baseline GraphDTAwith GCN shows the best MSE (9.312) and
the best CI (0.693). From Table 7, our proposed DeepNC, as compared with GraphDTA,
has shown improvement of GEN by MSE of 9.095 and CI of 0.699, and improvement of
HGC-GCN by MSE of 9.915 and CI of 0.722. Briefly, DeepNC has improved ±0.217 for
MSE and ±0.029 for CI.

From the results, it is suggested that representing molecules as graphs improves the
performance considerably and with the combination of GEN and HGC-GCN of the
framework confirm deep learning models for graphs are appropriate for drug-target
interaction prediction problem.
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Figure 11 (A–D) DeepNCmodels’ performance on the Allergy dataset.
Full-size DOI: 10.7717/peerj.13163/fig-11

Table 3 MSE and CI values of models’ training on the Davis dataset.

Method Model Drugs rep.
(learning method)a

Targets rep.
(learning method)a

MSE CI

SimBoost PubChem Sim S-W 0.282 0.872
DeepDTA SMILES (CNN) S-W 0.420 0.886

SMILES (CNN) Target sequence (CNN) 0.261 0.878
GCN Graph (GCN) Target sequence (CNN) 0.302 0.859

GraphDTA GAT Graph (GAT) Target sequence (CNN) 0.295 0.865
GIN Graph (GIN) Target sequence (CNN) 0.308 0.860
GAT_GCN Graph (combined GAT-GCN) Target sequence (CNN) 0.286 0.870

DeepNC GEN Graph (GEN) Target sequence (CNN) 0.233 0.887
HGC_GCN Graph (HGC-GCN) Target sequence (CNN) 0.243 0.881

Notes.
aThe method of learning drug/target features are given in parenthesis.

CONCLUSION
Graph-based learning neural network models are worth studying in terms of generating
molecular graphs, because the direct use of graphs hasmany advantages that character string
representation does not have is first, and most importantly, each molecular subgraph is
interpretable.DeepNC, a newGNNmolecular design framework,was described andutilized
to explore novel graph-based topologies for molecular generation in this study. Deep
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Table 4 The average r2 scores of models’ training on the Davis dataset.

Method Model Drugs rep.
(learning method)a

Targets rep.
(learning method)a

r2m

SimBoost PubChem Sim S-W 0.644
DeepDTA SMILES (CNN) Target sequence (CNN) 0.630

GEN Graph (GEN) Target sequence (CNN) 0.653DeepNC
HGC_GCN Graph (HGC-GCN) Target sequence (CNN) 0.686

Notes.
aThe method of learning drug/target features are given in parenthesis.

Table 5 MSE and CI values of models’ training on the Kiba dataset.

Method Model Drugs rep.
(learning method)a

Targets rep.
(learning method)a

MSE CI

SimBoost PubChem Sim S-W 0.222 0.836
DeepDTA SMILES (CNN) S-W 0.204 0.854

SMILES (CNN) Target sequence (CNN) 0.194 0.863
GCN Graph (GCN) Target sequence (CNN) 0.185 0.862

GraphDTA GAT Graph (GAT) Target sequence (CNN) 0.223 0.834
GIN Graph (GIN) Target sequence (CNN) 0.186 0.852
GAT_GCN Graph (combined GAT-GCN) Target sequence (CNN) 0.253 0.824

DeepNC GEN Graph (GEN) Target sequence (CNN) 0.133 0.897
HGC_GCN Graph (HGC-GCN) Target sequence (CNN) 0.172 0.872

Notes.
aThe method of learning drug/target features are given in parenthesis.

Table 6 The average scores of models’ training on the Kiba dataset.

Method Model Drugs rep.
(learning method)a

Targets rep.
(learning method)a

r2m

SimBoost PubChem Sim S-W 0.629
DeepDTA SMILES (CNN) Target sequence (CNN) 0.673

GEN Graph (GEN) Target sequence (CNN) 0.695DeepNC
HGC_GCN Graph (HGC-GCN) Target sequence (CNN) 0.624

Notes.
aThe method of learning drug/target features are given in parenthesis.

Neural Computing (DeepNC), a new deep learning-based framework for DTI prediction
that uses three GNN algorithms, is our suggested framework. Here, DeepNC demonstrated
the molecular graph context tailored for drug target interaction models, where three
different GNNs have investigated: Generalized Aggregation Networks (GEN), Graph
Convolutional Networks (GCN), and Hypergraph Convolution-Hypergraph Attention
(HGC). Hypergraphs provide a flexible and natural modeling tool to model such complex
molecule structure. HypergraphConv estimates each hyperedge of the hypergraph by a
customary of pair of edges connecting the vertices of the hyperedge and gives the learning
problem as a graph-learning problem. The DeepNC outperforms all other models in
terms of both speed and quality of generated prediction structures. Attention with graph
neural network able to expand an additional flexible model and will applied to a variety of
applications at the same time as hypergraph convolution and hypergraph.
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Table 7 MSE and CI values of models’ training on the Allergy dataset.

Method Model Drugs rep.
(learning method)a

Targets rep.
(learning method)a

MSE CI

GCN Graph (GCN) Target sequence (CNN) 9.312 0.693
GAT Graph (GAT) Target sequence (CNN) 11.200 0.661
GIN Graph (GIN) Target sequence (CNN) 12.158 0.659

GraphDTA

GAT_GCN Graph (combined GAT-GCN) Target sequence (CNN) 9.951 0.683
GEN Graph (GEN) Target sequence (CNN) 9.095 0.699DeepNC
HGC_GCN Graph (HGC-GCN) Target sequence (CNN) 9.159 0.722

Notes.
aThe method of learning drug/target features are given in parenthesis.
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