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Infection of the gastrointestinal tract is commonly linked to

pathological imbalances of the resident microbiota, termed

dysbiosis. In recent years, advanced high-throughput genomic

approaches have allowed us to examine the microbiota in an

unprecedented manner, revealing novel biological insights

about infection-associated dysbiosis at the community and

individual species levels. A dysbiotic microbiota is typically

reduced in taxonomic diversity and metabolic function, and can

harbour pathobionts that exacerbate intestinal inflammation or

manifest systemic disease. Dysbiosis can also promote

pathogen genome evolution, while allowing the pathogens to

persist at high density and transmit to new hosts. A deeper

understanding of bacterial pathogenicity in the context of the

intestinal microbiota should unveil new approaches for

developing diagnostics and therapies for enteropathogens.

Addresses

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,

Hinxton CB10 1SA, United Kingdom

Corresponding author: Lawley, Trevor D (tl2@sanger.ac.uk)

Current Opinion in Microbiology 2014, 17:67–74

This review comes from a themed issue on Host–microbe

interactions: bacteria

Edited by Olivia Steele-Mortimer and Agathe Subtil

For a complete overview see the Issue and the Editorial

Available online 29th December 2013

1369-5274  # 2013 The Authors. Published by Elsevier Ltd. 

  

http://dx.doi.org/10.1016/j.mib.2013.12.002

Introduction
The human intestinal microbiota is composed of 500–
1000 diverse species, which together contains approxi-

mately 150 times more unique genes than our genome [1].

Often viewed as a ‘‘digestive organ’’, the microbiota has

co-evolved with the host to form a complex mutualistic

relationship [2]: the gastrointestinal tract provides a nour-

ishing environment for its microbial community, while

the microbiota performs a wide range of essential

metabolic, developmental and immune functions. A

health-associated microbiota also represents the first

line of defence against invading pathogens or resident
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opportunists, and can facilitate pathogen clearance from

the intestinal tract [3].

Over the past decade, the development of high-through-

put sequencing technologies and analysis tools has

enabled us to study the microbiota at an exceptional

depth and resolution. At the same time, there is an

increasing recognition that many pathogens such as

Clostridium difficile and enterococci harbour potent viru-

lence factors in their genomes, yet are commonly associ-

ated with asymptomatic carriage. Thus a pathogen’s

ability to manifest virulence versus commensalism cannot

be determined from the genome alone [4�], and virulence

genes (e.g. those encoding bacterial toxins, antimicrobial

resistance, adhesion factors) may be essentially viewed as

colonization factors [4�,5]. Disease manifestation often

depends not only on the dynamic between the pathogens

and host immunity, but also on the composition and

activity of the cohabiting microbiota. Recent studies

monitoring the microbiota in patients or murine models

of bacterial infection have indeed revealed new insights

about pathogen biology during dysbiosis, including host

colonization, disease, adaptation and transmission. Below,

we discuss emerging concepts on infection-associated

dysbiosis and their implications for host–microbe

interactions.

The intestinal microbiota during homeostasis
Without exposure to antibiotics or enteropathogens, a

healthy gastrointestinal tract is home to a dense and

diverse microbial community, known as the microbiota.

A typical intestinal microbiota is dominated by obligate

anaerobes belonging to the phyla Bacteroidetes, Firmi-

cutes and Actinobacteria, and facultative anaerobes of the

Proteobacteria phylum [6]. The microbiota assembly and

structure vary widely between different individuals and at

different anatomical sites along the length of the intes-

tinal tract [7]. Nevertheless, a health-associated micro-

biome (that is, the collective encoding potential of the

microbiota) is believed to be functionally conserved, and

contains a shared gene set necessary to perform important

biochemical reactions for host physiology [8�]. These

functions include the degradation of xenobiotic sub-

stances, vitamin biosynthesis and fermentation of indi-

gestible polysaccharides into beneficial short-chain fatty

acids (SCFA). Colonization by microbes also promotes

our immune development, including the generation of

IgA-secreting plasma cells or regulatory T cells to estab-

lish intestinal homeostasis with the commensal micro-

biota [9]. Finally, a healthy gut ecosystem is essential for

colonization resistance [10,11,12�], whereby both the
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Box 1 High-throughput methods to study host–microbiota

interactions (Figure 1)

16S rRNA gene sequencing:

The 16S ribosomal RNA gene is highly conserved among prokaryotic

species, and can be sequenced using various platforms (e.g. Roche

454 pyrosequencing, Illumina HiSeq/Miseq). By comparing to

publicly available rRNA gene databases (e.g. the Ribosomal

Database Project, SILVA, Greengenes), the 16S rRNA gene

sequence can be used as a surrogate marker to define the microbial

lineages present in a community. This allows researchers to analyse

the microbiota structure, including its taxonomic and phylogenetic

diversity. To classify 16S gene sequences into bacterial taxa (often

called Operational Taxonomic Units — OTUs), one commonly

assumes that those with �97% nucleotide identity can be assigned

to a single species. This assumption largely holds true except for a

few genera (e.g. Bacillus) in which distinct species only differ at a

few bases of their 16S sequence. Another limitation is that organisms

with significant polymorphism in the regions used for primer design,

such as Actinobacteria and Bifidobacteria spp., are poorly detected

with ‘‘universal’’ 16S gene primers [64].

Shotgun sequencing:

Bacterial DNA is broken into small fragments and sequenced.

Fragment sequences are assembled into contigs and aligned to

construct a complete genome. Traditionally, this method was used to

study organisms isolated and grown in pure cultures. Therefore,

genomic sequences were only obtained from cultured species and

represent merely a snapshot of one bacterial clone rather than of the

community as a whole. However, shotgun sequencing is being

increasingly applied directly to DNA obtained from mixed-community

samples (i.e. metagenomics). This technique allows us to under-

stand the community structure and also to build pathways describing

its function, especially when combined with mRNA or protein-based

quantification of the microbiota. Thus metagenomics is gaining

popularity as a method to study microbial ecosystems.

However, there are remaining challenges. Most environmental and

biological communities exhibit vast diversity and unevenness, with

large variations in the relative abundance of different members.

Therefore the genomes of rare species, especially those with the

potential to greatly influence its community or host (i.e. keystone

species), may be poorly detected or assembled even with deep

sequencing. Efforts are under way to improve assembly algorithms,

detection and normalization of previously under-studied phylotypes.

The current databases to classify microbial genes, enzymes and

pathways (e.g. COG, KEGG, CAZy) are also rapidly expanding,

which will enhance our ability to assign or predict the functional

capacity of the microbiome from shotgun sequences.

Culture-based methods:

Despite the advent of culture-independent methods to study microbial

communities, culture techniques still play an essential role in defining

host–microbe interactions. Although only <30% of members of the

human microbiota have been cultured to date, uncultured organisms

may not be in fact unculturable. Permissive growth conditions for these

organisms may be uncovered with improved, high-throughput cultur-

ing techniques [62��]. Microbial culturing can allow us to study

biological aspects of the organism such as its growth, metabolism or

behaviour in a given host. In addition, the whole genomes of these

microbes may be sequenced to analyse for genetic traits (e.g.

symbiosis or virulence genes), or evidence of genomic evolution.

Finally, the functional output of the microbiota may be assessed by

sequencing the mRNA content (i.e. metatranscriptomics), quanti-

fying the proteome (i.e. metaproteomics) or the active metabolites

(i.e. metabolomics). These approaches are especially valuable for

studying the microbiota function during human clinical trials.
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microbial community and the basal immune responses

against resident commensals can together prevent access

of pathogens.

The intestinal microbiota during infections
The importance of the resident microbiota during intes-

tinal infections was highlighted by two seminal papers

utilizing murine infection models with the Gram-nega-

tive pathogens Salmonella enterica serovar Typhimurium

(or S. Typhimurium [13��]) and Citrobacter rodentium
[14��]. In both models, pathogen-induced inflammation

either led to or stabilized an imbalanced state of the

microbiota community structure and function, termed

intestinal dysbiosis. Advanced genomic methods have

since been applied to other infection models, including

Gram-positive and Gram-negative pathogens, to further

define dysbiosis at both the microbial community and

single species levels (Box 1 and Figure 1). Below, we

summarize some of the emerging concepts from these

studies.

Exploitation of dysbiosis by enteric pathogens

Diverse enteric pathogens often exploit dysbiosis,

whether precipitated by antibiotic use or host inflam-

mation, to outcompete resident commensals and gain

access to intestinal nutrients and niches. In mice, Salmo-
nella Typhimurium and Clostridium difficile can both

colonize the gut asymptomatically but only overgrow to

high density and induce pathology after antibiotic treat-

ment [13��,15]. C. difficile is also the leading cause of

antibiotic-associated diarrhea in humans, whereby dis-

ease manifestation predominantly occurs following anti-

biotic disruption of the microbiota, or in patients with

inflammatory bowel disease [16]. When dysbiosis occurs,

pathogens can rapidly outcompete commensals due to a

greater resistance to host defences (e.g. antimicrobial and

phagocyte killing), and better utilization of the gut nutri-

ent environment [12�,17]. For example, Salmonella’s com-

petitive advantage is partly conferred by the ability to

overcome host sequestration of iron [18] and to respire

anaerobically using reactive oxygen species derived from

the inflamed gut [19]. The metabolic environment during

dysbiosis is also high in the SCFAs acetate and formate,

which positively regulate the expression of Salmonella
pathogenicity island-1 [20,21]. In addition, antibiotic use

can lead to an increased availability of mucosal carbo-

hydrates that are normally consumed by commensal

Bacteroides, thus opening up new replicative niches for

pathogens such as Salmonella and C. difficile [22].

Dysbiosis is characterized by a simplified community

structure and function

Characterization of intestinal dysbiosis by different 16S

rRNA gene sequencing approaches has consistently

shown a reduction in taxonomic diversity and species

membership of the microbiota. This observation also

holds true across multiple human studies and animal
www.sciencedirect.com
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High-throughput genomic techniques commonly applied in microbiota research. (a) The functional state of the microbiota can be assessed directly by

measuring its transcriptome (i.e. RNA-sequencing or metatranscriptomics), proteome (i.e. metaproteomics) or metabolites (i.e. metabolomics). Such

approaches are still in their infancy but hold great promise for developing microbiota-based therapies and assessing human clinical studies. (b)

Microbiota composition and taxonomy can be determined through directed amplicon sequencing of the 16S rRNA genes or by extracting 16S rRNA

gene data from metagenomic datasets. Direct sequencing of the total DNA (i.e. shotgun metagenomics) also allows a measurement of the community

function by defining the proteins and pathways (e.g. KEGG, COG, RefSeq pathways) that could potentially be active in the community to infer the

overall functional capacity of the community. (c) Microbial species from the microbiota may be isolated and cultured by high-throughput techniques,

termed ‘‘culturomics’’, such as the use of barcoded plates with rich non-selective agar or liquid medium. The resulting microbes can then be whole-

genome sequenced to examine their genetic traits, or analysed biologically with in vitro or in vivo assays. A combination of these complementary

approaches will expand our understanding of the microbiota during health and disease and may ultimately yield microbiota-based therapeutics and

diagnostics.
infection models, including S. Typhimurium, C. roden-
tium, C. difficile, and vancomycin-resistant enterococci

(VRE) [14��,23–25,26��,27�,28]. The overall bacterial bio-

mass may decrease in some cases depending on the

inflammatory insult [14��,29]. In addition, dysbiosis

generally leads to a depletion of obligate anaerobic bac-

teria such as Bacteroides and Ruminococcus spp., and con-

versely, a bloom in facultative anaerobes including the

family Enterobacteriaceae (e.g. E. coli, Klebsiella spp.,

Proteus spp.). This shift may partly be due to the ability

of Enterobacteriaceae species to respire using reactive

nitrogen species — a byproduct of host inflammation,

thereby outcompeting other commensals [30]. However,
www.sciencedirect.com 
the complex mechanism underlying other population-

wide changes during dysbiosis (e.g. the bloom of

anaerobic Prevotella spp. driven by NLRP6 inflamma-

some deficiency [31]) remains unclear.

Among the functional consequences of a simplified

microbiota is a reduced metabolic capacity, often exem-

plified by a decline in SCFA production. This outcome

may be in part due to a reduction in anaerobic bacteria,

including dominant SCFA-producing genera such as Bac-
teroides, Clostridium, Bifidobacterium and Roseburia. SCFAs

are physiological byproducts of carbohydrate fermenta-

tion by the microbiota, and serve to salvage energy for the
Current Opinion in Microbiology 2014, 17:67–74
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host as well as to enhance the mucosal barrier, inhibit

intestinal inflammation and oxidative stress [32]. Dysbio-

sis caused by broad-spectrum antibiotics (e.g. clindamy-

cin, cephalosporins), which can trigger opportunistic

infection by C. difficile and enterococci, is commonly

associated with low intestinal SCFA levels [23,33].

Furthermore, C. difficile infection may itself lead to

decreased amounts of faecal acetate and butyrate, both

in humans and equivalent murine models [25,33]. In the

streptomycin-induced model of S. Typhimurium infec-

tion, butyrate level also decreases in the large intestine,

which may promote bacterial invasion by stimulating

expression of the Salmonella pathogenicity island genes

[34]. As such, the microbiota’s declining metabolic

capacity may further impair host defence to pathogens

and promote the stability of a dysbiotic community.

The dysbiotic microbiota acts as a pathogenic

community

In S. Typhimurium infection, a microbiota with simpli-

fied structure (e.g. in mice treated with clinically relevant

doses of antibiotics) or increased Enterobacteriaceae

abundance may exacerbate disease outcome [35,36�,
37]. The pathogenic role of a dysbiotic microbiota is also

shown in C. difficile-associated diarrhea, in which dysbiosis

caused by an epidemic C. difficile strain leads to relapsing

infection with more severe pathology [25]. Interestingly

in some infection models such as C. difficile [25] and

C. rodentium [14��,28], microbiota analyses reveal that

the inciting pathogens often constitute only a minor

fraction of the overall microbial community. Together,

these findings suggest that low-abundance pathogens

could induce global changes to the microbiota structure

and function, in a manner that further destabilizes the

intestinal ecosystem. Such enteropathogens may be con-

sidered ‘keystone species’ [38��], and likely influence the

microbial community through a combination of their

virulence expression, and of the host inflammatory and

metabolic responses.

A dysbiotic microbiota may also be enriched for patho-

bionts — resident species with virulence potential that

are normally kept at low levels. An overgrowth of com-

mensal Enterobacteriaceae (Klebsiella spp. and Proteus
spp.) or Helicobacter typhlonius has been shown to occur

during intestinal dysbiosis, and can directly trigger colitis

in mice [39]. Moreover, the depletion of anaerobic com-

mensals during dysbiosis can lead to intestinal overgrowth

of VRE, both in murine infection models or patients

undergoing antibiotic therapies [26��,40]. This con-

sequently predisposes the host to invasive enterococcal

infections with life-threatening sequelae [26��]. Similarly,

a multidrug-resistant E. coli pathobiont can expand in

the mouse intestine following antibiotic disruption of

the microbiota, causing bacteremia and sepsis [41].

Therefore during dysbiosis, the host may be increasingly

susceptible to both pathogens and pathobionts, and the
Current Opinion in Microbiology 2014, 17:67–74 
microbiota may be viewed collectively as a pathogenic

community.

An ecosystem for pathogen virulence expression and

genome evolution

The microbiota often influences pathogen virulence and

fitness upon passage through the gastrointestinal tract.

Signaling from commensal bacteria has been shown to

upregulate the virulence genes of enterohaemorrhagic E.
coli O157:H7 and facilitates its adaptation to the host [42].

Another attaching-effacing pathogen, C. rodentium, also

upregulates its virulence genes early during infection in a

microbiota-dependent manner [43��]. In both C. roden-
tium and Vibrio cholerae-induced diarrhea, passage through

the gut allows the pathogens to efficiently colonize sub-

sequent hosts [44,45]. ‘‘Hyperinfectious’’ V. cholerae can

also persist in aquatic reservoirs — a phenotype associ-

ated with significant changes in the bacterial transcrip-

tome, including a repression of chemotactic factors and

upregulation of carbon metabolism [46].

In addition, pathogens may acquire virulence, fitness and

antimicrobial resistance genes from the gut community,

as they evolve under the selective pressures from host

immune defence, microbial competition or antibiotic use.

Transfer of antibiotic resistance genes by conjugative

transposons has long been shown to occur extensively

among pathogens and commensals, within the gut reser-

voirs of both humans and farm animals [47]. The hospital-

associated pathogen Enterococcus faecalis V583 can also

evolve in the intestinal tract by disseminating fluoroqui-

nolone resistance and fitness-enhancing bacteriophages

[48�,49]. Using whole-genome sequencing and phyloge-

netics, He et al. recently demonstrated the rapid evol-

ution of an epidemic C. difficile strain (ribotype 027),

fuelled by antibiotic use and the transfer of mobile

genetic elements with other intestinal bacteria [50,51].

In addition, Stecher and colleagues combined 16S rRNA

gene and shotgun genome sequencing to show that

during enterobacterial blooms in the inflamed gut, patho-

genic Samonella and commensal E. coli can efficiently

exchange fitness genes via conjugative plasmids [52]. The

intestinal ecosystem represents a rich, dynamic reservoir

for pathogens to intermingle and exchange genetic

materials, especially during dysbiosis-induced bloom

[53]. Therefore limiting dysbiosis, especially in the hos-

pital setting, may have broad implications for the control

of emerging infectious diseases.

Enhanced disease persistence and host-to-host

transmission

Dysbiosis can promote pathogen transmission by increas-

ing the levels of shedding and prolonging the infectious

period. In both murine models of Salmonella and C.
difficile-induced disease, antibiotic disruption of the

microbiota leads to a remarkably high bacterial load

(108-109 CFU/g of faeces) [15,25,54]. This phenomenon,
www.sciencedirect.com
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Figure 2
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Features of intestinal dysbiosis during bacterial infections. (a) A healthy microbiota is typically diverse in structure and performs a wide range of

functions (e.g. xenobiotic metabolism, production of SCFAs), thereby maintaining a mutualistic metabolic relationship with the host. Colonization

resistance relies in part on the ability of the resident microbiota to outcompete pathogens for niches and nutrients. (b) During dysbiosis induced by

pathogen-mediated inflammation or antibiotic perturbation, the microbiota is reduced in both taxonomic diversity and function, and intestinal

colonization resistance is impaired. Diverse Gram-negative and Gram-positive pathogens can maintain dysbiosis by acting as keystone species to

modulate community-wide shifts in the microbiota, possibly by orchestrating the host inflammatory response. As a result, the microbial community

becomes more pathogenic, wherein pathogens and resident pathobionts may overgrow and even invade to cause systemic infection. Interactions with

the gut microbiota often also allow pathogens to express their virulence factors and evolve under selective pressures. Consequently, the pathogens’

increased fitness and over-colonization may exacerbate pathology and enhance host-to-host transmission.
also known as the ‘‘supershedder’’ phenotype, allows

pathogens to transmit very effectively through direct

contact or environmental contamination. For example,

C. difficile supershedders can spread infection by releasing

millions of infectious spores, which persist in the environ-

ment for long periods of months or even years [25,55]. In a

clinical study involving VRE-infected patients, those

shedding high bacterial levels have also been shown to

contaminate their hospital surroundings [56]. In addition,

the clearance of many pathogens including Salmonella, C.
difficile and C. rodentium depends on the presence of a

healthy microbiota [25,36�,43��]. As such, intestinal dys-

biosis can also promote the spread of pathogens by allowing

them to establish persistent infection within the host.

Future perspectives on microbiota restoration
Each year, infectious diseases are increasingly difficult to

treat because of rising antimicrobial resistance and a

shortage in antibiotics discovery. Given the significant

impact of dysbiosis on pathogen-mediated disease and

transmission (Figure 2), the restitution of a healthy micro-

biota holds great promise as a therapy, at least for some

infections. There are compelling evidences to suggest

that administration of a diverse microbiota, or individual
www.sciencedirect.com 
probiotic species, can restrict or eliminate enteric patho-

gens. For example, microbiota transplantation may be

used in mice to prevent lethal disease caused by C.
rodentium and VRE [57�,58�]. Further, patients with

recurrent C. difficile infection, or murine supershedders,

can completely eliminate C. difficile after receiving a

healthy microbiota [25,59�]. Interestingly, C. difficile sup-

pression may also be achieved by inoculating mice with

Lachnospiraceae species or a defined group of six

commensals (including the known probiotic Lactobacillus
reuteri and previously uncharacterized Bacteroidetes and

Anaerostipes spp.) [25,60]. This suggests that some

microbial species derived from a healthy microbiota

can potentially serve as standardized treatment, or

‘‘bacteriotherapy’’ [61]. The development of bacter-

iotherapy will require multiple complementary

approaches, including high-throughput bacterial cultur-

ing (or ‘‘culturomics’’ [62��,63�]) and functional charac-

terization of the human microbiota (e.g. pathway analyses

of the microbiome, metatranscriptomics or metabolo-

mics). Finally, mechanistic experiments in gnotobiotic

animal models can inform us on how specific commensals

influence colonization resistance and potentially be

utilized as a microbiota-based therapeutic.
Current Opinion in Microbiology 2014, 17:67–74
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74 Host–microbe interactions: bacteria
Here the authors found that introduction of a complete, diverse micro-
biota to mice heavily colonized with VRE could lead to VRE elimination.
This effect was mediated by the obligate anaerobic members of the
microbiota, in manner dependent on the presence of Barnesiella spp.
(members of the Porphyromonadaceae family, Bacteroidetes phylum).
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