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Abstract

Large carnivores are difficult to monitor because they tend to be sparsely

distributed, sensitive to human activity, and associated with complex life histo-

ries. Consequently, understanding population trend and viability requires con-

servationists to cope with uncertainty and bias in population data. Joint

analysis of combined data sets using multiple models (i.e., integrated popula-

tion model) can improve inference about mechanisms (e.g., habitat heterogene-

ity and food distribution) affecting population dynamics. However, unobserved

or unobservable processes can also introduce bias and can be difficult to quan-

tify. We developed a Bayesian hierarchical modeling approach for inference on

an integrated population model that reconciles annual population counts with

recruitment and survival data (i.e., demographic processes). Our modeling

framework is flexible and enables a realistic form of population dynamics by

fitting separate density-dependent responses for each demographic process.

Discrepancies estimated from shared parameters among different model compo-

nents represent unobserved additions (i.e., recruitment or immigration) or rem-

ovals (i.e., death or emigration) when annual population counts are reliable. In

a case study of gray wolves in Wisconsin (1980–2011), concordant with policy

changes, we estimated that a discrepancy of 0% (1980–1995), �2% (1996–
2002), and 4% (2003–2011) in the annual mortality rate was needed to explain

annual growth rate. Additional mortality in 2003–2011 may reflect density-

dependent mechanisms, changes in illegal killing with shifts in wolf manage-

ment, and nonindependent censoring in survival data. Integrated population

models provide insights into unobserved or unobservable processes by quantify-

ing discrepancies among data sets. Our modeling approach is generalizable to

many population analysis needs and allows for identifying dynamic differences

due to external drivers, such as management or policy changes.

Introduction

Monitoring wildlife populations enables the estimation of

key demographic parameters that inform conservation

decisions. Patterns and drivers of population dynamics

can be inferred by complementary models reflecting

different paradigms and different sources of data (Sibly

and Hone 2002). However, complementary models of the

same phenomenon may not agree, resulting in a discrep-

ancy. In terms of rigor, combining density-dependent,
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demographic, and mechanistic models and exploring

emergent discrepancies is more holistic, which can

improve prediction, and provides better understanding of

potentially complex responses to ecological context, policy

or human interventions.

Assuming that annual population counts are reliable,

discrepancies from an unobserved process could result

from multiple factors. For example, a discrepancy at low

population sizes in a logistic growth model could result

from underestimated emigration or overestimated sur-

vival rates, an Allee effect, or occurrence of unaccounted

for exploitation (known as cryptic poaching; McCarthy

1997; Hoyle and Maunder 2004; Hurford et al. 2006; Li-

berg et al. 2012). In addition, survival data based on

fates of individuals can carry unobserved effects into a

model when individuals are lost to follow-up, resulting

in unknown fates (Stenglein 2014). Commonly, these

individuals are censored from the analysis at the date

they were last observed (Klein and Moeschberger 2003).

Traditional methods of survival analysis assume that cen-

soring events are statistically independent of mortality

events, but this assumption is often violated in wildlife

studies because a loss to follow-up may be associated

with an increased likelihood of death (Murray 2006).

Failure to accommodate violation of this assumption

usually leads to positive biases in survival estimates

(Klein and Moeschberger 2003; Stenglein 2014). What-

ever the circumstances behind a discrepancy, the unob-

served process may be modeled to correct a population

dynamics model.

Integrated population models (IPMs) provide a prom-

ising approach for detecting discrepancies in time series

of population counts, improving estimates of demo-

graphic rates, and quantitating uncertainty in combined

models of population counts and demographic rates (Bes-

beas et al. 2002; Brooks et al. 2004; Tavecchia et al.

2009). IPMs combine multiple submodels with shared

parameters into a common model and are most useful in

long-term observational studies where supplementary data

have been collected simultaneously (Schaub and Abadi

2011). Population counts and annual recruitment and

survival rates are the most basic components of a popula-

tion dynamics study. Because population counts are an

accounting of the annual recruitment and survival of the

population, these data sets provide some redundant infor-

mation which is helpful for correcting possible biases in

one or the other metric. However, data analysts often

estimate recruitment and survival rates independently

without including population count information (e.g.,

Coulson et al. 2001). Here, in an IPM, we use this redun-

dancy to better estimate all demographic processes,

including those that are unobserved (Brooks et al. 2004;

Abadi et al. 2010b; Schaub and Abadi 2011).

Using the IPM framework (Brooks et al. 2004; Tavec-

chia et al. 2009; Abadi et al. 2010b), we develop a Bayes-

ian hierarchical model for integrating multiple sources of

data and shared parameters and therefore provide a

flexible and informative approach to quantify unobserved

processes such as cryptic poaching rates, informative cen-

soring, observation bias, complex density dependence, or

human actions on the population as a result of manage-

ment changes. We demonstrate this flexible, general

method using commonly collected population data and

provide an example of an IPM for estimating correction

in the population growth of the gray wolf (Canis lupus)

population in Wisconsin, USA (1979–2012).

Materials and Methods

Model development

The data comprise time series of annual population

counts, annual recruitment data, and telemetry-based sur-

vival data, which are common in wildlife monitoring and

research. We develop a Bayesian hierarchical IPM that

has three components: models for the observed data,

models for the underlying population process, and prior

distributions of the model parameters (Fig. 1).

Observation models

The population count, Nt, in a given year t is modeled by

a log-normal distribution where t = 1, 2, . . ., T for a total

of T number of years. That is, Nt ~ lognormal (lt, v
2),

Figure 1. Directed acyclic graph (DAG) of the observation and

process components of an integrated population model for the

population dynamics of wolves in Wisconsin, USA. The notation

matches the notation found in the text.
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where lt is the true population size in year t, and v is the

standard deviation of measurement error that may either

be known or can be estimated, both on the log scale

(Liberg et al. 2012).

The annual count of new recruits Rt born into the popu-

lation in year t is modeled using a binomial distribution

Rt ~ binomial(lt�1, qt) with recruitment rate, qt, from the

population size in the previous year, lt�1, where qt is the
true proportion of new recruits that are born into the pop-

ulation and survived until the annual count of Rt for t = 2,

3, . . ., T. In the normal approximation to the binomial, we

model Rt � normalðlR;t ; v2R;tÞ, where lR,t = lt�1 9 qt and
mR,t = (lt�1 9 qt 9 (1 � qt))

1/2 are the mean and stan-

dard deviation of the normal distribution.

The annual survival records i where i = 1, 2, . . ., n and

n is the number of records are modeled with a Cox

regression (Kalbfleisch 1978; Clayton 1991). In counting

process notation, Mi(s) is the count of the number of

events that occur up to time s, dMi(s) is the increment of

the counting process over some small time interval,

[s, s + ds). The observed data are in triplet X = {a, b, d},
where a is the start of the record, b is the end of the

record, and d is the indicator as to whether the end of

the record was a death event (d = 1) or a censoring event

(d = 0). The observed process Yi(s) takes a value of 1 if

the triplet X is included in the data up to time s if a < s

and b ≥ s, and Yi(s) = 0 otherwise. The increment of the

counting process dMi(s) for some time s jumps when the

record i is included in the data (Yi(s) = 1) and experi-

ences the event (d = 1). We model dMi(s) as independent

Poisson random variables with means equal to the inten-

sity Ii(s) over the time interval [s, s + ds): dMi(s) ~ Pois-

son (Ii(s)ds) (Clayton 1991).

Process models

In the lognormal model for the population counts, we

assume that the mean process, lt, is equal to the log of

the population size lt�1 in the previous year t�1 multi-

plied by the sum of a recruitment rate (qt), a survival rate

(rt), and a correction factor (jt):

lt ¼ logðlt�1 � ðqt þ rt þ jtÞÞfor t ¼ 2; 3; . . .;T:

We assume a closed population where the immigration

rate and emigration rate sum to zero and are not

included in the model (Gotelli 1995). The correction fac-

tor jt is a rate that estimates the annual discrepancy

among the annual population counts and survival and

recruitment rates (Fig. 1).

We compared four different models for recruitment

rate. The annual recruitment rate, qt, is the success prob-

ability of a binomial distribution for the annual count of

new recruits through birth, Rt, and we let qt ~ beta (a1,

a2) with parameters a1 and a2. Alternatively, we give a

functional form for the relationship between qt and log

(lt�1). A linear relationship is qt = b0 + b1 9 log (lt�1)

and a quadratic relationship is qt = b0 + b1 9 log

(lt�1) + b2 9 (log (lt�1))
2. These alternative relation-

ships of qt related to population size allow for some sim-

ple tests of density dependence (Gotelli 1995).

In the model for the survival records, we model the inten-

sity increment over a small time period, Ii(s)ds, as the prod-

uct of the integrated baseline hazard function, dΛo(s), and
whether record i is in the risk set, Yi(s), during that time per-

iod, [s, s + ds): Ii(s)ds = Yi(s) 9 dΛ0(s). We assume con-

stant integrated baseline hazards within each [s, s + ds) to

have a proportional hazards form (Ibrahim et al. 2005). To

compare alternative models for density dependence in

the survival process, we give Ii(s)ds some functional form for

the relationship between the intensity increment and the

standardized log (lt�1). A log-linear relationship is IiðsÞds ¼
YiðsÞ � dK0ðsÞ � eb�logðlt�1Þ, and a log-quadratic relation-

ship is IiðsÞds ¼ YiðsÞ � dK0ðsÞ � eb1�logðlt�1Þþb2�logðlt�1Þ2 .
The annual survival rate, rt, is the exponential of the nega-
tive sum of the increment in the hazard function across t

raised to the power of the functional form relationship. For

example, the linear functional form for survival is

rt ¼ ðe�
P365

s¼1
dK0ðsÞÞeb�logðlt�1Þ

(Klein and Moeschberger 2003;

Spiegelhalter et al. 2003).

Prior distributions

For the priors in the population model, we use a wide,

uniform prior on the standard deviation in the lognormal

model for the population count: v � uniform (0, 100)

(Gelman et al. 2003). We also use a vague, uniform prior

on the correction factor: jt ~ uniform (�1, 1) so that we

do not restrict the correction factor jt to be positive or

negative in any year t.

In the beta-distribution for the recruitment rate qt, we
take the parameters a1 = 1 and a2 = 1 as on the hyperp-

riors for the rate qt. When including the linear model, we

model bp � normalðlb; v2bÞ for p = 1, 2, . . ., P where P is

the number of parameters, and the hyperparameter lb is

the mean and equal to 0, and mb is the standard deviation

and equal to 100 (Gelman et al. 2003).

We model the incremental integrated baseline hazard

function with independent Gamma priors: dK0ðsÞ�
GammaðcdK�

0ðsÞ; cÞ, where dK�
0ðsÞ is a reasonable guess at

the mean of the process: dK�
0 ¼ 0:1� ds where ds is the

size of the time interval. The parameter c = 0.001 is a

positive real number that reflects the level of confidence

in dK�
0ðsÞ with a smaller value corresponding to lower

confidence (Kalbfleisch 1978).

To evaluate the methodology in the model develop-

ment section for detecting a correction factor, we
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conducted a simulation study (See Appendix S1 in Sup-

porting Information).

Case study: Wolf population growth in
Wisconsin

Wisconsin wolf population

The Wisconsin wolf population increased from about 20

individuals in the early 1980s to >880 individuals in 2012

(Fig. 2). The population grew slowly from 1980 to 1995

at which point the winter count surpassed the endangered

status of 80 wolves (Wydeven et al. 2009). Since 1995, the

wolf population increased dramatically, and management

policy changed with respect to the degree to which man-

agers may kill wolves to address depredation problems.

Hence, policy changes and population growth interacted

to define three recovery periods (Fig. 2). During 1996–
2002, wolves were listed as endangered under the US

Endangered Species Act and protected from all hunting

and trapping. In 2003, wolves were downgraded to threa-

tened status and lethal control actions by agency special-

ists were allowed on wolves that were seen as livestock

and human safety risks (Ruid et al. 2009; Wydeven et al.

2009). The period 2003–2012 was dominated by this on-

again and off-again lethal control management in

response to lawsuits seeking to vacate delisting decisions

(Olson 2013).

Each winter, the Wisconsin Department of Natural

Resources (WDNR) counted the number of wolves, esti-

mated the number of new recruits, and radiocollared and

tracked individual wolves. The WDNR made the annual

population counts through snow tracking by volunteers

and agency personnel, direct observation, photographs

from wildlife cameras, and by aerial counts of packs con-

taining radiocollared individuals (Wydeven et al. 2009).

Annual winter counts were reported as ranges (lower

bound is the minimum count) in the WDNR annual

reports, and we used the midpoint in each year as our

count. We calculated measurement error as ¼ the

difference between the high and low counts in each year

and took the average among the years as v.

The WDNR reported the number of new recruits each

winter in 1980–2009 as a range, and we used the midpoint

of the range as the recruitment data in our model (Fig. 2).

We assigned survival records with a start time, end time,

and censoring indicator to the 422 radiocollared wolves

that were captured during 1979–2011 and survived at least

until 1 September of their birth year (4–5 months old; see

Wydeven et al. 2009 for details on capturing and radiocol-

laring methods). Including wolves that are >4 months old

help to meet the survival analysis assumption that survival

times are independent because Wydeven et al. (2009)

found no difference in survival for pups (collared at 3–
6 months old), yearlings, and adult wolves in Wisconsin

from 1979 to 2003. Independence among data set is

required for the construction of the joint likelihood in an

IPM, and our data sets are not completely independent

(Besbeas et al. 2002). Population counts and the number of

new recruits are partially determined from aerial surveys of

packs containing radiocollared individuals. However, the

dependency among these data sets is minimal, and parame-

ter estimates from IPMs are fairly robust to violation of the

assumption of independence (Abadi et al. 2010a).

We assumed a separate correction factor, j, for each of

the three recovery periods, and let j be constant within

each recovery period (Fig. 2).

Density dependence in recruitment and survival

Prior to running the integrated population model, we

selected a set of functional forms for the relationship

between the annual recruitment rate qt and standardized

(subtracted the mean from each value and divided by the

standard deviation) log (Nt�1) and the annual survival rate

rt and standardized log (Nt�1) from the following: (1) no

relationship (i.e., constant survival or recruitment rates),

(2) a linear relationship, (3) a quadratic relationship, and

(4) two lines that changed at year t, for t = 3, 4, . . ., 28, 29

(i.e., a change-point model, Chappell 1989). We expected

some form of density dependence in the recruitment and

survival processes because of the reduced population

growth in the early years of the time series and a leveling

off of growth in the most recent years (Van Deelen 2009).

However, survival rates have been relatively constant dur-

ing wolf recovery (Wydeven et al. 2009). Therefore, we did

not expect to detect a density-dependent effect in the sur-

vival process, and we did expect to detect a density-depen-

Figure 2. Wisconsin, USA estimated wolf population mean size (and

range) and estimated mean number of new recruits (and range) from

1980 to 2012 with three recovery periods denoted by vertical dotted

lines.
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dent effect in the recruitment process with lower recruit-

ment at the beginning and end of the time series, and a

maximum recruitment associated with an intermediate

density. We determined the best functional form for the

recruitment process and the survival process based on

which had the lowest Bayesian information criterion (BIC),

and we assumed that models within 2 BIC units of each

other were equivalent. We ran 3 Monte Carlo Markov

Chains (MCMC) for 5000 burn-in iterations followed by

5000 iterations to estimate deviance for BIC calculation.

We tested for proportionality in the predictors because of

the proportional hazards assumption with a graphical

check and statistical test of whether a time-dependent co-

variate interacting with the predictor was different from 0

for the best survival model if the best survival model

included covariates (Klein and Moeschberger 2003).

Model specifications

After identifying the functional form for recruitment and

survival based on BIC, we fit a model with three correc-

tion factors that were constant within each recovery per-

iod (1980–1995, 1996–2002, and 2003–2011). In the

population count model and the recruitment model, we

used Nt�1 instead of lt�1 in the time series to improve

the chain convergence.

We performed model assessment including external val-

idation, posterior predictive checking, and sensitivity

analysis (Appendix S2). For external validation, the

observed population size in 2012 was left out and we pre-

dicted it from the mean of the posterior predictive distri-

bution. We judged our model to provide reasonable

inference if the mean of the posterior prediction was

within the observed wolf population size range in 2012.

We performed graphical posterior predictive checks of

estimated population counts from the model compared to

what was observed, and we graphed the residuals to look

for patterns that would indicate poor model fit. Finally, we

performed a sensitivity analysis on our choice of priors

(Appendix S2).

We ran three MCMC chains for 10,000 iterations after

discarding the first 10,000 iterations as burn-in using pro-

gram JAGS (Plummer 2003) accessed through program R

(R developement Core Team 2013), package “rjags” (Plum-

mer 2011). We assessed convergence using visual inspec-

tion of mixing in the chains, univariate potential scale

reduction factors (R̂, hereafter; Gelman and Rubin 1992),

and the multiple potential scale reduction factor (R̂p, where

p is the number of parameters; Brooks and Gelman 1998).

By convention, convergence is generally judged to be

attained when upper 97.5% confidence limits of the R̂s and

R̂p are close to 1, and here, convergence was declared if the

upper 97.5% confidence limits of all R̂s and R̂p were <1.1.

Results

Individual wolves associated with 1–10 yearly survival

records depending on the number of years that they were

in the study. Median number of survival records was 2.

The functional form for the survival process with the low-

est BIC was the constant model indicating no density

dependence. This baseline hazard model was >3 BIC

points lower than the next best functional form model.

The functional form for the recruitment process with the

lowest BIC were the change-point models that changed

after years 14, 15, 17, or 18, and all of these models were

>2.2 BIC points lower than the next best model. We used

the model with a change-point after year 18 (very similar

correction factor estimates for all best change-point mod-

els), and the formula for this model was as follows:

logðqtÞ ¼ 0:025þ 0:773� logðNt�1Þ; for t� 18

log itðqtÞ ¼ �0:301� 0:210� logðNt�1Þ; for t[ 18

The evidence for a positive slope of the line for t ≤ 18

was 100% (proportion of posterior that was >0), indicat-
ing an increasing relationship of recruitment rate and

population size when the wolf population was ≤150
wolves. The evidence for a negative slope of the line for

t > 18 was 69.0% (proportion of posterior that was <0).
The MCMC algorithm converged adequately. The

upper 97.5% estimates of R̂ were 1 for all parameters,

and the overall R̂p = 1. The mean of the posterior predic-

tive distribution to estimate the population count in 2012

was 878, which was within the observed population size

in 2012 of 815–880 wolves. Therefore, we concluded that

the inferences from our model made sense (Appendix

S2). Also, 48.4% of the time, the estimated population

sizes in Wisconsin from 1981 to 2011 were within the

95% posterior intervals of lt for t = 2, 3, . . ., 32, respec-

tively. When the 95% posterior intervals for the estimated

population sizes did not overlap the estimated population

sizes in Wisconsin, they were not systematically overesti-

mated or underestimated.

Estimated annual mean recruitment rate varied from

0.233 to 0.530, with the lowest recruitment estimated dur-

ing early recovery (Fig. 3). Estimated recruitment rate

reached its maximum of 0.530 (SD = 0.023) in 1997

(Fig. 3). On average, estimated recruitment rate was 0.013

lower in 1980–1995 compared to the average observed

recruitment rates in that time period (Fig. 3). The other

time periods had estimated and observed recruitment

rates that were within 0.005 of each other, on average.

The average annual survival rate was estimated at 0.769

(SD = 0.014; Fig. 3). The correction factors were esti-

mated at 0.0002 (SD = 0.027) in 1980–1995, 0.020

(SD = 0.025) in 1996–2002, and �0.042 (SD = 0.022) in
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2003–2011 (Fig. 4). The evidence for an estimated net

additional loss needed to explain the population dynamics

was 50.1% in 1980–1995, 21.7% in 1996–2002, and 97.4%

in 2003–2011 (proportion of posterior <0; Fig. 4).

Discussion

Unifying complementary models of population dynamics

can improve our understanding of both observed and

unobserved processes affecting population trend. For

instance, when population counts and demographic pro-

jections differ, we can sometimes detect an unobserved

process that reveals or suggests a more complete mecha-

nistic understanding of the population’s dynamics. To

this end, we developed a general IPM to quantify a demo-

graphic discrepancy between population count data when

supplemental survival and recruitment data were avail-

able. Through simulations, we showed that our model

detected and recovered discrepancies that were distinct

from sources of variation in recruitment, survival, and

measurement error in the population counts, and there-

fore, the estimated discrepancies represented an unob-

served process (see Appendix S1).

There are always opportunities to add complexity to a

model, but we show how a simple IPM could unite data

sets that are widely available for managed populations.

Our model is accessible because we present it in a gener-

alized form and give basic ideas for incorporating density

dependence in demographic processes. The counting pro-

cess notation appears complicated, but it is actually a

straightforward technique to incorporate the radioteleme-

try-based survival analysis into a Bayesian IPM (see

Appendix S3). An extension for incorporating density

dependence in the demographic processes would be to

use a Gaussian process (Paciorek 2007) or spline function,

such as low-rank thin-plate splines that have good mixing

properties in a Bayesian analysis (Crainiceanu et al. 2005;

Stenglein 2014).

We modeled Wisconsin wolf population dynamics with

different patterns of density dependence in demographic

components and a correction for population growth that

varied with recovery period as defined by population

growth and wolf management policy. Mean recruitment

was more variable and increasing in 1980–1997 compared

to the time period since 1997. Low recruitment at low

density is consistent with an Allee effect impacting mate-

finding ability when potential mates are sparse (McCarthy

1997; Stenglein 2014). Reduced and less variable recruit-

ment at higher population sizes is evidence of density

dependence in recruitment. However, we did not detect a

density-dependent effect on the survival process, consis-

tent with another analysis of the same data between 1979

and 2003 (Wydeven et al. 2009). As wolves in Wisconsin

further saturate their preferred habitat, we may expect a

density-driven reduction in survival (Mladenoff et al.

2009; Van Deelen 2009), although detecting this effect will

require more years of data at these higher population

sizes (Van Deelen 2009). Estimating density-driven

changes separately in recruitment and survival provides

insights into specific mechanisms that affecting popula-

tion growth (Clutton-Brock and Coulson 2002; Bonenfant

et al. 2009).

We found that additional loss was needed to reconcile

the demographic processes with the population counts

when the wolf population was growing at about 10% per

year and the population increased from 344 to 803 wolves

in 2003 to 2011. We included density-dependent changes

Figure 3. Observed recruitment and posterior estimates and 95%

credibility intervals for annual recruitment, survival, and an estimated

correction factor in the Wisconsin, USA wolf population from 1980 to

2012.

Figure 4. Posterior densities of the correction factors (j) in the

annual counts for three recovery periods in the Wisconsin, USA wolf

population. The amount of the distribution left of the vertical line at 0

shows strength of evidence for a negative correction factor.
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in the demographic components of our model; therefore,

it is unlikely that the discrepancy is explained by

additional density-dependent mechanisms. Nevertheless,

the largest estimated correction occurred in the most

recent years and may partially reflect decelerating growth,

as predicted by Van Deelen (2009). Our model predictions

for the population size in 2012 were within range, but

were high compared to the observed estimated growth in

2012, which further supports a density-dependent reduc-

tion in population growth. Emigration is another mecha-

nism to potentially explain the discrepancy. We assumed

population closure which effectively made immigration

and emigration equal. Wisconsin wolves and the larger

Great Lakes wolf population have evidently saturated

much of their preferred habitat (Mladenoff et al. 1995,

2009; Van Deelen 2009). Concurrent with rangewide occu-

pancy of prime habitat, we might suspect an increase in

the number of Wisconsin emigrants, except that the neigh-

boring populations in Michigan and Minnesota are also

saturated and likely producing immigrants into Wisconsin

at the same rate. Density dependence or emigration may

explain some of the discrepancy in 2003–2011, but there
are also other potential reasons for this discrepancy.

Radiotelemetry-based survival analysis may be plagued

with a level of informative censoring that is difficult to

quantify, but can have serious consequences by biasing

estimated survival rates high (Murray 2006). Informative

censoring occurs when individuals are lost to follow-up,

and their loss is associated with the event of interest, in

this case death. Unobserved poaching has been linked to

a discrepancy in growth of the Scandinavian wolf popula-

tion (Liberg et al. 2012), and it is a likely source for

informative censoring in survival data. Our case study

shows an average correction of 4.2% additional loss each

year since 2003. Approximately 60% of Wisconsin’s ra-

diocollared wolves in the survival data set are censored

and more than half of those have disappeared from the

analysis without any indication of collar failure or dis-

persal (Stenglein 2014). Our estimated correction factor

may give us the best information to date on a level of

informative censoring in our radiotelemetry survival data.

An average of 4.2% additional loss to explain the annual

growth rate translates to informative censoring (death)

associated with about 25% of the wolves among that dis-

appeared (Stenglein 2014).

The greatest discrepancy that we detected was during

2003–2011, coincident with declining public attitudes

toward wolves (Browne-Nunez et al. 2012). Attitude sur-

veys of Wisconsin farmers and hunters revealed a fear of

wolves, lack of empowerment toward wolf issues, and an

increase in willingness to illegally kill a wolf from 2001 to

2009 (Browne-Nunez et al. 2012; Olson 2013; Treves

et al. 2013). Inconsistent wolf management during

2003–2011 may have led to an increase in illegal killing

that contributed to additional unobserved annual popula-

tion loss. This IPM provides an important baseline prior

to the beginning of an additional source of mortality for

wolves in the form of a recreational harvest that began in

2012 and will likely continue.

Our case study with wolves illustrates that detecting

discrepancies among complementary models improves

our understanding of the potentially complex responses

populations have to policy, human interventions, or other

external factors. Similarly, analysts may be faced with the

problem of known or suspected population processes

that, while important, are unobservable in given sampling

design or logistical constraints. Our modeling framework

makes estimating those processes more attainable.
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