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Simple Summary: The active form of vitamin D3 slows proliferation and stimulates differentiation
of glioblastoma cells with mutated p53 by acting via neutral sphingomyelinase 1 and not by classical
via vitamin D receptor-mediated

Abstract: Glioblastoma is one the most aggressive primary brain tumors in adults, and, despite the
fact that radiation and chemotherapy after surgical approaches have been the treatments increasing the
survival rates, the prognosis of patients remains poor. Today, the attention is focused on highlighting
complementary treatments that can be helpful in improving the classic therapeutic approaches. It is
known that 1α,25(OH)2 vitamin D3, a molecule involved in bone metabolism, has many serendipidy
effects in cells. It targets normal and cancer cells via genomic pathway by vitamin D3 receptor or via
non-genomic pathways. To interrogate possible functions of 1α,25(OH)2 vitamin D3 in multiforme
glioblastoma, we used three cell lines, wild-type p53 GL15 and mutant p53 U251 and LN18 cells.
We demonstrated that 1α,25(OH)2 vitamin D3 acts via vitamin D receptor in GL15 cells and via
neutral sphingomyelinase1, with an enrichment of ceramide pool, in U251 and LN18 cells. Changes
in sphingomyelin/ceramide content were considered to be possibly responsible for the differentiating
and antiproliferative effect of 1α,25(OH)2 vitamin D in U251 and LN18 cells, as shown, respectively,
in vitro by immunofluorescence and in vivo by experiments of xenotransplantation in eggs. This is
the first time 1α,25(OH)2 vitamin D3 is interrogated for the response of multiforme glioblastoma
cells in dependence on the p53 mutation, and the results define neutral sphingomyelinase1 as a
signaling effector.

Keywords: glioblastoma; neutral sphingomyelinase; vitamin D3; vitamin D receptor; U251

Cancers 2020, 12, 3163; doi:10.3390/cancers12113163 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-0588-1658
https://orcid.org/0000-0002-3114-8812
https://orcid.org/0000-0001-8934-6312
https://orcid.org/0000-0003-2456-6300
https://orcid.org/0000-0002-1562-4495
https://orcid.org/0000-0001-9637-6579
https://orcid.org/0000-0002-9070-4807
https://orcid.org/0000-0002-5745-5343
http://dx.doi.org/10.3390/cancers12113163
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/11/3163?type=check_update&version=3


Cancers 2020, 12, 3163 2 of 15

1. Introduction

Glioblastoma multiforme (GBM) is the most common and one of the most aggressive primary
intracerebral tumors with great heterogeneity in tissue histology and imaging [1]. The standard initial
approach is maximal safe surgical resection, followed by radio- and chemotherapy, and treatment
options in the recurrent setting are less well defined, with no established standard of care [2]. Some
molecules have recently been identified that can influence the development of glioblastoma and the
course of the disease, such as obtusaquinone [3], coronarin D [4], betulinic acid [5], icaritin [6],
and others. As early as 1995 Magrassi et al. [7] had demonstrated that activated 1α,25(OH)2

vitamin D3 or calcitriol (1α,25(OH)2VD3) was capable of inducing a significant (>50%) reduction
in growth of glioblastoma cells at dosages over 5 µM. Classically, the inactive form of vitamin
D3 or cholecalciferol is first hydroxylated in carbon 25 in the liver to form 25(OH) vitamin D3 or
calcidiol and then it is hydroxylated in carbon 1 in the kidney to form 1α,25(OH)2VD3. Interestingly,
glioblastoma was able to metabolize cholecalciferol to calcidiol [8]. It has been demonstrated that
five cell lines of GBM, asTx3095, Tx3868, U87, U118, U373, were resistant against the antiproliferative
activity of 1α,25(OH)2VD3 at the dosage of 10−6, 10−8, and 10−10 M [9]. Differently, an analog of
1α,25(OH)2VD3, diethyl [(5Z,7E)-(1S,3R)-1,3-dihydroxy-9,10-secochola-5,7,10(19)-trien-23-in-24-yl]
phosphonate analogue (EM1), exerted in U251 and T98G GBM cell lines anti-migratory effects and
decreased their invasive capacity [10]. Moreover, other 1α,25(OH)2VD3 analogs, such as tacalcitol and
calcipotriol, inhibited the proliferation and migration of T98G [11]. McConnel et al. demonstrated
that 1α,25(OH)2VD3 had a slight temozolomide synergism for U87-MG [12]. This synergism was
supported by Elmaci et al. who showed that the addiction of 1α,25(OH)2VD3 totemozolomide reduced
mortality in GBM patients in comparison to nonusers [13]. Thus, despite several studies suggesting that
1α,25(OH)2VD3 is essential for cell signaling in the nervous system and is involved in the suppression
of several cancer cell proliferation and migration [14], the potential mechanisms for these responses
remain unclear.

It is known that the effects of 1α,25(OH)2VD3 on target cells are mediated via binding to the
nuclear vitamin D receptor (VDR), a ligand-dependent transcription factor [15] located in inner nuclear
membrane microdomains [16]. VDR is expressed in many normal tissues, including in adult and
embryonic cells of nervous system [17,18]. However, increasing evidence provides information on
the involvement of nongenomic pathways in the response to 1α,25(OH)2VD3 [8,19]. Interestingly,
VD3 and/or 1α,25(OH)2VD3 were able to induce apoptosis or cell growth delay, with subsequent cell
differentiation, thanks to the degradation of sphingomyelin (SM) with the production of ceramide,
a molecule involved in cell signaling [20,21].

SM is a structural and bioactive lipid that is hydrolyzed to ceramide by sphingomyelinases (SMase)
classified based on their activity pH optima into alkaline, acid, and neutral subtypes [22]. Alkaline
SMase (alkSMase) is present at intestinal level and is useful for dietary SM; acid SMase (aSMase)
and neutral SMase (nSMase) are present in almost all cells and play fundamental roles in several
pathophysiological conditions [23,24]. aSMase isoform is located in lysosome and it is encoded by the
SMPD1 gene. The nSMase family includes four isoforms, nSMase1, nSMase2, nSMase3, and nSMase4
encoded by four different genes SMPD2, SMPD3, SMPD4, and SMPD5, respectively [25]. nSMase1 is
located in the reticulum endoplasmic/Golgi apparatus and in the cell nucleus and it was involved in
apoptosis and cancer; nSMase2 is specific of the plasma membrane and it was involved in exosome
formation, and in the inflammatory response; nSMase3 is located in endoplasmic reticulum and it
was involved in cellular stress response; nSMase4 belongs to the mitochondria and its function is
not yet clear in human cells [25]. In cancer: (a) aSMase was able to reprogram the tumor immune
microenvironment [26] and to participate in apoptotic cell death [27,28]; (b) nSMase1 had both pro-
and anti-cancer roles [29].

In specific cancer cells that did not express VDR, such as gastric cancer cells, 1α,25(OH)2VD3
induced apoptosis by upregulating the gene and protein expression of aSMase [28]. Differently, when
VD3, and consequently its metabolite 1α,25(OH)2VD3 were responsible for cancer cell differentiation
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they required nSMase enzyme, as occurred for leukemic HL-60 cells thanks to the production of
ceramide as lipid mediator [30].

The decrease in SM and the increase in ceramide content upon 1α,25(OH)2VD3 treatment in
glioblastoma cells was shown about twenty years ago [31] but later the research was not followed.
The study was only an observation of lipid variation and with really high 1α,25(OH)2VD3 concentrations
(5 µM), which could be toxic to normal cells present in vivo. Furthermore, in those days the SMase
isoforms were not known and lipidomics studies did not exist. However, the research was promising
considering the different responses to 1α,25(OH)2VD3 treatment in various cell types of GBM above
reported [8–14].

Therefore, in the present study, we aimed to investigate the mechanism of action of 1α,25(OH)2VD3
in three cell types of glioblastoma cells: wild-type p53 GL15 cells, and mutant p53 U251 and LN18
cells. Since p53 protein is a tumor suppressor protein inducing tumor cell apoptosis [32], U251 and
LN18 cells are less exposed to apoptosis than GL15 cells. Thus, we studied a genomic response via
VDR and a non-genomic response via SMase in the two cell models. Because of their importance in
cancer [26–29], we focused the study on aSMase and nSMase1. This work might support the use of
1α,25(OH)2VD3 in GBM reported in literature as a valid implementation to traditional therapy.

2. Results

In order to exclude the possible cytotoxic effect of 100 and 400 nM 1α,25(OH)2VD3 in GL15,
U251, and LN18 cells, we used MTT assay after 24 h in cell culture. The results show no significant
differences in the viability of GL15, U251, and LN18 cells cultured in the presence of 100 and 400 nM
with respect to control cells, by excluding the cytotoxic effect of 1α,25(OH)2VD3 at the doses used for
the subsequent experiments. 1% and 2% DMSO were used as positive controls (Figure 1).

Cancers 2020, 12, x FOR PEER REVIEW 3 of 15 

 

The decrease in SM and the increase in ceramide content upon 1α,25(OH)2VD3 treatment in 
glioblastoma cells was shown about twenty years ago [31] but later the research was not followed. 
The study was only an observation of lipid variation and with really high 1α,25(OH)2VD3 
concentrations (5 μM), which could be toxic to normal cells present in vivo. Furthermore, in those 
days the SMase isoforms were not known and lipidomics studies did not exist. However, the research 
was promising considering the different responses to 1α,25(OH)2VD3 treatment in various cell types 
of GBM above reported [8–14].  

Therefore, in the present study, we aimed to investigate the mechanism of action of 
1α,25(OH)2VD3 in three cell types of glioblastoma cells: wild-type p53 GL15 cells, and mutant p53 
U251 and LN18 cells. Since p53 protein is a tumor suppressor protein inducing tumor cell apoptosis 
[32], U251 and LN18 cells are less exposed to apoptosis than GL15 cells. Thus, we studied a genomic 
response via VDR and a non-genomic response via SMase in the two cell models. Because of their 
importance in cancer [26–29], we focused the study on aSMase and nSMase1. This work might 
support the use of 1α,25(OH)2VD3 in GBM reported in literature as a valid implementation to 
traditional therapy. 

2. Results 

In order to exclude the possible cytotoxic effect of 100 and 400 nM 1α,25(OH)2VD3 in GL15, 
U251, and LN18 cells, we used MTT assay after 24 h in cell culture. The results show no significant 
differences in the viability of GL15, U251, and LN18 cells cultured in the presence of 100 and 400 nM 
with respect to control cells, by excluding the cytotoxic effect of 1α,25(OH)2VD3 at the doses used for 
the subsequent experiments. 1% and 2% DMSO were used as positive controls (Figure 1). 

 
Figure 1. Effect of 1α,25(OH)2VD3 on GL15 U251, and LN18 cell viability. Cells were cultured with 
100 and 400 nM 1α,25(OH)2VD3 for 24 h, and the viability was measured by MTT assay. Values are 
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were used as positive controls. The data were expressed as mean ± SD of three independent 
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Since 1α,25(OH)2VD3 stimulates the gene expression of himself receptor [33], to investigate the 
role for 1α,25(OH)2VD3 in GBM, we began by studying whether GL15, U251, and LN18 cells 
expressed VDR gene and protein. We analyzed VDR after treatment with a physiological dose of 
vitamin (minimum limit, 100 nM), and with a high dose (about 10% above maximum limit, 400 nM) 
[18], considering the possibility that cancer cells could be resistant to 1α,25(OH)2VD3 treatment. As 
expected, in GL15 100 nM 1α,25(OH)2VD3 was able to upregulate VDR (Figure 2). Surprisingly, by 
increasing vitamin concentration, VDR did not change (Figure 2). To translate this finding into an 
experimental model of mutated p53 tumor suppressor gene, we performed the same study in U251 
and LN18 cells. The data showed a trend of not change of VDR with 100 nM 1α,25(OH)2VD3 and a 
slight downregulation with 100 nM 1α,25(OH)2VD3 (Figure 2).  

Figure 1. Effect of 1α,25(OH)2VD3 on GL15 U251, and LN18 cell viability. Cells were cultured with 100
and 400 nM 1α,25(OH)2VD3 for 24 h, and the viability was measured by MTT assay. Values are reported
as the percent of viability compared to the control sample (CTR); 1% DMSO and 2% DMSO were
used as positive controls. The data were expressed as mean ± SD of three independent experiments
performed in duplicate. Significance, ∗∗ p < 0.01, ∗∗∗ p < 0.001 versus the CTR sample.

Since 1α,25(OH)2VD3 stimulates the gene expression of himself receptor [33], to investigate the role
for 1α,25(OH)2VD3 in GBM, we began by studying whether GL15, U251, and LN18 cells expressed VDR
gene and protein. We analyzed VDR after treatment with a physiological dose of vitamin (minimum
limit, 100 nM), and with a high dose (about 10% above maximum limit, 400 nM) [18], considering
the possibility that cancer cells could be resistant to 1α,25(OH)2VD3 treatment. As expected, in GL15
100 nM 1α,25(OH)2VD3 was able to upregulate VDR (Figure 2). Surprisingly, by increasing vitamin
concentration, VDR did not change (Figure 2). To translate this finding into an experimental model of
mutated p53 tumor suppressor gene, we performed the same study in U251 and LN18 cells. The data
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showed a trend of not change of VDR with 100 nM 1α,25(OH)2VD3 and a slight downregulation with
100 nM 1α,25(OH)2VD3 (Figure 2).
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Figure 2. Effect of 100 and 400 nM 1α,25(OH)2VD3 on vitamin D receptor (VDR), SMPD2 (encoding
for neutral sphingomyelinase1), and SMPD1 (encoding for acid sphingomyelinase) gene expression.
(a) In GL15 cells, (b) U251 cells, and (c) LN18 cells, reverse transcription quantitative PCR (RTqPCR)
analysis was performed in untreated (CTR) and 1α,25(OH)2VD3 treated cells. GAPDH was used as
housekeeping gene. mRNA relative expression levels were calculated as 2−∆∆Ct respect to the CTR
sample. Data are expressed as the mean ± S.D. of 3 independent experiments performed in duplicate.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Based on the data indicating different responses of VDR to 1α,25(OH)2VD3 treatment in the
cell lines with mutant p53 (U251 and LN18) respect to GL15 cells, we elected to analyze aSMase
and nSMase1 enzymes to define the relationship between 1α,25(OH)2VD3/VDR and SM breakdown.
We validated the effect of the vitamin by analyzing the expression of genes encoding for the two
enzymes, SMPD2 for nSMase1 and SMPD1 for aSMase. In GL15 cells, 1α,25(OH)2VD3 induced a low
SMPD2 overexpression only at the concentration of 400 nM and a low down expression of SMPD1
only at the concentration of 100 nM (Figure 2). In U251 cells, a strong increase in SMPD2 expression
1α,25(OH)2VD3 concentration-dependent and a low decrease in SMPD1 expression with 100 nM were
observed (Figure 2). The same response to 1α,25(OH)2VD3 treatment was evident in LN18 cells, albeit
with slightly lower values (Figure 2).
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Likewise, we assessed VDR, nSMase1 and aSMase protein levels through immunoblot analysis
(Figure 3 and Figures S1–S5). The results indicate that VDR protein was predominantly upregulated in
GL15 cells treated with 100 nM 1α,25(OH)2VD3 and nSMase1 was predominantly upregulated in U251 and
LN18 cells treated with 400 nM 1α,25(OH)2VD3, according to the data of gene expression. These results led
us to hypothesize that 1α,25(OH)2VD3 at high doses used a non-genomic pathway involving the nSMase1
in U251 cells.
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Figure 3. Effect of 100 nM and 400 nM 1α,25(OH)2D3 on vitamin D receptor (VDR), neutral
sphingomyelinase (nSMase), and acid sphingomyelinase (aSMase) protein regulation in GL15 and U251
cells. (a) Western blotting image, β-tubulin was used as loading control; (b) densitometric analysis of
immublotting bands. As a positive control (CTR+), embryonic hippocampal cells were used [33,34].
The values were first normalized with those of β-tubulin bands and then calculated as the percentage
of CTR sample. Data are expressed as the mean ± S.D. of 3 independent experiments performed in
duplicate. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Thus, we sought to determine whether changes of nSMase1 protein level in U251 cells caused by
400 nM 1α,25(OH)2D3 were consistent with variation of enzyme activity. As you can see, the nSMase
activity was significantly higher in U251 treated with 1α,25(OH)2D3 than control samples (Figure 4a
panel A). The same effect was evident in LN18 cells (Figure 4a panel B). To corroborate the data,
we performed a lipidomic analysis in untreated and 1α,25(OH)2D3 treated U251 and LN18 cells by
using 12:0 SM, 16:0 SM, 18:1 SM,24:0 SM, Cer 16:0, Cer 20:0, Cer 24:0 external calibrators, in order
to further understand the effect of the enzyme activation in SM breakdown. The results highlight
that 1α,25(OH)2D3 significantly reduced 16:0 SM and 24:0 SM species (Figure 4b panel A and B)
and increased 16:0 ceramide and 24:0 ceramide species (Figure 4c panel A and B). To have a deeper
insight into SM species in order to know the presence of saturated or unsaturated fatty acids (FAs), we
evaluated the areas of all the peaks identified on the basis of their molecular weights. A total of 24
species were investigated: 16:1 SM, 18:0 SM, 18:2 SM, 20:0 SM, 20:1 SM, 20:2 SM, 20:3 SM, 22:0 SM,
22:1 SM, 22:2 SM, 22:3 SM, 22:4 SM, 24:1 SM, 24:2 SM, 24:3 SM, 24:4 SM, 24:5 SM, 26:0 SM, 26:1 SM,
26:2 SM, 26:3 SM, 26:4 SM, 26:5 SM, 26:6 SM. 8 peaks were detected (Figure 4d panel A and B). Highly
significant decrease for saturated intermediate-length acyl chains as 18:0 SM, 20:0 SM, and 22:0 SM was
found in 1α,25(OH)2D3 treated U251 and LN18 cells in comparison with untreated cells (Figure 4d).
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Figure 4. Effect of 400 nM 1α,25(OH)2D3 on sphingomyelin (SM) breakdown. Panel A, U251 cells;
Panel B, LN18 cells. (a) Sphingomyelinase activity. The enzyme activity was evaluated by using the
Amplex Red Sphingomyelinase assay kit, as reported in the “Materials and Methods” section. Data
were expressed as mU/mg protein/min; (b) SM species studied by using 16:0 SM, 18:1 SM, and 24:0 SM
external calibrators. Data are expressed as nmol/mg protein; (c) ceramide species studied by using Cer
16:0, Cer 20:0, Cer 24:0 external calibrators. Data are expressed as nmol/mg protein; (d) SM species
evaluating the areas of all the peaks identified on the basis of their molecular weight. Data are expressed
as area/mg protein. Data are expressed as the mean ± S.D. of 3 independent experiments performed in
duplicate. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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By comparing the changes in the total level of saturated and unsaturated SM species, we obtained
that unsaturated/saturated SM ratio was 1.2 in in untreated sample and 1.49 in 1α,25(OH)2D3 treated.

Since the data above suggested that 1α,25(OH)2D3 upregulated and activated nSMase1 in U251
cells, it became important to determine the consequences of this. Our laboratory previously reported
that 1α,25(OH)2D3 treatment of embryonic hippocampal cells resulted in the cell differentiation
via nSMase [16]. Therefore, differentiation of U251 and LN18 cells was considered. We performed
immunofluorescence analysis to label glial fibrillary acidic protein (GFAP), as glial marker differentiation
in U251 [34] and LN18 [35] cells. An increase in cell differentiation with respect to the control sample
with the formation of numerous neurites in both U251 and LN18 cells was evident; the fluorescent
intensity increased 2.13 and 3.25 times in U251 and LN18 cells, respectively (Figure 5a,b).
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Finally, it has been shown that 1α,25(OH)2D3 VD3 modulated embryonic hippocampal cell
differentiation thanks to the slowdown of cell growth [18]. Therefore, to evaluate the role of
1α,25(OH)2D3 in U251 cell growth we used an in vivo experiment by performing a xenotransplantation
of U215 cell treated with 400 nM 1α,25(OH)2VD3. As can be seen, chorioallantoic membrane (CAM)
had good visible blood vasculature useful for the success of transplantation (Figure 6a) and the
engraftment of the transplant was present (Figure 6b). Ki-67 positive cells were evident in untreated
U215 cells cultured in CAM (CTR, Figure 6c). If the cells were treated with 400 nM 1α,25(OH)2VD3,
the labeling reduced 59% (Figure 6c,d), by indicating a reduction of proliferative index [26]. To confirm
these data, the gene expression of CCND1, encoding for Cyclin D1 protein responsible for G1/S phase
transition of the cell cycle, was measured. CCND1 expression was evaluated in U251 cells cultured
in the presence of 400 nM 1α,25(OH)2D3 VD3 and transplanted in the CAM. As expected, 400 nM
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1α,25(OH)2D3 VD3 was able to downregulate CCND1gene expression (Figure 6e), by indicating a
reduction of cell growth [27].
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Figure 6. Xenotransplantation in chorioallantoic membrane (CAM) of U251 cells treated or not with
400 nM 1α,25(OH)2VD3. Experiments were performed as reported in the material and methods.
(a) Image of embryo and CAM vessels on the eighth day from fertilization; (b) U231 cells photographed
in ovo after 12 days from transplantation; (c) immunohistochemistry analysis of U231 cells in CAM
fixed in ovo after 12 days from transplantation; (d) percentage of labelling; (e) CCND1gene expression
performed by RTqPCR analysis. Data were expressed as the mean ± S.D. of 3 independent experiments
performed in duplicate. ∗∗∗ p < 0.001.

Taken together, these results demonstrate that 1α,25(OH)2VD3 plays an important role in the
reduction of U251 cell growth and in the induction of their differentiation via non genomic pathway
with the involvement of SM metabolism.

3. Discussion

The relevance of SM breakdown in cancer cell fate underscored by the role of aSMase in apoptosis
modulation and of nSMase in cell differentiation modulation [18,26,28] became a determinant for us to
investigate its behavior in GBM cells treated with 1α,25(OH)2VD3.

Although the action of 1α,25(OH)2VD3 has been implicated in different pathophysiological
conditions [36–38] and its action via nSMase and aSMase has been described [17–19], its function
and its involvement in aSMase and nSMase gene and protein expression in GBM cells have not been
investigated yet. In this study, we demonstrate that WT p53 cells respond to a physiological dose
of 1α,25(OH)2VD3 with upregulation of its receptor without the involvement of SM breakdown,
by indicating the activation of classical via 1α,25(OH)2VD3/VDR. It is not possible at the moment to
explain why VDR is not overexpressed when we use a high dose of 1α,25(OH)2VD3. We can speculate
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that high dose of vitamin induces mechanisms of regulation to limit a response that would otherwise
be exaggerated for the cells. Importantly, we present a cell-specific role for 1α,25(OH)2VD3 in GBM
cells. In fact, mutant p53 U251 and LN18 cells do not respond to 1α,25(OH)2VD3 with classical via
VDR-mediated but via SMase1. This result is very important considering that the expression of mutant
p53 is characteristic of the most GBs and it is implicated in cell invasion, migration, proliferation,
evasion of apoptosis of GBM cells [39]. Therefore, mutant p53 was considered useful as a diagnostic
marker and/or target for innovative therapeutic strategies [39].

Our data show that high dose of vitamin upregulates gene and protein expression of nSMase1,
an enzyme that stimulates cell differentiation [22].

Previous studies have revealed significant roles played by 1α,25(OH)2VD3 in GBM. However,
depending on cell type, 1α,25(OH)2VD3 could function or not. In fact, Tx3095, Tx3868, U87, U118,
and U373 GBM cell lines were resistant against the antiproliferative activity of 1 α,25(OH)2VD3 [9],
and U251, T98G [10,11], and U87-MG [12] GBM cell lines were susceptible. Therefore, despite different
cellular responses of various GBM cell types to 1α,25(OH)2VD3 have been reported, the dependence
on cell type for the genomic or non-genomic 1α,25(OH)2VD3 response has not been reported yet.

The major conclusion from this study relates to the mechanism of 1 α,25(OH)2VD3 action in p53
wild-type GL15 and mutant p53 nt U251 and LN18 cells. First, the results show that the response
of U251 and U251 cells correlates with nSMase1 upregulation. The results of this study show that
this induction is directly dependent on the 1 α,25(OH)2VD3 treatment. Thus, we propose that cells
with p53 mutation select for the overexpression of nSMase1, which then imparts a growth delay and
differentiation to those cells. Thus, though 1α,25(OH)2VD3 pathophysiology has a complex and not yet
well-understood mechanism in GBM growth slowdown and differentiation, our model indicates that
SM breakdown is involved in this process. It is possible to speculate on the possible involvement in this
process of both ceramide, derived from SM via SMase1, and of the increase in unsaturated/saturated
SM ratio. This is clearly illustrated and corroborated by the gain-of-function studies that showed
how ceramide is involved in cell division and differentiation [40,41]. Notably, ceramide acts as tumor
suppressor [42] and for this reason has attracted attention for cancer treatment [43]. It is not currently
known whether ceramide can reduce resistance to chemotherapy drugs. However, it has been shown
that ceramide-rubusoside nanomicelles can be a new therapeutic approach to target cancers carrying
p53 missense mutations [44]. Additionally, Madigan et al. (2020) demonstrated an important cellular
role for glucosylceramide synthase in oxaliplatin chemosensitivity [45].

Moreover, it is possible to hypothesize that the decrease in saturated and the increase in unsaturated
SM species might be responsible for the increase in membrane fluidity of the cells and determine their
enhanced dynamic properties that might facilitate the neurite plasticity [46]. Future studies could
be useful to understand the changes in the physical state of cell membranes (i.e., cell and nuclear
membranes) following SM and Cer changes induced by vitamin D3. Moreover, due to high molecular
heterogeneity of the GBM in patients, nSMase1 might be a useful guide to establish GBM prognosis
and precision treatment strategies in patients with mutant p53 which could benefit from the use of
1α,25(OH)2VD3 as a therapeutic adjuvant.

4. Materials and Methods

4.1. Chemicals

Cell culture medium (Dulbecco’s modified minimum essential medium, DMEM), fetal bovine
serum (FBS), penicillin G, streptomycin, and glutamine, and sodium pyruvate were from GIBCO
Invitrogen (Carlsbad, CA, USA). Anti-GFAP antibody was obtained from Dako, Agilent (Santa
Clara, CA, USA), anti-VDR from Elabscience (Houston, TX, USA), anti-nSMase1 was from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA, USA), anti-aSMase was from Abcam (Cambridge, UK),
anti-β-tubulin and 1α,25(OH)2VD3, 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazoliumbromide
(MTT) were from Sigma Aldrich (St. Louis, MO, USA), horseradish peroxidase-conjugated
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goat anti-rabbit secondary antibodies and tetramethylrhodamineisothiocyanate (TRITC)-conjugated
anti-rabbit IgG were from Santa Cruz. TaqMan SNP Genotyping Assay and Reverse Transcription kit
were purchased from Applied Biosystems (Foster City, CA, USA). RNAqueous®-4PCR kit was from
Ambion Inc. (Austin, TX, USA). SDS-PAGE molecular weight standards were purchased from Nzythech
(Lisboa, Portugal). Chemiluminescence kitswerepurchasedfromAmersham (Rainham, Essex, UK).

4.2. Cell Culture

The GL15 cell line was established from human GBM and characterized by Bocchini et al. [47],
LN18 and U251 GBM cell lines were purchased, respectively, from ATCC (ATCC® CRL-2610, Manassas,
VA, USA) and CLS Cell Lines Service GmbH (cat. n. 300385, Hamburg, Germany).

Cells were grown in DMEM supplemented with 10% heat-inactivated fetal bovine serum,
100 IU/mL penicillin/streptomicyn, and 200 mM of L-glutammine. Cells were maintained at 37 ◦C
in a saturating humidity atmosphere containing 95% air and 5% CO2. 100 nM or 400 nM VD3 was
added to the culture medium for 24 h (gene and protein expression) or 400 nM VD3 for 3 days
(immunofluorescence).

4.3. Cytotoxicity

MTT assay was used to test cellular cytotoxicity, as previously reported [48]. Control and VD3
treated GL15 and U251 cells were seeded into 96-well plates at a density of 1× 104 cells/well with DMEM
complete medium. After 24 h, culture medium was replaced with fresh complete medium containing
100 and 400 nM VD3, and the cells were incubated for 24 h. Then, MTT reagent was dissolved in
PBS 1X and added to the culture at 0.5 mg/mL final concentration. After 3 h of incubation at 37 ◦C,
the supernatant was carefully removed, and formazan salt crystals were dissolved in 200 µL DMSO
that was added to each well. The absorbance (OD) values were measured spectrophotometrically at
540 nm using an automatic microplate reader (Eliza MAT 2000, DRG Instruments, GmbH, Marburg,
Germany). Each experiment was performed two times in triplicate and the results were expressed as a
percentage relative to the control cells.

4.4. Reverse Transcription Quantitative PCR (RTqPCR)

Total RNA was extracted from GL15, U251, and LN18 cells, and CAM containing transplanted
U251 cells by using RNAqueous-4PCR kit, as previously reported [25]. Before cDNA synthesis,
the integrity of RNA was evaluated by electrophoresis in TAE 1.2% agarose gel. cDNA was synthesized
using 1µg total RNA for all samples by High-Capacity cDNA Reverse Transcription kit under the
following conditions: 50 ◦C for 2 min, 95 ◦C for 10 min, 95 ◦C for 15 s and 60 ◦C for 1 min, for a total
of 40 cycles [28]. The following target genes were investigated: SMPD1 (Hs03679347_g1), SMPD4
(Hs04187047_g1), VDR (Hs00172113_m), and CCND1 (HS00765553); GAPDH (Hs99999905_m1), 18S
rRNA (S18, Hs99999901_s1) and TUBB (Hs00742828_s1) were used as a housekeeping genes. mRNA
relative expression levels were calculated as 2−∆∆Ct comparing the results of the treated samples with
those of the untreated ones [25].

4.5. Protein Concentration and Western Blotting

Protein concentration was measured as previously reported [25]. Proteins (40 µg) were submitted
to 12% SDS (sodium dodecyl sulfate)-polyacrylamide gel electrophoresis at 200 V for 60 min [28]. Briefly,
proteins were transferred onto 0.45 µm cellulose nitrate strips membrane (Sartorius StedimBiotech
S.A.) in transfer buffer for 1 h at 100 V at 4 ◦C. Membranes were blocked with 5% (w/v) non-fat dry
milk in PBS, pH7.5 for 1 h at room temperature. The blot was incubated overnight at 4 ◦C with specific
antibodies (1:1000) and then treated with horseradish peroxidase-conjugated goat anti-rabbit secondary
antibodies (1:5000). Super Signal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific,
Monza, Italy) was used to detect chemiluminescent (ECL) Horseradish peroxidase (HRP) substrate.
The apparent molecular weight of proteins was calculated in relation to the migration rate of molecular
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size standards. The area density of the bands was evaluated by densitometry scanning and analyzing
them with ImageJ.

4.6. Enzyme Activity Assay

nSMase activity was assayed as previously reported [25]. U251 cells were suspended in 0.1%
NP-40 detergent in PBS, sonicated for 30 s on ice at 20 watt, kept on ice for 30 min and centrifuged at
16,000× g for 10 min. The supernatants were used for nSMase assay. The enzyme activity was assayed
in 60 µg proteins/10 µL Tris-MgCl2, pH 7.4 using Amplex Red Sphingomyelinase assay kit (Invitrogen,
Monza, Italy) according to the manufacturing instructions. The fluorescence was measured with
FLUOstar Optima fluorimeter (BMG Labtech, Offemburg, Germany), by using the filter set of 360 nm
excitation and 460 nm emission.

4.7. Ultrafast Liquid Chromatography–Tandem Mass Spectrometry

Lipid extraction and Ultrafast liquid chromatography–tandem mass spectrometry were performed
according to Lazzarini et al., 2015 [49]. The 12:0 SM, 16:0 SM, 18:1 SM, 24:0 SM, 16:0 ceramide, 20:0
ceramide, and 24:0 ceramide standards were prepared as previously reported [47]. Standards were
dissolved in chloroform/methanol (9:1 vol/vol) at 10 µg/mL final concentration. The stock solutions
were stored at −20 ◦C. Working calibrators were prepared by diluting stock solutions with methanol
to 500:0, 250:0, 100:0, and 50:0 ng/mL final concentrations. Twenty microliters of standards or lipids
extracted from serum was injected after purification with specific nylon filters (0.2 µm). Analyses were
carried outby using the Ultra Performance Liquid Chromatography system tandem mass spectrometer
(Applied Biosystems, Monza, Italy). The lipid species were separated, identified, and analyzed as
previously reported [49,50]. The samples were separated on a PhenomenexKinetex phenyl-hexyl
100 A column (50 × 4.60-mm diameter, 2.6-µm particle diameter) with a precolumn security guard
Phenomenex ULTRA phenyl-hexyl 4.6. For SM, column temperature was set at 50 ◦C and flow rate
at 0.9 mL/min. Solvent A was 1% formic acid; solvent B was 100% isopropanol containing 0.1%
formic acid. The run was performed for 3 min in 50% solvent B and then in a gradient to reach 100%
solvent B in 5 min. The system needed to be reconditioned for 5 min with 50% solvent B before
the next injection. The lipid species were identified by using positive turbo-ion spray and modality
multipole-reaction monitoring.

4.8. Xenotrasnplantation in Chorioallantoic Membrane

Xenotransplantation was performed according to Uematsu et al. [51] with modifications. Fertilized
chicken eggs were incubated at 37 ◦C under 52% humidity. On the third day, each egg was washed
with 70% ethanol, after which a circular window was cut into the pointed pole of the shell, and 2–3 mL
of albumen was removed to allow for the detachment of the developing chorioallantoic membrane
(CAM). The window was sealed with a plastic film, and the eggs were put back into the incubator.
On the eighth day, the window was enlarged to approximately 10 × 10 mm to reveal the underlying
embryo and CAM vessels. A Dearling support was placed in the upper CAM, inside which U231
cells (400,000 cells) not treatred or treated for 24 h with 400 nM VD3were transplanted. Thereafter,
the shell window was again sealed, and the eggs were returned to the incubator. After 12 days, cells
were photographed in ovo with a stereomicroscope equipped with a camera, and an image analyser
system (Leika). Then the grafts were fixed in ovo with 4% paraformaldehyde, the CAM was removed
and dropped with essentially random orientation in paraffin. The paraffin blocks were sectioned into
4-mm-thick sections in a perpendicular plane to the CAM surface. All sections were mounted on
silan-coated glass slides. Each slide contained a pair of sections at a distance equal to 140 mm. Six pairs
of sections were sampled excluding the first and the last, and used for immunohistochemical analysis.
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4.9. Immunofluorescence

GFAP immunofluorescence analyses was performed as previously described [52]. Cells
were incubated with anti-GFAP primary antibody diluted 1:100 in 3% (w/v) BSA in PBS for
1 h, washed three times in 0.1% (v/v) Tween-20 in PBS and twice in PBS, incubated with
tetramethylrhodamineisothiocyanate (TRITC)-conjugated antirabbit IgG for 1 h, diluted 1:50 in
3% (w/v) BSA in PBS and washed as above. The diamidino-2-phenylindole (DAPI) nuclear counterstain
was used. The samples were mounted in 80% (w/v) glycerol, containing 0.02% (w/v) NaN3 and
p-phenylenediamine (1 mg/mL) in PBS to prevent fluorescence fading. The antibody incubations were
done in a humid chamber at room temperature. Fluorescent analysis was performed on a DMRB Leika
epi-fluorescent microscope equipped with a digital camera. The analysis of the tissue section size was
performed by Scion Image software [52].

4.10. Immunohistochemistry

For immunohistochemical analysis Bond Dewax solution was used for the removal of paraffin
from tissue sections before rehydration and immunostaining for Ki-67 (MIB-1 clone) on the Bond
automated system (Leica Biosystems Newcastle Ltd., Upon Tyne, UK) as previously reported [52].
The observations were performed by using inverted microscopy EUROMEX FE 2935 (ED Amhem,
The Netherland) equipped with a CMEX 5000 camera system (20×magnification). The analysis of the
tissue section size was performed by ImageFocus software (this is a software of the CMEX 5000 with
unic version) [53].

4.11. Statistical Analysis

Three independent experiments performed in duplicate were carried out for each analysis. Data
are expressed as mean ± SD; Student’s t test was used for statistical analysis 1α,25(OH)2VD3-treated
samples against the control sample (CTR).

5. Conclusions

In conclusion, our data present new insights into the involvement of SM breakdown in the
1α,25(OH)2VD3 treatment of U251 cells that might be useful to understand the use of vitamins in
combination therapy for GBM treatment, as the ceramide produced could positively modulate the
therapeutic response.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3163/s1;
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expression in GL15 cells treated with 400 nM 1α,25(OH)2 Vitamin D3, Figure S3: Protein expression in U251 cells
treated with 100 nM 1α,25(OH)2 Vitamin D3, Figure S4: Protein expression in U251 cells treated with 400 nM
1α,25(OH)2 Vitamin D3, Figure S5: Protein expression in LN18 ce11s treated with 100 and 400 nM 1α,25(OH)2
Vitamin D3.
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