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Many properties of complex networks cannot be under-
stood from monitoring the components—not even when
comprehensively monitoring all protein or metabolite
concentrations—unless such information is connected
and integrated through mathematical models. The reason
is that static component concentrations, albeit extremely
informative, do not contain functional information per se.
The functional behavior of a network emerges only through
the nonlinear gene, protein, and metabolite interactions
across multiple metabolic and regulatory layers. I argue
here that intracellular reaction rates are the functional end
points of these interactions in metabolic networks, hence
are highly relevant for systems biology. Methods for
experimental determination of metabolic fluxes differ
fundamentally from component concentration measure-
ments; that is, intracellular reaction rates cannot be
detected directly, but must be estimated through computer
model-based interpretation of stable isotope patterns in
products of metabolism.
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Fluxes quantify the integrated network
response of gene–protein–metabolite
interactions

Metabolic networks, in particular microbial ones, are arguably
the best characterized complex biological networks. We know
most of the reactions, the enzymes that catalyze them, the
genes that encode the enzymes, and the involved chemicals
and cofactors. From this comprehensive knowledge of the
components, the network topology of enzyme and metabolite
interactions has been worked out to a great extent in many
organisms. In contrast to protein–protein interaction or
regulation networks with many yet unknown components,
metabolic interactions can be mathematically represented at
the genome scale (Price et al, 2004). The modern ‘omics’
arsenal assesses particular system variables through global
monitoring of component concentrations. Proteomics or, more
indirectly, transcriptomics record changes in the concentration

of the catalyzing enzymes, whereas metabolomics attempts to
monitor concentration changes of the small chemical species
within a cell (Nielsen and Oliver, 2005).

The concentration state of these components, however, is
not the true functional bottom line of cellular operation, and
hence insufficient to assess how component interaction is
organized into networks with newly emerging functions and
capabilities (Hellerstein and Murphy, 2004). Beyond methods
to quantify component concentrations, systems biology thus
requires experimental methods for (i) elucidating component
interactions (e.g. physical protein–protein (Cusick et al, 2005)
and protein–DNA (Workman et al, 2006) or indirect epigenetic
gene–gene interactions (Tong et al, 2001)) and (ii) quantitative
monitoring of integrated network responses that result from
the highly nonlinear interaction of the various components
across functional levels (Aderem, 2005). By tracking single
molecule, virus, or organelle movement inside cells, modern
imaging techniques are an example of integrated response
analysis, in this case of physical behavior (Damm and
Pelkmans, 2006). A particularly relevant application is the
quantitative analysis of the dynamics within macromolecular
assemblies, for example the protein flux of and along the
cellular cytoskeleton where molecular and genetic interactions
generate mechanical forces (Wittmann et al, 2001; Danuser
and Waterman-Storer, 2006).

For metabolic networks, the integrated network response is
given by small molecule fluxes (i.e. in vivo reaction rates) that
result from all catalytic protein–metabolite interactions and
the regulatory interactions at the genetic, protein modification,
allosteric, and kinetic level (Figure 1). Without resolving the
details, 13C-based flux analysis quantifies the integrated output
of these component interactions (Stephanopoulos, 1999;
Hellerstein, 2003; Sauer, 2004; Fernie et al, 2005), hence has
become attractive for applications in microbes, plants
(Schwender et al, 2004a; Sriram et al, 2004), and higher
organisms (Hellerstein and Murphy, 2004).

After a decade of intense research and development, 13C-
based flux methods can routinely track steady-state fluxes
in microbes grown on single-carbon substrates. In contrast to
higher organisms, where current methods are restricted to the
local detection of one or few relative fluxes or molecular
turnover (Kelleher, 2001; Sherry et al, 2004), absolute fluxes
through larger networks can be determined in microbes, hence
the term fluxome was coined (Sauer et al, 1999). Here I will
highlight how such network flux analysis is used to infer
metabolic system behavior and design principles in microbes
to illustrate that flux analysis is a key methodology for systems
biology of metabolism.

The principle of 13C-based metabolic flux
analysis

In contrast to static, snapshot-like concentrations of tran-
scripts, proteins, or metabolites, fluxes are the time-dependent
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motion of metabolites through a network, hence cannot be
measured directly. Instead, they must be inferred from
measurable quantities through computer model-based inter-
pretation. One measurable quantity is uptake and production
rate (i.e. fluxes in and out of cells), which can be balanced in
assumed reaction networks to provide first estimates on some
intracellular fluxes (Stephanopoulos, 1999). Such stoichio-
metric flux analysis is inherently limited in its capacity to
derive new conclusions on intracellular network operation
because the results are strongly based on assumptions and not
on data. To experimentally quantify pathway activity, addi-
tional intracellular information must be obtained from stable
isotope tracer experiments. Typically, 13C-labeled substrates
are fed to a growing cell population until the isotope label
is distributed throughout the network. As a function of the
particular distribution of fluxes in an organism, specific
labeling patterns occur in the metabolic intermediates
(Wiechert, 2001; Sauer, 2004). The task now is to measure

those 13C patterns and to reconstitute the network distribution
of flux from the measured data (Figure 2A).

The most frequently employed isotope tracer method
detects the 13C patterns in 10–15 protein-bound amino acids
(Figure 2A). As the carbon backbones of eight key inter-
mediates are conserved in amino acids, protein is a stable and
abundant source of labeling information, which enables
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Figure 1 Schematic overview of the relationship between concentration-
based, compositional, and functional units in metabolic networks. Regulatory
interactions are indicated by dashed lines. Transcript–transcript interactions are
based on average operon structures and ribosomal RNA interactions. Proteome
interaction estimates include an average of 6–7 protein–protein interactions
(Szallasi, 2006) as well as protein–DNA, protein–RNA, and protein–membrane
interactions. Metabolic interactions include biochemical transformations and
regulatory interactions between metabolites, RNA, and protein. The number of
different proteins includes differences in folding, size, and covalent modifications.

Figure 2 (A) Schematic flow chart of 13C-based metabolic flux analysis.
Exemplary results for flux ratios and absolute fluxes are given in the bottom
boxes. (B) Example of inferring relative fluxes through the three initial pathways
of glucose catabolism in E. coli from mass spectrometry data. A positional label
is introduced by feeding [1-13C]glucose, and 13C-pattern are detected in alanine,
which derives its carbon backbone directly from pyruvate. Although unique
isotope pattern occurs in intact alanine molecules, the lack of positional
information in the detected mass distribution cannot discriminate between
glycolysis and the ED pathway. For discrimination of these two pathways,
additionally the C2–C3 moiety of alanine must be analyzed, which occurs by
fragmentation in some MS instruments. For flux ratios, the relative contribution of
these pathways to the formation of alanine (pyruvate) is calculated directly from
the detected abundance of the different mass isotope isomers by probabilistic
equations. For absolute fluxes, a best-fit flux solution is obtained by extensive
computations that seek to minimize the error between fitted intracellular fluxes
not only to the six shown, but also to all other detected mass spectra and
physiological uptake and production rates.
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determination of central metabolic fluxes during steady-state
growth from as little as 2 mg cells (Szyperski, 1995; Marx
et al, 1996; Fischer and Sauer, 2003b; Grotkjaer et al, 2004).
A potentially much richer source of information is the
hundreds of free intracellular metabolites themselves that
would allow resolving fluxes even beyond central metabo-
lism and also to assess dynamic flux changes. Their
comparatively low concentrations, diverse chemical nature,
and high turnover rates in the range of seconds, however,
severely hamper metabolite-based flux analysis, but several
promising methods are currently under development (van
Winden et al, 2005; Wiechert and Nöh, 2005; Nöh and
Wiechert, 2006).

How does one obtain flux data from labeling patterns?
At least two principally different approaches can infer fluxes
from 13C data that are obtained by either nuclear magnetic
resonance (NMR) (Marx et al, 1996; Sauer et al, 1997; Portais
and Delort, 2002) or mass spectrometry (MS) (Gombert et al,
2001; Fischer and Sauer, 2003b; Klapa et al, 2003). In the first
approach, 13C data, extracellular fluxes, and biosynthetic
requirements are simultaneously integrated with computer
models (Figure 2A). The flux distribution is typically identified
by iterative fitting of fluxes to the measured data, whereby the
difference between observed and simulated isotope spectra is
minimized (Wiechert, 2001). Essentially, this is a parameter-
fitting procedure, where the relation between unknown fluxes
and measured data is described by mathematical models of
varying complexity.

The second method relies on a direct and local interpretation
of selected labeling patterns, for example, the mass distribu-
tion of pyruvate or its surrogate alanine (Figure 2B). For
this purpose, a probabilistic equation is derived that quantifies
the relative contribution of converging pathways to the
formation of a particular metabolite (a flux ratio) from a
particular combination of NMR or mass pattern (Szyperski,
1995; Fischer and Sauer, 2003b). Whereas the fitting
method indirectly infers absolute flux values throughout the
network, the flux ratio method provides direct evidence for the
relative in vivo activity of a given reaction (Figure 2A). The
drawback of this analytical method is its restriction to 10–15
preselected fluxes that are directly accessible from the data;
hence these complementary approaches are ideally applied
to the same 13C data set (Emmerling et al, 2002; Hua et al,
2003; Fischer et al, 2004). Recently, the flux ratio approach
was extended to the estimation of absolute fluxes that is
applicable also at higher throughput (Fischer et al, 2004;
Fischer and Sauer, 2005). Further details on flux analysis
can be found in several recent reviews (Wiechert, 2001; Sauer,
2004; Schwender et al, 2004b; Wiechert and Nöh, 2005;
Ratcliffe and Shachar-Hill, 2006).

In practice, the focus of flux analysis is typically not on the
entire network of up to a thousand reactions, but rather on the
50–100 reactions of central metabolism. This core set of
reactions establishes a ubiquitous and interconnected network
that catalyzes the major material flows (Figure 3A). Super-
imposed on the metabolic network are multiple layers of
control that ensure optimal usage of pathways and even the
direction of flux to meet cellular requirements under different
environmental conditions. To unravel and quantify such
control mechanisms is a key goal of systems biology.

Network operation versus pathway
concept

The traditional use of isotopic tracer experiments was the
structural identification of biochemical reactions that consti-
tute the metabolic pathways that now populate our textbooks.
In the heydays of metabolic biochemistry in the 1940–1960s,
tracer experiments were the key method to prove in vivo
operation of individual pathways within the bewildering
complexity of the then largely unknown metabolic network.
These experiments essentially followed the logic that first
hypothesis on the chemical reactions within a pathway were
generated. Subsequently, tracer experiments were designed
such that tracing isotopically labeled atoms to particular
positions of pathway products could discriminate between the

Figure 3 (A) Bow-tie abstraction of metabolic network organization (after
(Csete and Doyle, 2004; Stelling et al, 2006). (B) Metabolic fluxes through three
major pathways in the central metabolism of 137 B. subtilis knockout mutants.
The phosphoglucose isomerase (Pgi) mutant and three mutants in genes
encoding for enzymes of the TCA cycle are expected outliers because one of the
plotted pathways was blocked. All other mutants cluster in a distinct region of this
3D flux space with the sole exception of the novel transcriptional regulator CcpN
(Servant et al, 2005). Data are taken from Fischer and Sauer (2005).
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initial hypotheses. The initial dominance of radioactive tracers
has been almost completely replaced by stable isotopes and
their analysis through NMR or MS, both for pathway
elucidation (Bacher et al, 1999) and for flux analysis
(Szyperski, 1998).

To facilitate comprehension, textbooks structure metabolic
networks into pathways and cycles. Within the reality of the
network, however, our familiar pathways are biochemical
concepts that often include assumptions on functionalities.
Although incredibly helpful for teaching, these assumptions
might be oversimplifications or simply incorrect under certain
conditions. Here, I argue that experimental flux analysis is
crucial to observe and eventually understand operation of
networks. By placing pathway activity in a quantitative
network context, this goes beyond pathway identification. A
prominent example is the pentose phosphate pathway, whose
generally considered function is supply of precursors and
redox equivalents for biosynthesis. In many organisms,
however, its function is more properly described as a second
catabolic pathway (Fuhrer et al, 2005). In the next paragraph,
methodological aspects of elucidating network topology are
outline.

In principle, flux analysis takes the network perspective,
but the models used for flux analysis often exclude certain
pathways/reactions on the basis of genetic evidence because
it simplifies 13C data interpretation. Such qualitative expres-
sion level information, however, does not necessarily
exclude the presence of active protein, and some discrepan-
cies in reported flux data can be traced back to incorrect
network structures (van Winden et al, 2001a). If carried out
with proper care, 13C-based flux analysis offers the experi-
mental capacity to actually determine the topology of active
pathways and reactions from data. Particularly valuable
is flux ratio analysis, as it yields direct and independent
evidence for the in vivo operation of pathways in central
metabolism (Szyperski, 1995; Emmerling et al, 2002; Fischer
et al, 2004). For network flux-fitting procedures, two
methods can support the inference of network topology: (i)
optimal experimental design for labeling experiments that
provide maximum information for particular regions of the
network (Möllney et al, 1999; Petersen et al, 2000; Fischer
et al, 2004) and (ii) rigorous identifiability analysis of an
existing data set (van Winden et al, 2001b; Isermann and
Wiechert, 2003; Rantanen et al, 2006). When adding noise to
the data, the latter is extended to statistical identifiability
analysis that reveals how well a particular flux is actually
determined from a data set, which can also be done for
subnetworks (Antoniewicz et al, 2006). Model discrimina-
tion based on statistical evaluation of how well different
network models fit a data set is then used to identify the
correct topology of active reactions (Klapa et al, 1999;
Dauner et al, 2001; Arauzo-Bravo and Shimizu, 2003; Yang
et al, 2005). Thus, several methods support inference of the
condition-dependent network topology and the following
two paragraphs highlight how flux data provide new
network insights.

Well beyond classical tracer studies, modern 13C-based flux
analyses unraveled many surprises on the operation of the
supposedly well-understood central metabolic network. A
prominent example of unexpected activity of a principally

known pathway is the Entner–Doudoroff pathway (Fuhrer
et al, 2005), in particular in actinomycetes, where other data
had suggested that different pathways would be operational
instead (Gunnarsson et al, 2004; Borodina et al, 2005). A
seemingly widespread phenomenon is gluconeogenic flux
during otherwise glycolytic metabolism around the PEP–
pyruvate–oxaloacetate node, although expression data suggest
that the corresponding genes are not actively transcribed.
Simultaneous operation of glycolytic and gluconeogenic
reactions at this key node led to, in some cases, substantial
loss of energy via ATP-dissipating futile cycles in Escherichia
coli (Emmerling et al, 2002; Yang et al, 2003), Bacillus subtilis
(Sauer et al, 1997), Corynebacterium glutamicum (Petersen
et al, 2000), and others (Fuhrer et al, 2005). From the pathway
concept that attempts to assign specific functions, such futile
cycling is neither predicted nor understood, but may offer a
flexible control strategy to rapidly reorganize network fluxes
upon environmental changes.

The discrepancy between the network reality and the
traditional pathway concept is highlighted by the recent 13C-
based discovery of the PEP-glyoxylate cycle in E. coli (Fischer
and Sauer, 2003a), which was hypothesized earlier on
theoretical grounds (Liao et al, 1996; Schuster et al, 1999).
The key reactions of this bifunctional anabolic and catabolic
cycle are PEP carboxykinase and the glyoxylate shunt, whose
previously known functions are gluconeogenesis and ana-
plerosis, respectively, during growth on substrates that feed
into the tricarboxylic acid (TCA) cycle. Their conjoint
operation during glucose metabolism, however, effectively
generates a novel cycle whose catabolic function is in sharp
contrast to their known individual functions. The cycle’s
overall stoichiometry is almost identical to the classical TCA
cycle, the previously exclusive textbook route for full oxidation
of hexoses to CO2. Thus, even the seemingly well-understood
central metabolism in microbes bears surprises, and the
network perspective is expected to be particularly critical for
higher cell or organ metabolism.

Regulation and control of flux

Beyond qualitative, mostly genetic knowledge, our current
understanding on how cells actually control their fluxes is
limited. Lacking the beauty of genetic on/off regulation,
overlapping layers of genetic and metabolic regulations, often
with opposite directions, influence metabolic fluxes in a highly
condition-dependent manner. Current key questions are as
follows: which mechanisms control flux through a particular
pathway? To what extent? When is a given mechanism
relevant? How can we manipulate fluxes? Such questions are
currently revisited by two approaches that link particular
control mechanisms to experimental flux data.

The first approach follows the logic of classical metabolic
control analysis (MCA), which defines a quantitative link
between flux through a particular pathway and the activity of
its constituent enzymes (Fell, 1997). Extended to regulation,
the current focus is to quantitatively disentangle metabolic
from hierarchical (all processes that determine active enzyme
concentrations) regulation of flux (ter Kuile and Westerhoff,
2001). Downregulation of glucose influx in E. coli was thus
shown to be either fully hierarchical or mixed metabolic/
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hierarchical, depending on whether nitrogen or glucose
starvation was imposed, respectively (Rossell et al, 2005).
Extending such regulation analysis from individual reactions
to the sequential reactions of glycolysis, flux regulation
induced by nutrient starvation was demonstrated to be
inhomogeneous in the various constituent enzymes of the
pathway, varying from fully hierarchical to exclusively
metabolic (Rossell et al, 2006). This MCA-based regulation
analysis can quantitatively describe the different levels of flux
regulation through single reactions or linear pathways, but not
yet for the distribution of flux through the network.

The second line of research attempts to identify and quantify
the mechanisms that actually control the distribution of flux
between different pathways. In particular, transcriptional and
protein level regulation of flux has become a focal point,
primarily because it can be tackled through flux analysis in
mutants. Although many regulator knockout mutants have
a strong physiological phenotype, flux analysis can identify
specific flux changes in the network of such mutants. Such
specific flux changes imply that the deleted regulator
modulates the relative distribution of flux in the network by
inducing or repressing particular pathways.

In general, surprisingly few regulators appear to have a
specific impact on the distribution of flux. Out of 19 B. subtilis
and seven E. coli transcriptional regulators tested, only two
and one, respectively, exhibited a specific impact on the flux
distribution in central metabolism (Fischer and Sauer, 2005;
Perrenoud and Sauer, 2005). These and similar results support
the above conclusions from regulation analysis that, in
particular, central metabolic fluxes are rarely regulated at the
expression level alone. An extreme case of transcriptional
regulation is CcpN, a newly identified repressor of two
gluconeogenic genes (Servant et al, 2005), whose knockout
caused a severe flux redistribution in basically all major
pathways in B. subtilis (Fischer and Sauer, 2005) (Figure 3B).
The response regulator ArcA is a well-known repressor of the
TCA cycle genes under oxygen limitation in E. coli. In vivo
flux data demonstrated, however, that it also controls TCA
cycle fluxes under fully aerobic and anaerobic conditions
(Perrenoud and Sauer, 2005). Other transcriptional regulators,
whose specific flux impacts were recently described, are the
carbon repressor CreA in Aspergillus nidulans (David et al,
2005) and the virulence regulator PrfA in Listeria monocyto-
genes (Eisenreich et al, 2006). In particular, the parallel glucose
sensing pathways in the model yeast Saccharomyces cerevisiae
have attracted interest, and recent flux data identified several
regulators whose knockout can be used to partly alleviate
glucose repression of the TCA cycle (Blank and Sauer, 2004;
Raghevendran et al, 2004).

With the availability of complete knockout mutant libraries
for many model organisms, systematic flux analyses of
mutants with defects in signal transduction and transcriptional
regulation are underway. Beyond functional mapping of the
hierarchical regulation network that controls metabolism,
such quantitative data on the relevance of particular signaling
events will be important for the construction of computer
models. Obviously, quantitative understanding of flux control
in the network would also enable precise and subtle re-
engineering of cell factories (Vemuri and Aristidou, 2005), thus
circumventing the current brute force knockout/overexpres-

sion strategies that perturb cellular operation in many, often
unwanted ways.

Metabolic engineering of
biotechnologically relevant flux states

The original driver for development of modern microbial flux
methods was metabolic engineering that emerged about 15
years ago (Bailey, 1991). 13C-based flux methods since became
a key analytical technology in support of biotechnological
applications (Stephanopoulos, 1999; Sanford et al, 2002).
Beyond simple description of network responses to verify
success of genetic manipulations or absence of non-obvious
limitations, well-designed flux studies also enabled to devise
new, non-obvious metabolic engineering strategies. A success-
ful example was the discovery of substantial ATP-dissipating
futile cycle fluxes through the PEP carboxykinase in lysine-
producing C. glutamicum (Petersen et al, 2000). Subsequent
deletion of this activity significantly improved lysine produc-
tion (Petersen et al, 2001). An interesting recent example
comes from the Wittmann Lab, where several comparative
flux analyses on different substrates suggested insufficient
NADPH supply through the pentose phosphate pathway for
high lysine production on fructose-based substrates (Kiefer
et al, 2004; Wittmann et al, 2004). From these results, the non-
obvious strategy to overexpress the glucose-repressed fructose
1,6-bisphosphatase was devised, and shown to significantly
improve product yields on the industrially relevant substrates
fructose and sucrose (Becker et al, 2005).

Nevertheless, flux data rarely reveal a direct engineering
target, primarily because fluxes result from multiple compo-
nent interactions and genetic manipulations must be made at
the component level through, for example, overexpression of
a gene. Hence, it is necessary to integrate flux and potentially
other ‘omics’ data by means of computational methods to
identify the most promising engineering strategies and
to quantitatively understand—and thus predict—complex
network operation, which is discussed next.

Fluxes as input for or predictions of
computer modeling

The most accurate representation of metabolic networks and
their regulation are mechanism-based kinetic or stochastic
models that reflect both the static network stoichiometry and
the dynamic interaction of its components as described by
kinetic parameters and reaction mechanisms. For small
subnetworks, such detailed dynamic models can predict
intracellular flux responses, and experimental flux data can
be used to (i) interrogate those predictions or (ii) as input
data for parameter estimation. However, the complexity of
realistic networks and the lack of knowledge on the actual
reaction mechanisms as well as the unavailable parameters
limited so far the success of dynamic models (Stelling,
2004). By considering only the generally known reaction
stoichiometry, static metabolic models can be generated at
the genome scale with around a thousand reactions
(Schilling and Palsson, 2000; Price et al, 2004; Borodina
and Nielsen, 2005). Such stoichiometric models enable
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qualitative predictions of an organism’s metabolism in
steady state with metabolic fluxes as the key variable. This
constraint-based modeling approach (flux balancing analy-
sis) does not attempt to predict precisely what the network
does, but rather to distinguish feasible from unfeasible flux
states, based on the constraints of connections and reaction
reversibilities in the network.

These genome-scale stoichiometric models provide a
biochemically and genetically consistent framework for
systematic generation and testing of hypotheses on meta-
bolic functions. Experimental data on central metabolic
fluxes are then used either to further constrain the space of
feasible solutions in the entire reaction network (Wiback
et al, 2004; Kuepfer et al, 2005; Herrgard et al, 2006a) or
to test model predictions (Segre et al, 2002; Almaas et al,
2004). Another important application is in the experimental
design of large-scale flux experiments because model
predictions allow one to focus efforts on the most mean-
ingful experiments (Blank et al, 2005). Ultimately, the goal
of metabolic modeling is integration of quantitative experi-
mental data on fluxes, metabolites, and proteins to explain
and predict metabolic regulation and cellular phenotypes.
One attempt to this end is the second generation of genome-
scale models that incorporate primarily literature-based
transcriptional regulation using Boolean on/off rules (Covert
et al, 2004; Barrett et al, 2005). Already with such relatively
crude extensions of the network stoichiometry, large-scale
transcript data can be integrated in the network context and
potential regulation mechanisms may thus be identified
(Herrgard et al, 2006b). Similar in scope is an approach to
use probabilistic graphical models to either infer or explicitly
include hypotheses on links between metabolic reactions
and transcription (Yeang and Vingron, 2006).

More quantitative integration may be achieved through an
important extension of the constraint-based framework that
considers additionally thermodynamic principles (Kümmel
et al, 2006). Such network-embedded thermodynamic analysis
is a conceptual framework for quantitative integration of
metabolite concentration and flux data. Beyond its capacity to
verify consistency of flux and metabolite data and to predict
concentration ranges of unmeasured metabolites, the results
can also reveal putative sites of active (genetic or metabolic)
regulation. Another development is hybrid models that
combine stoichiometry and kinetics. By extending large
stoichiometric models with a local kinetic model (for example
of a particular branch point), the dynamics of a specific
metabolic regulation process can be assessed in the context of
the entire network (Petersen et al, 2003). For the lack of data,
such hybrid models focus on one or few dynamic regulation
sites. An alternative is to define a surrogate for the missing
details of kinetic regulation on the premise that biological
systems have evolved objective-based control programs that
can be mathematically represented in large-scale models.
Kinetic parameters and the underlying objectives of the
metabolic control structure are then identified from flux data
(Varner, 2000). Somewhat related is a first attempt to extend
the static constraint-based concept of flux balance analysis
to dynamic metabolite concentrations (Luo et al, 2006).
All approaches mentioned in this paragraph can potentially
integrate these two different data types (rates and concentra-

tions), which opens up the road to analyze dynamics of
network regulation.

Evolutionary ‘design’ of metabolism

In sharp contrast to the complexity of physical systems, such
as sand dunes, where every particle can interact with each
other, biological complexity is highly structured and function-
ally shaped through evolution. A key goal of systems biology
is to identify the common evolution (‘design’) principles that
underlie structure, regulation, and operation of networks.
Several recent theoretical analyses provided new insights into
structural design principles of metabolism. An almost obvious
one is the ‘bow-tie’ structure of metabolism; that is, many
parallel sequential pathways for nutrient degradation merge
into a core set of reactions from which again a large number
of biosynthetic pathways fan out (Csete and Doyle, 2004)
(Figure 3A). This ubiquitous and highly interconnected core
set of reactions is largely redundant with the classical central
carbon metabolism (Ma and Zeng, 2003). Not based on flux
but on promoter activity data, the just-in-time transcriptional
program of metabolic pathways was recently identified as a
regulation design principle of biosynthetic pathways in E. coli
(Zaslaver et al, 2004). It describes the wave-like temporal
expression, where enzymes at the beginning of a biosynthetic
pathway are transcribed from promoters with shorter response
times and higher maximal activity than enzymes that are
further down the pathway.

With established methods for higher-throughput flux
analysis under steady-state conditions (Fischer et al, 2004),
we can now begin to ask key systems biology questions about
the design principles of network operation. In contrast to the
generally rather variable and/or noisy concentration data of
transcripts and metabolites, large-scale flux studies from
bacteria and yeast revealed a surprisingly rigid distribution
of fluxes that appears to be a general design principle of
metabolic network operation in microbes (Blank et al, 2005;
Fischer and Sauer, 2005). Whereas the overall flux into cells
and the rate of growth varied significantly between mutants,
and thus most likely also transcript and/or metabolite
concentrations, the relative distribution of flux into different
pathways remained remarkably constant (Figure 3B). Appar-
ently, metabolism is in a stable state that is robust towards
random genetic perturbations, but responds flexibly to
environmental stimuli.

Another unexpected observation was mutants with higher
rates and higher efficiency of growth in B. subtilis when
central regulators for developmental programs such as
sporulation or flagella formation were deleted (Fischer and
Sauer, 2005). This led to the hypothesis of the stand-by-
mode design principle, where metabolism is kept in a
suboptimal state in anticipation of changing environmental
conditions. This stand-by-mode is probably more specific to
microbes with developmental programs. Combining flux
data with genome-scale stoichiometric models, there is
currently significant interest to infer underlying ‘rationales’
of metabolic evolution by asking questions such as whether
cells optimize their fluxes to maximize biomass forma-
tion (Fong and Palsson, 2004; Fong et al, 2006) or whether
they minimize redirection or on/off regulation of flux
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changes upon genetic perturbations (Segre et al, 2002;
Shlomi et al, 2005).

Future directions

To identify the actual control mechanisms, the need for
integration of flux data with other genome-wide data is clearly
recognized. As this can only be achieved through mathema-
tical modeling, we can expect significant progress on
computational methods for data integration in the near future,
and several promising approaches were discussed in the
modeling section. Based on the current methods, flux studies
will likely identify further microbial design principles and
modes of network operation. The available experimental flux
methods themselves, however, suffer from a number of
limitations that call for improvements.

A precondition of current flux analysis methods is metabolic
steady state; that is, all fluxes must be constant over the course
of the tracer experiment (Wiechert and Nöh, 2005). Although
experiments can be set up to meet this requirement,
continuously changing environments are a biological reality.
Hence, development of dynamic flux methods is an obvious
necessity that is currently followed by two approaches. In
the first, the required steady-state condition is reduced by
detecting the isotope patterns in free intracellular intermedi-
ates (van Winden et al, 2005). As the pool size of primary
metabolites is orders of magnitude smaller than the normally
analyzed proteinogenic pool of amino acids, isotopic steady
state is reached much faster. Labeling experiments may thus
be shortened from several hours (multiple cell divisions)
to minutes, although exchange of label with large pools of
unlabeled intracellular macromolecules may extend the
labeling period to 1–2 h. This method will also be applicable
to complex media, because central intermediates contain
information-bearing label but not the normally used amino
acids that are imported from the complex components. These
benefits come at the cost of laborious protocols for rapid
sampling of large cell quantities, instantaneous quenching of
metabolic activity, and sensitive high-end MS analyses of
chemically diverse species.

In contrast to the above detection of relative changes in the
13C patterns as the information-bearing unit, the second
approach exploits the kinetic information of label distribution
during the first minute of isotopic instationarity (but metabolic
stationarity) (Nöh and Wiechert, 2006). In addition to
monitoring time-dependent accumulation of tracer molecules
in intracellular metabolites, also (many) pool sizes must be
known. The fluxes are then calculated through systems of
differential equations from pool sizes and the rate of label
accumulation. As the computational effort to solve the large
differential equation systems is currently extremely high,
further developments are necessary (Nöh et al, 2006). Both
dynamic flux methods will allow tackling a number of key
problems, for example, flux changes during culture transients
or the cell cycle in synchronized cells.

Lastly, global tracking of small molecule fluxes in mamma-
lian cells, perfused organs, or humans is highly relevant for
monitoring and understanding of disease phenotypes, nutri-
tion, or drug metabolism. Unfortunately, the current method
repertoire is limited to the detection of one or few relative

fluxes or macromolecular turnover (Hellerstein and Murphy,
2004; McCabe and Previs, 2004; Sherry et al, 2004). One
problem is the continuously changing physiology where fluxes
typically vary long before metabolite pools attain isotopic
steady state (Kelleher, 2001). Another fundamental problem is
network complexity with temporal and spatial separation of
metabolic tasks between different compartments, cell types,
and organs. As flux analysis depends on a mathematical
framework for the interpretation of isotope tracer patterns, two
key issues currently preclude network flux analysis in higher
organisms. First, as a prerequisite for model construction, our
structural knowledge on all possible distributions of tracer
atoms in large, possibly multicellular networks is incomplete,
in particular for tracers such as 2H that exchange with water.
Second and more importantly, it is extremely difficult to
acquire sufficient data to resolve fluxes in such complicated
models. A conceptually novel solution is model-independent
fluxome profiling that was demonstrated for genetic variant
discrimination in microbes from 2H and 13C experiments
(Zamboni and Sauer, 2004), but is readily applicable to higher
organisms when labeling patterns are detected in a sufficient
number of intracellular metabolites. Akin to concentration-
based ‘omics’ analyses, fluxome profiling relies exclusively on
experimental data—isotope distributions in this case—and
multivariate statistical analysis. The approach lacks the
biochemical resolution of model-based flux analyses, but is
quantitative in terms of relative flux differences. Hence, it can
be used to discriminate genetic variants, drug toxicity,
nutrition, or disease states of higher cells and organisms
based on their functional flux phenotype.

Conclusions

Metabolic flux analysis based on stable isotope experiments is
a quantitative method to assess gene, protein, and metabolite
interactions within metabolic networks. It thus is an important
complement to the detection of global transcript, protein,
and metabolite concentrations—the network components.
Although neither of the component ‘omes’ is a functional
end point of cellular processes but rather contains potentially
valuable indicators of such processes, fluxes are the integrated
functional output of a metabolic network. Owing to their
inherent network perspective, flux data are highly relevant for
fundamental systems biology of metabolic networks and for all
applications that focus on manipulating or monitoring
metabolic behavior in areas like metabolic engineering,
nutrition, and medicine.
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