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Abstract
Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and
abnormal phosphorylation events can be a cause or contributor to disease progression in a variety
of disorders. This has led to the emergence of protein kinases as an important new class of drug
targets for small molecule therapeutics. A serine/threonine protein kinase, p38α mitogen-activated
protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders
because of its critical role in regulation of proinflammatory cytokine production. There is increasing
evidence that p38α MAPK is also an important regulator of proinflammatory cytokine levels in the
central nervous system, raising the possibility that the kinase may be a drug discovery target for
central nervous system disorders where cytokine overproduction contributes to disease
progression. Development of bioavailable, central nervous system-penetrant p38α MAPK
inhibitors provides the required foundation for drug discovery campaigns targeting p38α MAPK in
neurodegenerative disorders.

Background
Mitogen-activated protein kinases (MAPKs) are a family
of serine/threonine protein kinases that play essential
roles in eukaryotic cells by transducing environmental
stress signals into altered gene expression. There are
numerous human MAPKs, which are grouped into dis-
tinct families: the extracellular signal-regulated protein
kinases (ERKs); the c-Jun N-terminal kinases (JNKs); and

the p38 MAPKs (p38α, p38β, p38δ, p38γ). Different stres-
sors, or combinations of stressors, result in differential
activation of the discrete MAPK families, which can func-
tion in parallel in intracellular signal transduction cas-
cades that alter cellular physiology. Signaling cross-talk
among the individual MAPK cascades, as well as cross-talk
with second messenger-mediated protein phosphoryla-
tion cascades, result in a high degree of biological selectiv-
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ity in a tissue's response to stressors. Therefore, the
presence of a given MAPK family member in a tissue or
cell type does not provide a simple forecast of its physio-
logical or pathophysiological role.

Various genetic and pharmacological inhibitors of indi-
vidual protein kinases in stress-activated cells have pro-
vided causal linkages between the activation of a given
kinase, or MAPK family pathway, and a particular cellular
response endpoint, for example, increased production of
proinflammatory cytokines. The p38 MAPK family of ser-
ine/threonine protein kinases was explicitly implicated in
the regulation of key inflammatory responses in mam-
mals, contributing to a large body of evidence that even-
tually established it as a therapeutic target for a range of
diseases that have inflammation as a common disease
progression mechanism. An isoform of the p38 MAPK
family, p38α MAPK, was identified early as a drug discov-
ery target and became the focus of intense investigations
for over a decade. Currently, novel p38α MAPK inhibitors
are in clinical development for peripheral tissue inflam-
matory disorders. On-going investigations continue to
validate p38α MAPK as a therapeutic target for peripheral
tissue disorders, displaying no target-related toxicities
when appropriate compounds and dosing regimens are
used. However, in vivo evidence supporting p38α MAPK
as a central nervous system (CNS) therapeutic target has
only recently become available. Here we provide a brief
review of these emerging CNS data and highlight selected
work that provided the firm foundation for considering
bioavailable, blood brain barrier-penetrant, non-toxic
p38α MAPK inhibitors as potential therapeutics for CNS
disorders.

The p38 MAPK family as regulators of 
proinflammatory cytokine production
Proinflammatory cytokines are crucial components of
physiological defense mechanisms, but chronic overpro-
duction can lead to cellular dysfunction and damage [1].
One pathophysiology mechanism for peripheral tissue
injury is the overproduction of proinflammatory
cytokines, for example, tumor necrosis factor (TNF)α and
interleukin (IL-1)β, which can lead to tissue barrier dys-
function and cell death. Current macromolecular thera-
peutics for peripheral tissue disorders used in the clinic
target this increased cytokine activity [1]. Intracellular
MAPK signal transduction cascades, especially the p38
MAPKs, are important regulators of proinflammatory
cytokine biosynthesis [2-4]. p38 MAPK was first identified
as a key regulator of IL-1β and TNFα production in
human monocytes after lipopolysaccharide treatment
[5,6]. Later studies showed that activation of p38 MAPK
regulates proinflammatory cytokine production at the
transcriptional and post-transcriptional levels [7,8], lay-
ing the foundation for exploration of p38 MAPK as a

potential drug discovery target for attenuation of
increased proinflammatory cytokine levels [3,4].

Four isoforms of p38 MAPK have been identified, each the
product of distinct genes: p38α, 38β, p38γ and p38δ [2,9].
There are also several splice variants of these isoforms.
p38α MAPK is widely expressed among tissues and is con-
sidered a crucial mediator of inflammatory responses acti-
vated by a variety of signaling mechanisms with a wide
range of physiological endpoints [6,10,11]. Recently,
O'Keefe et al. [12] demonstrated in an elegant approach
using knock-in mice that the specific inhibition of the
p38α isoform in vivo is sufficient and necessary for sup-
pression of increased peripheral proinflammatory
cytokine levels after lipopolysaccharide challenge. As with
many intracellular signaling cascades mediated by serial
protein phosphorylation steps, p38α MAPK is activated
via transphosphorylations by upstream kinases [2]. The
activation of p38α MAPK, in turn, allows it to efficiently
phosphorylate its protein substrates [13]. The exact phys-
iological outcomes from such integrated, complex net-
works are dependent on the type of stressor, cell type,
tissue context of the cell, and previous stimulations.

In terms of the regulatory mechanisms of proinflamma-
tory cytokine production, several of the p38 MAPK sub-
strates are transcription factors, or other protein kinases,
which in turn can phosphorylate regulatory proteins and
thereby modulate function [13]. For example, p38α
MAPK can phosphorylate a variety of transcription factors,
for example, ATF2, ELK1, CREB, MEF2C, CHOP/
GADD153, and C/EBPβ, leading to transcriptional stimu-
lation of proinflammatory cytokines [14]. There are also a
variety of p38α MAPK substrates that can regulate proin-
flammatory cytokine production through either transcrip-
tional or translational mechanisms. One of the first
endogenous substrates identified for p38α MAPK was
MAP kinase-activated protein kinase-2 (MAPKAP K2 or
MK2), which is critical for the biosynthesis of TNFα after
lipopolysaccharide treatment [15-17]. This pathway has
also been proposed to stabilize cytokine mRNA by mech-
anisms dependent on AU-rich elements in the untrans-
lated regions of the cytokine genes [18,19]. Another
protein kinase substrate of p38α MAPK is mitogen and
stress activated protein kinase 1 (MSK1), which is acti-
vated upon phosphorylation by p38α MAPK. Activated
MSK1 can, in turn, stimulate transcription factors, allow-
ing increased proinflammatory cytokine production [20].
MSK1 also appears to be involved in the expression of
proinflammatory cytokine genes through phosphoryla-
tion of histone 3 (H3) and recruitment of NFκB [21-23].
The p38 MAPK/MSK1 pathway is also important for phos-
phorylation of CREB, a regulatory protein implicated in
proinflammatory cytokine gene expression [24,25]. Con-
sistent with these proposed biological roles in cell func-
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tion, p38 MAPKs are found in both the nucleus and
cytoplasm [14,26]. Thus, the wide variety of downstream
substrates of p38 MAPKs, along with the spectrum of
stressors and upstream activators that can converge on
p38 MAPK activation, allow for fine control of proinflam-
matory cytokine production. The pivotal role of these
pathways in the regulation of responses resulting in
increased proinflammatory cytokine activity emphasizes
the detrimental consequences dysregulation of these
kinase cascades can have in disease.

Modulation of p38α MAPK as a therapeutic 
approach to peripheral inflammatory disorders
p38α MAPK is an established drug discovery target for
peripheral inflammatory diseases, including rheumatoid
arthritis and Crohn's disease, where increased levels of
proinflammatory cytokines coincide with disease progres-
sion [27-30]. Treating animal models of these diseases
with p38α MAPK inhibitors reduces the expression of
proinflammatory cytokines, for example, IL-1β and TNFα,
and alters disease-related pathology [31-33]. Early clinical
development studies for the treatment of peripheral
inflammatory diseases revealed toxicity issues related to
the chemotype of the inhibitor and not to the target
[34,35]. This knowledge was used in the recursive devel-
opment of later generation inhibitors based on structur-
ally distinct chemotypes that showed improved safety,
metabolic stability, and pharmacokinetic profiles while
retaining or improving upon the affinity and selectivity
for p38α MAPK [36-38].

Currently, p38α MAPK inhibitors based on a variety of
chemotypes are in clinical development for the treatment
of peripheral tissue diseases, for example, multiple mye-
loma, atherosclerosis, chronic obstructive pulmonary dis-
ease, rheumatoid arthritis, and pain. Compounds include,
among others, SCIO 469 (Scios, Johnson and Johnson),
VX-702 (Vertex), and SB 681323 (GlaxoSmithKline) [11].
These p38α MAPK inhibitors displayed concentration-
dependent inhibition of kinase activity when tested in
vitro, with IC50 values (concentration of inhibitor required
for 50% inhibition) well below the desired 1 μM in vitro
inhibition activity sought before moving to in vivo studies.
This landmark value is based on the finding that the Km
values (concentration of substrate that gives half-maximal
activity) for the two physiological substrates of signaling
kinases, ATP and the respective endogenous protein sub-
strate, range from 1–20 μM [39], and the assumption that
a bioavailable and comparatively stable inhibitor should
exhibit in vivo function if the target is valid. Approved
kinase inhibitor drugs provide a precedent consistent with
this guideline. Imatinib (Gleevec), the first example of
these agents, has IC50 values of 0.1–0.35 μM for its kinase
targets [40]. The p38α MAPK inhibitors in clinical devel-
opment also showed selectivity of inhibition when exam-

ined by in vitro kinase inhibition screens that include
pathway- and structurally-related protein kinases. Gener-
ally, there is some inhibition of p38β MAPK due to the
close structural similarity between the p38α and p38β iso-
forms. However, p38δ MAPK and p38γ MAPK have key
differences in the site targeted by many inhibitors
designed by structure-assisted methods, allowing good
selectivity against them [12,29,35-38,41,42].

Contemporary approaches to the design of selective p38α
MAPK inhibitors take advantage of the extensive informa-
tion available from high-resolution structures of p38
MAPK isoforms and complexes with inhibitors. Many
p38α MAPK inhibitors are designed to exploit the small
'gatekeeper' amino acid that controls access to a hydro-
phobic binding pocket in the enzyme active site
[37,38,41]. p38α and p38β MAPKs both have a threonine
at the gatekeeper residue, 106, whereas p38γ and p38δ
MAPKs have a significantly larger methionine present at
the corresponding position. This enables the design of
small molecules that can dock bulky constituents into the
large hydrophobic pocket of the active site of the kinases
with the smaller gatekeeper residue, that is, p38α and
p38β MAPKs. Exploitation of this gatekeeper and hydro-
phobic pocket feature is combined with other aspects of
the structure to create affinity and selectivity for p38α
MAPK/p38β MAPK versus the other MAPK isoforms as
well as other kinases. A recent example is the combination
of the gatekeeper discrimination with another p38α
MAPK/p38β MAPK structural feature, the potential for
hydrogen bonding with the nearby peptide backbone seg-
ment that is conserved in the two kinases [37,38,41,42].
This is done by a vicinal arrangement of the two features
in small molecules so that spacing and steric constraints
within the targets are utilized.

p38α MAPK as a drug discovery target for CNS 
disorders
Evidence from both clinical studies and preclinical animal
models suggests proinflammatory cytokine overproduc-
tion as a potential driving force for pathology progression
in CNS disorders [1,41,43-46]. Although the importance
of p38α MAPK in the regulation of proinflammatory
cytokine production in peripheral inflammatory disorders
is well established, much less is known about its role in
CNS inflammatory disorders. Glia and neuron cell culture
studies demonstrated the importance of p38α MAPK acti-
vation for up-regulated cytokine production by stressed
glia and provided a link between p38α MAPK and stres-
sor-induced neuronal dysfunction in vitro [47-53]. In
addition to glial p38α MAPK and its linkage in cell culture
to cytokine increases in response to stressors, p38α MAPK
is also expressed in neurons [54,55]. Neuronal p38α
MAPK is considered a contributor to the phosphorylation
and abnormal functioning of tau, a microtubule-associ-
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Diagrammatic outline of p38 mitogen-activated protein kinase (MAPK) pathways in glia and neuronsFigure 1
Diagrammatic outline of p38 mitogen-activated protein kinase (MAPK) pathways in glia and neurons. Disease-relevant stres-
sors or stimuli can activate a variety of cross-talking and interacting signal transduction pathways, some of which can converge 
on activation of the p38 MAPK signaling cascades. For example, a typical p38 MAPK cascade consists of a three-tiered series of 
protein kinases: a MAPK (p38) and two upstream components (a MAPK kinase (MEK) and a MAPKK kinase (MEKK)) that acti-
vate the p38 MAPK by a series of activating phosphorylations. Activation of p38 MAPK and phosphorylation of its downstream 
substrates in activated glia (primarily microglia) can lead to up-regulation of proinflammatory cytokine production. Proinflam-
matory cytokines can act back on glia to stimulate multiple intracellular signaling pathways. Neurons can also respond to proin-
flammatory cytokine or other stressors/stimuli and activate neuronal p38 MAPK, culminating in neuron damage. The 
consequences of p38 MAPK activation in glia and neurons depend on the set of upstream signals, the isoform of p38 MAPK, 
the cell type, and the set of substrates that are stimulated.
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Strategy for development of a p38α mitogen-activated protein kinase (MAPK) inhibitorFigure 2
Strategy for development of a p38α mitogen-activated protein kinase (MAPK) inhibitor. (A) The p38α MAPK inhibitor MW01-
2-069A-SRM was developed using a structure-assisted and computational modeling design strategy, along with consideration of 
compound molecular properties. The inhibitor is based on a 3-amino-6-phenyl pyridazine scaffold (MW01-3-183WH) found in 
other central nervous system (CNS)-active compounds [46,68]. A pyridinyl pharmacophore characteristic of many p38 MAPK 
inhibitors was added to the scaffold. Modeling forecasted that MW01-2-069A-SRM could be accommodated by the p38α 
MAPK structure. The smaller Thr106 gatekeeper residue allowed the phenyl ring of the compound to occupy a hydrophobic 
pocket while the nitrogen of the pyridine ring could make a critical H-bond interaction with the amide bond between Met109 
and Gly110. These interactions are important for selectivity and affinity for the p38α MAPK isoform. MW01-2-069A-SRM was 
a p38α MAPK inhibitor, with an IC50 of approximately 0.8 μM, and was relatively selective for p38α MAPK; at 20 μM, the com-
pound showed complete inhibition of p38α MAPK, partial inhibition of p38β MAPK, and no inhibition of p38δ MAPK, p38γ 
MAPK, or 40 other protein kinases [41]. (B) Validation of the design approach and modeling of predicted interactions was 
done by testing analogs that did not show the predicted interactions with the kinase. For example, the scaffold compound 
MW01-3-183WH, which lacks the pyridine ring, is inactive. The inactive analog MW01-4-199SRM has a pyridine nitrogen in a 
different structural orientation, which should compromise activity due to distance constraints and altered electronegativity. 
Another inactive analog, MW01-6-189WH, has an identical composition to MW01-2-069A-SRM, but has its pyridine ring in a 
different position on the pyridazine scaffold. These data show that the pyridine pharmacophore must be introduced adjacent to 
the phenyl group in the molecular context of the scaffold, as found in MW01-2-069A-SRM, to produce a p38α MAPK inhibitor 
with good affinity and selectivity.
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ated protein found in neurons that correlates with the
clinical pathology in AD and other dementias [56-59]. An
interesting potential link between p38α MAPK activation
in both glia and neurons comes from studies of co-cul-
tures that showed microglia activation and release of IL-1β
leading to increased neuronal tau phosphorylation [60].
Activation of p38α MAPK is also seen in brain tissue from
AD transgenic mouse models [55,61,62]. Finally, clinical
pathology results revealed the presence of activated p38α
MAPK in brain samples from AD patients, with the acti-
vated p38α MAPK localized primarily to neurofibrillary
tangles, neurons near neuritic amyloid plaques, and in
glial cells [59,63-65].

An indication of the potential complexity of p38 MAPK
involvement in the physiology and pathophysiology of
glia and neurons is shown in Figure 1. This pictorial rep-
resentation of the integrated and redundant aspects of
intracellular signal transduction, mediated by protein
phosphorylation pathways, indicates the currently unpre-
dictable nature of how a particular pathway may be quan-
titatively involved in the response to a given stressor. The
tissue context of a given cell type will add another varia-
ble. Due to the inherent limitations of removing glia and
neurons from their tissue environment, it is critical that in
vivo studies test explicit hypotheses about the quantitative
importance of p38 MAPKs in specific pathophysiological
progression mechanisms. This knowledge can provide a
foundation for future therapeutic development cam-
paigns.

An in vivo causative link between p38α MAPK and disease-
relevant CNS pathophysiology has been provided by the
use of small molecule p38 MAPK inhibitors in animal
models of brain injury. For example, administration of a
second-generation p38α MAPK inhibitor, SB239063,
reduced infarct volume and attenuated neurological defi-
cits in a rat model of focal ischemic brain injury [66,67].
Oral administration of a CNS-penetrant p38α MAPK
inhibitor, MW01-2-069A-SRM, suppressed increases in
hippocampal proinflammatory cytokine levels and the
mechanistically associated synaptic marker protein loss in
a mouse model of amyloid-beta (Aβ)-induced injury [41].
Consistent with the compound's positive effect on hip-
pocampal synaptic marker protein levels was an attenua-
tion of hippocampal-dependent behavioral deficits [41].
Such results indicate the potential for targeting p38α
MAPK as a therapeutic approach in some CNS disorders
and provide causative links between p38α MAPK,
increased proinflammatory cytokine levels, and synaptic
dysfunction.

The in vivo results with small molecule p38α MAPK inhib-
itors raise the possibility that appropriate dosing with bio-
available, blood brain barrier-penetrant, and non-toxic

p38α MAPK inhibitors could generate a desired therapeu-
tic outcome for CNS disorders. The mechanism could
include a combined effect of attenuation of up-regulated
proinflammatory cytokine production by activated glia
and a potential neuroprotective effect on neuronal dys-
function. In terms of chronic neurodegenerative disorders
like AD, compounds such as MW01-2-069A-SRM (Figure
2) have a number of appealing features [41]. The com-
pound has molecular properties that are associated with
successful human CNS therapeutics, and has good oral
bioavailability and brain penetrance in rodents. For exam-
ple, after oral administration to mice, the compound
exhibited a peak brain:blood concentration ratio of
approximately 0.7. Oral administration of MW01-2-
069A-SRM at a low dose (2.5 mg/kg) after the start of
exposure to the stressor (for example, toxic forms of
human Aβ1–42) resulted in hippocampal levels of the
proinflammatory cytokines TNFα and IL-1β, and the pre-
synaptic marker protein synaptophysin, being indistin-
guishable from control levels measured weeks later [41].
These data provide evidence that the p38α MAPK pathway
is quantitatively important in the Aβ-induced up-regula-
tion of proinflammatory cytokines in the hippocampus,
and that brain p38α MAPK should be considered as a
credible molecular target in future drug development
campaigns for AD and related neurodegenerative disor-
ders.

Conclusion
p38α MAPK is emerging as an attractive target for CNS dis-
orders where increases in proinflammatory cytokines
appear to play a role in disease progression. The develop-
ment of orally bioavailable, brain-penetrant, CNS-active
p38α MAPK inhibitors provides not only a valuable
research tool for testing hypotheses about the role of p38α
MAPK in CNS disorders, but also represents a foundation
for future drug discovery efforts to develop potential neu-
rodegenerative disease-modifying therapeutics that target
this critical gene-regulating protein kinase.
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