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Economic load dispatch depicts a fundamental role in the operation of power systems, as it decreases the environmental load,
minimizes the operating cost, and preserves energy resources. )e optimal solution to economic load dispatch problems and
various constraints can be obtained by evolving several evolutionary and swarm-based algorithms.)emajor drawback to swarm-
based algorithms is premature convergence towards an optimal solution. Fitness-dependent optimizer is a novel optimization
algorithm stimulated by the decision-making and reproductive process of bee swarming. Fitness-dependent optimizer (FDO)
examines the search spaces based on the searching approach of particle swarm optimization. To calculate the pace, the fitness
function is utilized to generate weights that direct the search agents in the phases of exploitation and exploration. In this research,
the authors have used a fitness-dependent optimizer to solve the economic load dispatch problem by reducing fuel cost, emission
allocation, and transmission loss. Moreover, the authors have enhanced a novel variant of the fitness-dependent optimizer, which
incorporates novel population initialization techniques and dynamically employed sine maps to select the weight factor for the
fitness-dependent optimizer. )e enhanced population initialization approach incorporates a quasi-random Sabol sequence to
generate the initial solution in the multidimensional search space. A standard 24-unit system is employed for experimental
evaluation with different power demands. )e empirical results obtained using the enhanced variant of the fitness-dependent
optimizer demonstrate superior performance in terms of low transmission loss, low fuel cost, and low emission allocation
compared to the conventional fitness-dependent optimizer. )e experimental study obtained 7.94E−12, the lowest transmission
loss using the enhanced fitness-dependent optimizer. Correspondingly, various standard estimations are used to prove the
stability of the fitness-dependent optimizer in phases of exploitation and exploration.
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1. Introduction

After the development of computers, the main objective was
to investigate unknown solutions and find the best possible
solution. During World War II, Alan Turing broke a cipher
of Germany named Enigma by using an algorithm used for
searching [1]. Many challenges arose in solving problems in
real life due to the improvements in working methods and
the exciting acceleration in the extent of computations.
Hence, techniques based on numerical programming and
conventional logic emerged to overcome the drawbacks of
instantly and capably resolving complicated problems [2].
Various algorithms like optimization problems have been
designed to manage these limitations. )e best possible
solution was gained through the optimization method by
studying its parameter. All the possible values of present
solutions were expressed as a set one of which is the fittest
solution. Usually, problems of optimization are solved to
design algorithms of optimization [3]. Optimization algo-
rithms are classified into two groups: stochastic algorithms
and deterministic algorithms [4, 5]. Deterministic algo-
rithms generate a group of related answers when the iter-
ations are started by using an introductory initial point all
this happened by using inclination [6]. On the other hand,
stochastic algorithms constantly generate distinct answers
with related values in the absence of inclination. Diversely,
concluding values have a slight difference. )ere are two
categories of stochastic algorithms: metaheuristic and
heuristic [7, 8].

Heuristic algorithms use the trial-and-error method to
find a solution, and it is supposed that these algorithms will
consume reasonable time to reach a solution [9, 10].
Moreover, the aim of heuristic algorithms is to utilize
various methods in local examinations and techniques of
randomization [11]. Further analysis and advancements
were made in heuristic algorithms and converted to meta-
heuristic algorithms [12, 13]. )e novel collections of al-
gorithms have better performance than heuristic algorithms;
accordingly, the affix of “meta” that means “far off” was
linked with these algorithms.

Recently, available problems of the real world have
turned complicated in considerations of cost, time, and
space; it is not possible to traverse all credible solutions.
Hence, fast and low-cost techniques are required [14, 15].
)us, scientists studied the natural events and behaviors of
animals to resolve these issues, like how ants select their
paths; how fish, flies, or birds chase their prey; and the
working of gravity. So, all the algorithms inspired by nature
are called nature-inspired algorithms [16]. FDO algorithm
that is also known as the fitness-dependent optimizer was
introduced by Jaza Abdullah and Tarik Rashid in 2019. )e
FDO algorithm studies the bee swarms’ reproduction
practices and follows the activities of swarms.)is algorithm
finds out the best solution among the pool of solutions [17].
Intelligent computations are rising in various areas of re-
search because of their capability to integrate with large
complex and interconnected systems with high speed and
accuracy.

Economic load dispatch (ELD) is the most vital and
significant field of power system planning and operation
[18, 19]. )e chief aim of ELD was to list a group of real
power provided by resources of online generation to satisfy
the lacked demand whenever needed under a group of
limitations [20], regarding system and unit technical con-
straints with the least production cost. In general, the ELD
problem can be validated as an extremely nonlinear and
nonsmooth stifled problem of optimization usually for huge
systems. )e cost of fuel is concerned with the varying costs
of the generation of electricity.

)e main purpose of addressing the ELD problem is to
determine the necessary output power to satisfy the system’s
requirements in such a way that the cost is limited to its
possible minimum value and limits, such as prohibited
operating zone (POZ) and valve-point effects (VPEs) [20].
)ere is a need for efficient ways of producing electricity.
Increasing the cost of fuel makes the method of power
production expensive. Advanced systems are therefore ex-
pected to propose an economical generation, delivery, and
transmission method while keeping electrical limitations in
mind. )e total device requirement is divided into several
units by ELD, which reduces the total cost of generation.
Several complications exist while obtaining the ELD prob-
lem’s global best solution; the results are less accurate due to
the nonlinear nature of classical methods, confined to
convergence issues, and the best local solutions [6].

)e major drawback of some techniques like evolu-
tionary computing is premature convergence [21]. In heu-
ristics, exploitation, and exploration perform a significant
role. )e capacity of an algorithm to hunt globally is called
exploration, and the ability to search locally is known as
exploitation [22]. )e stability of exploration and exploi-
tation highly affects the swarm-based algorithms’ perfor-
mance. Smaller exploration and extreme exploitation lead to
premature convergence; and on the other hand, more
limited exploitation and higher exploration can cause bar-
riers to gaining the best solution [23].

In this research, by reducing fuel expense, emission
allocation, and transmission loss, the authors have imple-
mented FDO to solve the ELD problem. Similarly, the au-
thors have enhanced a new FDO variant that consolidates
specific techniques of population initialization and manip-
ulates sinus maps to pick the FDO weight factor dynami-
cally. )e enhanced population initialization method
combines a quasi-random Sabol sequence to generate the
initial solution for the multidimensional search space. A
typical 24-unit device is implemented with different power
demands for preliminary evaluation. )e observational re-
sults obtained by implementing the enhanced FDO variant
illustrate the outstanding performance compared to the
standard FDO in low transmission loss, low fuel cost, and
low emission allocation.

2. Related Work

In this section, various studies have been reported similar to
the enhanced approach but with different evolutionary and
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swarm-based algorithms, that is, PSO, BA, DE, GA, BCO,
and other combinations of the recent state-of-the-art
algorithms.

)e authors carried out a study to suggest a method for
the solution of ELD problems and to contrast it with various
available solutions [24]. )eir enhanced method owns the
following characteristics, managing issues of non-
differentiability, all the problems caused by PBC are also
resolved, and problems of multi-objective nature of PBC are
also resolved. )ey implemented their approach on 5 gen-
eration systems, and the achieved outcomes proved that
more effective Pareto-curve is gained. An enhanced algo-
rithm inspired by nature, that is, Bat algorithm that offers
firm convergence and excellent computational performance,
was conducted by [7]. Yang enhanced the BATalgorithm in
2010 after inspiring by bat’s echolocation behavior. )ey
stated that this bat quality enables the bat to locate the prey,
that is, various insects, even in the absence of light. )eir
enhanced method aimed at reducing the total cost of gen-
eration in the case of a thermal power plant.

In another research, an enhanced version of GA by
utilizing mutation and crossover for the solution of CHPED
problems was adopted by [25]. )ey stated that primary GA
is grown in three phases. In their first phase, they did not
include the process of selection to bypass population di-
versity loss, while in the second phase, they utilized two
various crossover operations to dig data about parents and
produce possible children. In the third phase, they used the
operation of mutation to substitute children with children of
other parents. )ey proved that their enhanced algorithm is
the best substitute for the CHPED problem. Another study
[26] was carried out to propose a novel quantum bat al-
gorithm (QBA) based on quantum computing; its main
purpose was to solve the problem of multi-objective com-
bined economic emission dispatch (CEED). Tominimize the
system’s nonlinearities, they represented CEED by utilizing
the function of the cubic criterion. )eir primary concern
was the eruption of CO2, NOx, and NOx and load dispatch.
)us, it is known as a multi-objective problem of optimi-
zation. )eir outcomes proved that QBA is the best solution
for the problem of CEED as compared to different available
solutions. An improved self-adaptable differential evolution
algorithm integrating with multiple mutation strategies
(ADE-MMSs) as a solution to ELD problems [27]. )ey
suggested a strategy to improve and explore of basic DE
problem. )eir enhanced method has 3 expansions of DE.
Furthermore, they suggested an approach to manage con-
straints of equality of problems of ED. )eir algorithm
enhances the speed of convergence as well as maintains a
balance between exploration and exploitation. ADE-MMS is
proved by them to be the most suitable solution.

Novel differential evolution algorithm was enhanced in a
study [28], for the solution of simultaneous power flow
OARPD problems for renewable generators.)eir enhanced
algorithm, that is, DEa-AR, utilized a combination of
arithmetic crossover and performed scaling based on Lap-
lace distribution. For the evaluation of their approach, they
utilized the IEEE 57-bus system in various situations. )e
outcomes of their simulations verified that the suggested

method could be used for solving OARPD problems with
sources that are efficiently renewable and can provide op-
timum solutions. Qiao and Liu [29] have carried out to
propose a combined framework of EVs and wind farms
(WEVs) that reduced the over and underestimation of wind
power by utilizing the discharging and charging capability of
EVs. )ey designed a dynamic economic emission dis-
patching based on the WEV system (WE_DEED). )ey
utilized their algorithm for the solution of complicated
problems of WE_DEED. While they handle the limitations
of WE_DEED through their enhanced algorithm. )ey
verified their algorithm on various 10-unit systems.

)e authors enhanced a novel technique [30], for
thermal plants’ dispatch generating powers based on motion
optimization algorithm (IMA). )ey achieved ELD being an
objective function through implementing IMA. For the
testing phase, multiple instances of various units of thermal
plants were utilized to examine the execution of their al-
gorithm. )eir preceding outcomes were matched with
various approaches.

A detailed description of related ELD applications
concerning different evolutionary approaches is given in
Table 1.

3. Methodology

3.1. Problem Formulation. Emission can be included in
economic dispatch’s formulation in a variety of methods.
Combined economic and emission dispatch (CEED) is one
of the methods that are expressed as a problem of multi-
objective optimization used to reduce emission and fuel
costs to satisfy demand and avoid losses [38].

3.1.1. Combined Emission and Economy Dispatch (CEED).
CEED problem can be expressed as [39]


N

i�1
Pi − Pl − Pd, (1)

FC � 
N

i�1
aiP

2
i + biPi + ci, (2)

EC � 
N

i�1
aiP

2
i + biPi + ci |Cost function, (3)

Pl � 
N

i�1


N

j�1
BijPjPi + 

N

j�1
B0iPi + B00, (4)

where Pd represents total load demand, Pl shows total
transmission loss, and Pi is the power produced by ith

generator. Total fuel cost is denoted by FC, and total
emission is denoted by EC. In (2), ai, bi, and ci represent fuel
cost coefficients. From (3), the cost function depends on the
problem nature, and it can be quadratic, square, sinusoidal,
or any other function.

Referred to (4), Bij coefficients or load flow can be
utilized to find transmission losses denoted as Pl, where B0i
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is the coefficient vector of Bij and a value B00. )e price
penalty factor is utilized to transform the problem of multi-
objective optimization into a single-objective optimization
problem as follows:

f(FC,EC) � Minimize (FC + EC). (5)

Each plant or price penalty factor can be found for a
specific demand as follows:

(i) )e ratio between the average fuel cost and the
average emission of themaximum power capacity of
that plant is obtained as follows:

bi �
FCi Ui( 

ECi Ui( 
, i � 1, 2, n, (6)

where (Ui) is the ith unit of plant capacity.
(ii) Plants are arranged in ascending order based on the

value of the price penalty factor.
(iii) Each unit (Ui) maximum capacity is added one at a

time, beginning from the lowest value of bi, unit
until  Pi ≥ Pd.

(iv) At this point bi, linked with the last unit of the
process, is the price penalty factor “b,” Rs/Kg for the
provided demand of the load.

3.1.2. Emission-Controlled Economic Dispatched (ECED).
Emission-controlled economic dispatch (ECED) is another
method to reduce the economy related to a specific limit of
emission concerning a specific demand. ECED problem’s
primary concern is to discover the cost-effective placement
of plants while fulfilling the losses and demand and keeping
the permissible limit of emission; FC needs to be reduced
directed to (1), that is, power balance constraint and
emission limit constraint expressed as

f(FC) � 
N

i�1
Pi − Pl − Pd, Pl ≤Pi ≤Pd, EC≤Elimit. (7)

Here, the system’s total emission limit is denoted by
Elimit.

3.2. Bee Swarming. )is extraordinary insect is one of the
most remarkable creatures since the old times. Honeybees
have been the topic of scientific research. Moreover, multiple
books and experiments have been carried out about hon-
eybees; for instance, Ribbands published “Behavior and the
Social Life of Honeybees” in 1953. “Anatomy of the Honey
Bee” was written by Snodgrass in 1956, and )omas
D. Seeley wrote “the wisdom of hive” in 1995. )e anatomy
of a bee is shown in Figure 1. A process known as swarming
is carried out to form new honeybee colonies:

Table 1: Detailed description of related ELD applications concerning different evolutionary approaches.

Sr. Ref. Proposed technique Dataset
1 [7] BAT algorithm —
2 [26] Quantum bat algorithm (QBA) —
3 [30] Artificial bee colony algorithm —

4 [31] Bat algorithm (BA) and artificial bee colony (ABC) with chaotic-based self-
adaptive (CSA) search strategy (CSA-BA-ABC)

23 benchmark function and three CHPED
problems

5 [25] Improved genetic algorithm using novel crossover and mutation (IGA-
NCM) —

6 [32] Learner nondominated sorting genetic algorithm (NSGA-RL) 10 famous multi-objective functions

7 [33] Chaotic-crisscross differential evolution (CCDE) Generalized test functions and two practical
hydrothermal system problems

8 [34] Differential evolution algorithm (DEA) IEEE-30 bus system

9 [35] Dynamic economic emission dispatching based on WEV system
(WE_DEED) 10 unit systems.

10 [27] Self-adaptable differential evolution algorithm integrating with multiple
mutation strategies (ADE-MMS)

4 DE algorithms are tested on the ten ELD
problems with diverse complexities

11 [28] Differential evolution the algorithm denoted as DEa-AR IEEE 57-bus system
12 [31] Modified crow search algorithm (MCSA) Five different well-known test systems
13 [36] Multi-objective multi-verse optimization algorithm 140 bus system
14 [24] Multi-objective economic and environmental dispatch problem (EEDP) Five generation systems
15 [37] Coyote optimization algorithm (COA) Power system consisting thermal generator
16 [29] Motion optimization algorithm (IMA) Several cases of different units of thermal plants
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Figure 1: Honey bee anatomy [17].
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(i) )e old colony is left by queen bees among some
workers and scout bees.

(ii) A swarming cycle is shown in Figure 2. A collection
of thousands to tens of thousands of bees make up a
swarm.

(iii) )ey make a cluster around the queen in some
branch or a tree, and twenty-fifty scouts are sent out
to discover some new proper hives.

(iv) Finally, under the supervision of the scout’s bees, all
other bees fly to the new hive.

Scout bees check a hive for various standards to meet,
such as it must be wide enough to hold the entire swarm, and
the entrance must be small and must be at the bottom of the
hive, and must get a particular amount of heat from sunlight
[40]. Processes of decision-making of scout bees are the
source of inspiration. When they find various proper hives,
they select the best among them. )e source of communi-
cation between scouts is the movement of their wings and
legs, which is called bee dance. )e new hive is selected after
the agreement of 80% of the scouts [40].

In terms of algorithms, every hive utilized by a scout
demonstrates a feasible solution of an artificial search agent,
while the fittest hive expresses a global optimum solution,
which is represented in Table 2. )e characteristics of the
hive, like its size, size of entrance, and location of the en-
trance, can be viewed as a solution’s fitness function. )e
process of collective decision-making of scouts is expressed
as fitness weight (fw) in the algorithm.

3.3. Fitness-Dependent Optimizer. )e reproduction process
of swarm bees is replaced by this algorithm. )e major

portion of the algorithm is obtained from hive exploring the
process of scout bees from a pool of suitable options. )e
algorithm starts with the random initialization of the arti-
ficial scout population within the search space of
Xi(i � 1, 2, . . . n); the position of every scout expresses a
recently recognized hive. Scout bees keep on finding the
more suitable hive; once they find a better hive, they neglect
the previous better hive; the same is the case with the al-
gorithm. Whenever it discovers a new, more suitable so-
lution than the earlier determined solution is neglected. If
they cannot find any other better solution than the previous
one, they will consider the current solution as the best
solution.

A mechanism of fitness weight and random walk is used
to randomly explore the landscape by artificial scouts in this
algorithm. )e following equation expresses the movement
of artificial scout bees:

Xi,t+1 � Xi,t + pace, (8)

where i denotes the current search agent, x denotes an ar-
tificial scout bee (search agent), pace denotes the direction
and movement rate, and t denotes the current iteration of
the artificial scout bee. Pace usually depends on fw, that is,
fitness weight, whereas pace′s direction fully depends on a

[Cycle begins)

Daughter queens
are reared

Worker population
growsback to
full strength

Mother queen
departs with
part of the

worker force
(prime swarm)

First daughter
queen inherits

the parental nest

Second daughter
queen inherits

the parental nest

First daughter
queen departs

with part of
the remaining
worker force
(afferswarm)

Swarm moves
into a new

nest site

Swarm moves
into a new

nest site

Queen males
Colony II

Colony III

Colony I

Colony II

Optional

Figure 2: Bee swarming process cycle [17].

Table 2: FDO-related bee biological characteristics.

Sr. Nature Algorithm
1 Selected hive Global solution
2 Scout collective decision Objective weight
3 Hive specification Objective function
4 Hive Solution found
5 Scout bee Search agent
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randommechanism.)erefore, minimization problems’ fw

can be measured as

fw �
x
∗
i,t fitness

xi,t fitness




− wf. (9)

)e current best global solution’s fitness function value is
denoted by x∗i,t fitness, current solution’s fitness function value
is denoted by xi,t fitness, and the weight factor is expressed as
wf, which can have only 0 or 1 value and is used to control
fw. Ifwf � 1, then it shows a low possibility of coverage and
a high level of convergence. But if it is equal to 0, then it will
not have any effect on equation (3.9), so it can be ignored,
and if the variable is wf � 0, it will present us a more stable
search. However, it reverses as the value of the fitness
function entirely depends on the optimization problem. But,
the value of fw must be in the range of [0, 1]; still, in some
situations, when fw � 1, for instance, if the recent solution
is the global best solution or global best solution and the
recent solution are the same or hold similar fitness value.
Furthermore, a possibility exists when fw � 0, if
x∗i,t fitness � 0. Lastly, it must bypass the chances to divide a
number with 0 in case xi,t fitness, so it must follow the fol-
lowing rules:

fw � 1 orfw � 0 orxi,t fitness � 0, pace � xi,t ∗ r

fw> 0 andfw< 1
r< 0, pace � xi,t − x

∗
i,t ∗fw∗ − 1

r≥ 0, pace � xi,t − x
∗
i,t ∗fw

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(10)

where a random number with a range of [−1, 1] is denoted by
r. )e randomwalk can be implemented in a variety of ways,
but here Levy flight is selected as its good distribution curve
offers stable movements [22]. According to FDO mathe-
matical complexity: its time complexity for every iteration is
O(p∗ n + p∗CF); here, p denotes the size of the pop-
ulation, problem dimensions are denoted by n, and cost of
the objective function is CF. Space complexity for every
iteration is O(p∗CF + p∗ pace); here, pace denotes the best
previous paces stored. From this point, the time complexity
of FDO is proportional to the number of iterations. How-
ever, space complexity will remain identical throughout the
sequence of iterations. For the calculation of objective value,
FDO owns a simple tool for calculations; it only calculates
one random number and fitness weight for every agent [41].
Similarly, DA alignment, attraction, separation, some ran-
dom values, and distraction are required to be calculated,
while a majority of them are accumulative and the value of
one depends on the value of others making the calculations
complicated [42].

3.3.1. Single-Objective Optimization-Based FDO. FDO with
single-objective optimization problems (FDOSOOPs)
starts with the initialization of artificial scouts on random
locations of search landscape by utilizing lower and upper
boundaries. For each iteration, it selects the global best
solution, after that each artificial scout bee is computed by

using (9). )en, the value of fw is examined to decide
whether it is 1 or 0 and if xi,t fitness � 0. pace is generated by
utilizing (10). But, a random number denoted by r of range
[−1, 1] will be generated if fw >0 and fw <1. For calcu-
lation of pace, (10) will be utilized if the value of r is less
than 0 and value of fw will have a negative sign; however,
for r ≥0, the pace will be calculated with the help of (10) and
fw will have a positive sign. Random selection of signs for
fw will ensure the random search of artificial bees in all
directions.

In FDO, direction and size of pace are controlled by the
randomization method; however, only the direction of pace
is usually controlled by this method; in such situations, the
pace’s size depends on fw. Whenever scout bees find a new
solution, it is compared with the current solution to de-
termine whether it is better or not based on a fitness
function. )e earlier solution is neglected if the better latest
solution is obtained. Similarly, if it is not better than the
previous value of pace, it will be used by the scout bee to
continue. On the other hand, if a better solution cannot be
achieved by utilizing the previous value of pace, then the
current solution will be continued by FDO to the next it-
eration. In FDO, whenever a solution is acquired, the value is
saved for utilization in the next iteration. Two minor al-
terations are required for the implementation of FDO in
maximization problems. (9) should be replaced by (11) as it
is the inverse variant of (9):

fw �
xi,t fitness

x
∗
i,t fitness




− wf. (11)

)en, the criteria for the selection of the best solution
must be altered. )e statement
″if(Xt+1,ifitness<Xt,ifitness)” needs to be replenished with
″if(Xt+1,ifitness>Xt,ifitness).”

3.3.2. Multi-Objective Optimization-Based FDO. FDO with
multi-objective optimization problems (FDOMOOPs) begins
with the initialization of artificial scouts into two-dimensional
search space (Xi, Yi) . Each scout bee in the search space of
(Xi, Yi) can be defined as Xi(i � 1, 2, . . . n) and
Yi(i � 1, 2, . . . n).)en, the value offw is examined to decide
whether its 1 or 0 and if xi,t fitness � 0 or yi,t fitness � 0. In both
cases, the pace can be generated as fw � |xi,t fitness/x∗i,t fitness| −

wf and fw � |yi,t fitness/y∗i,t fitness| − wf.

3.4. Enhanced Method. Multidimensional and multi-objec-
tive optimization algorithms tend to perform better for
solving the linear and nonlinear constraint problems than
the single-dimensional and single-objective optimization
algorithms, especially in the case of ELD, when both the
emission rate and fuel cost need to be minimized to ap-
proach the total loss and power demand. FDO is a multi-
objective metaheuristic algorithm and, therefore, best suit-
able for solving constrained ELD problems. It can be implied
to complex problems with nonlinear approximation. In this
thesis, the authors have carried out FDO to solve the ELD
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problem by minimizing fuel cost, emission allocation, and
transmission loss. Besides, the authors have employed a
novel variant of FDO, which incorporates novel population
initialization techniques and employed sine maps to select
the weight factor for FDO dynamically.

3.4.1. Population Initialization. )e swarm or group of
swarms needs to be fired randomly to obtain their initial
fitness solution in the optimization process. )e entire
process is called population initialization. )e most con-
ventional method to assign an initial location to each in-
dividual is through a random number generator following
the normal distribution. However, the major drawback to
using the random number generator is premature conver-
gence and abnormal exploration and exploitation. )e
random number generator developed a random number
between the internal of 0 and 1. )e probability of obtaining
an optimal solution in the case of local minima is reduced
when the initial locations are directed far from the solution,
and each individual requires more steps and iterations to
seek the entire solution. )e swarm can be stuck into
premature convergence during the searching process and
lead to poor exploration. Similarly, as opposed to this, the
probability of obtaining a global solution in the case of global
minima is diminished when the primary positions are de-
livered too near around the search space while the solution is
out of search space; hence, each individual requires more
steps and iterations to seek the entire solution and can be
stuck into the premature convergence and leads to poor
exploitation.

3.4.2. Quasi-Random Sequence Initialization.
Quasi-random is a distinction of n-rows that occupies
n-dimensional search space. It is also called a low-disparity
sequence. However, the usual standard quasi-random se-
quences and odd numbers all give consistently suitable
sequences. )ere is a significant distinction between these
two patterns, aside from the standardized manner. An
identical arbitrary generator on (0, 1) will deliver sequences,
so every preliminary has a similar likelihood of producing a
point on equivalent subintervals, for instance [(0, 1/2), (1, 1/
2)]. In this manner, it is attainable for n preliminaries to
inadvertently all extend in the top half of the range, while the
(n+ 1) points fall inside the other of the two parts with a
likelihood of 1/2. While this is not the situation with the
quasi-random sequences, the generated sequences are
obliged by a low-inconsistency prerequisite that has a net
impact on centers being created in a profoundly connected
way. To avoid the premature convergence problem in FDO,
the authors have carried out one of the quasi-random se-
quences called the Sobol sequence for the population’s
initialization.

3.4.3. Quasi-Random Sequence Initialization. Sobol se-
quence is a low discrepancy sequence that was first enhanced
by mathematicians in Russia in 1967 [43]. It mimics the

random distribution by appropriating a base of two to shape
progressively better uniform edges of the required interval
and afterward reorder the directions in each measurement.
Following are prime steps to generate the Sobol sequences
Sd:

(i) Let Sd be the hypercube with the interval of Sd �

[0, 1]d and d-dimensional. )e approximation
function fopr is integrated over the hypercube Sd.

(ii) )e Sobol sequence termed as Sobol [x, y] can be
generated using the following equation over the
nonlinear approximation of Sd:

lim
x⟶∞

1
x



x

i�1
f Si(  � 

i

Sd

f. (12)

(iii) It is a notable pattern against each dimensional
vector that for the whole to reach towards the in-
dispensable points Sd. Furthermore, the second
great feature would be that the forecasts of x in the
low range of the dimensioned face of Sd cover most
of the search area in terms of optimization.

(iv) Subsequently, the comparable center of Sd does not
meet the criteria because in lower measurements,
numerous focuses will be at a similar spot, in this
way unnecessary for the vital estimation.

)e comparison of FDO population initialization with
random numbers following the Sobol distribution and the
uniform distribution is presented in Figures 3 and 4 re-
spectively. )e following equation is used in the standard
FDO for the swarm to select their initial locations to seek the
entire optimal solution:

Randomi(i � 1, 2, . . . n)∴[0, 1]. (13)

In the enhanced FDO, the authors have selected the
interval of [0, 1] for generating both sequences uniform and
Sobol sequences in the process of FDO population initial-
ization. )e enhanced equation for initializing the swarm in
FDO is presented as follows:

Soboli(i � 1, 2, . . . n)∴[0, 1], (14)

where [0, 1] in (13) and (14) represents the standard limits of
both generated sequences. )e uniform random positions
can be seen in Figure 3 with very random locations and ill-
patterned sequences, which may lead to poor exploitation.
As compared to the uniform random, the Sobol sequence
comes up with a well-patterned sequence in Figure 4, which
may lead the swarm to converge maturely.

3.4.4. Enhanced Approach for Updating Weight Factor.
)e weight factor is revealed as wf, which can have partic-
ularly 0 or 1 utility and is utilized to control wf. If wf belongs
to absolute 1, then it confers a low probability of coverage and a
high level of convergence. However, if the weight factor wf

belongs to 0, then it will not have any influence on (15), so it
can be ignored; if the variable is wf � 0, it will present us a
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more stable search. However, it reverses as the value of the
fitness function entirely depends on the optimization problem:

fw �
x
∗
i,t fitness

xi,t fitness




− 0. (15)

However, in unusual circumstances, when the weight
factor belongs to absolute one as shown in (16), for instance,
if the new solution is the global best solution or local best
solution and the new solution is identical or operates similar
fitness value:

fw �
x
∗
i,t fitness

xi,t fitness




− 1, (16)

wf should be balanced enough to control the exploitation
and exploration for the controlled convergence rate when
leads to absolute 0 wf and absolute 1 wf. For this, the
authors produce a chaotic effect by using sine maps to the
weight factor wf between the interval of [0, 1].

3.4.5. Chaotic Sine Map. Chaotic maps produce uncon-
trolled groupings during the metaheuristic algorithm. )e
authors practiced the benefit of a chaotic sine pattern to
update the weight factor [22]. )e sine map is chaotic and
used to produce a quarter effect between the interval of 0 and
1. When the weight factor becomes skewed towards 0, the
sine wave covers the low balance and controls the low
convergence rate. Similarly, when the weight factor becomes
skewed towards 1, the sine wave covers the high balance and
controls the high convergence rate. )is phenomenon it-
eratively maintains the balance with optimal weight factor
throughout the last epoch. A chaotic sine map can be defined
as

Smap �
m

4
sin πxi( , (17)

where 0<m< 4 is the controlling factor. )e author chooses
m � 0.3 with the most optimal sequence. In terms of the
weight factor, the equation becomes

ws �
m

4
sin(πwf). (18)

)e enhanced variant of FDO utilized the following
equation to update the fitness weight fw:

fw �
x
∗
i,t fitness

xi,t fitness




− ws. (19)

)e flowchart of the enhanced FDO along the ELD
application is presented in Figure 5.

4. Application Results

4.1. Dataset Overview. )e performance of the enhanced
variant of FDO is evaluated through 24 units taken from the
18-unit system and 20-unit system with each of the 6-unit
case study chunks by optimizing the fitness function enlisted
in (1). )e parameter sets used in the experiment for each
unit are listed below.

Total number of units used in the experiment� 24, total
power demand� 400, 700, number of iterations� 100, 200,
population size� number of bee scouts� 50, and the beta
coefficient used for 24 units according to each chunk of 6
units in the exploring capacity with a power demand of
400MW and 700MW are presented as follows:

Uniform Random Scatter
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Figure 3: Population initialization with random number generator
following the uniform sequence.
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Figure 4: Population initialization with Sobol sequence following
the random distribution.
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Beta coefficient � 1e
− 4

×

1.4.17.15.17.60.13

.15.13.65.19.16.17

.26.15.24.22.20.19

.19.26.22.16.15.20

.17.24.19.71.30.25

.30.69.32.25.32.85

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Detail of 24 units used to minimize the fuel cost,
emission allocation, and transmission loss with 400 and 700
power load is presented in Table 2. In Table 2, Pmin and
Pmax represent the lower and upper plant limits, respec-
tively, whereas other parameters can be defined as a � (.

)e dataset used for the simulation consists of two
chunks with 12 generating thermal units each. )e first 12
generating units (1 to 12) are taken from Sys_18 U with all
plant limitations and beta coefficients as represented in (20).

Similarly, the last 12 generating thermal units (13 to 24)
are taken from Sys_20 U with all plant limitations and beta
coefficients as described in (20). All thermal units employed
for the empirical analysis are ramp-limits-free and do not
endure in the prohibited zone for the smooth objective
function. Comparison of simulation results on the ELD
problem (FDO vs. enhanced FDO) with nonlinear opti-
mization on 100 epochs with a power demand of 400 and
700 is presented in Tables 3 and 4.)e total fuel error and the
transmission cost are the minimum global fitness achieved
by optimizing the ELD problem as minimize
f(FC,EC), ∋ , N

i�1 Pi � Pd + Pl, Li ≤Pi ≤Ui. Similarly, in
Tables 4 and 5, a comparison of simulation results on the
ELD problem (FDO vs. enhanced FDO) with nonlinear
optimization on 200 epochs with a power demand of 400 and
700 is presented.

Certainly, for our problem statement, the accentuation is
to distinguish, which epoch setting requires the most
minimal fuel cost and transmission loss to discover ar-
rangements of a specific worthy quality. Furthermore, the
power demand is also analyzed in a roundabout way, to give
in any event a complex reflection of the complexities of the
various calculations considered in our relative examination.

)e obtained results certainly take the fact that the
population initialization and optimal fitness factor of FDO
make some impact on the global best of FDO as compared to
the enhanced variant of FDO in terms of optimal allocation
emission. )e reason behind developing each thermal
generation chunk with 6 units is to investigate the impact of
greater dispersion on the total fuel cost and minimum error.
To visualize the obtained results emission allocation results,
a convergence comparison of FDO with the enhanced
variant of FDO on the first 6 thermal units with 100 epochs
and different power demands are illustrated in Figure 6.

Moreover, convergence comparison (transmission loss)
of FDO with the enhanced variant of FDO on the 24 thermal
units with (100, 200 epochs) and different power demands
are demonstrated in Figures 7 and 8. To validate the achieved
results on the ELD problem (FDO vs. enhanced FDO), this
research used an ANOVA test. )e main reason behind
performing the ANOVA test is to find the significant

difference between the standard and enhanced FDO in terms
of minimization. )e additional reason to perform the
ANOVA test is to determine which parameter delivers
outcomes with critical contrasts, considering the target value
accomplished by enhanced FDO from each run of the
considerable number of tests performed. Graphical repre-
sentation of one-way ANOVA test comparison (optimal
allocation emission) of FDO with the enhanced variant of
FDO on the 24 thermal units with (100, 200 epochs) and
several power demands are illustrated in Figures 8 and 9,
respectively.

4.2.OptimalAllocationEmission. It is earlier mentioned that
each chunk of thermal units is tested on 100 independent
runs with 100 and 200 epochs considering two different
combinations of power demand. )e authors observed a
significant improvement in the optimal power allocation
generated by the enhanced FDO for the first 6 thermal units
as compared to the conventional FDO (referred to Table 4).
All 5 units’ results obtained by enhanced FDO outperformed
FDO except the 6th unit with 162.2504561 optimal emission
allocation on 100 epochs and 400 power demand.

As contrasted to the first chunk of thermal units, the
performance of the enhanced algorithm was observed less
when optimizing emission allocation. It can be seen from
Table 4 that only thermal units 7 and 12 gained better
emission rates, which lead to greater divergence of the whole
population. However, thermal units 8, 9, 10, and 11 show
equal empirical performance for both FDO and enhanced
FDO with a 44.3 emission rate.

In the case of the third chunk, thermal units 13 to 18, the
emission allocation rate is not significantly improved using
enhanced FDO instead of the standard FDO. )e enhanced
version obtained 18 with unit 13, 58 with units 14, 15, 16, 17,
and 58 with unit 18, on 100 epochs and 400 power demand,
which shows a slight improvement. )is slight impact of
enhanced FDO reveals the impact of robust population
initialization on the ELD emission allocation. Lastly, the
fourth chunk of the thermal unit from Table 4 exhibits
outstanding results of the Enhanced algorithm on the entire
parameter setting except for the last thermal unit with a
19.62533477 emission rate.

From Table 5, when power demand raised 400 to 700, the
enhanced algorithm also improves the swarm convergence,
and hence, the optimal fitness factor works here. )is
phenomenon shows the inverse divergence of the global best
computed with the enhanced fitness factor, which leads to
the emission allocation of the thermal units 3 and 6 from
68.72201216, 162.2504561 to 83.36202838, and 347.0304788,
respectively. Similarly, premature convergence is highly
tackled by the enhanced algorithm when seeing a significant
decrease in the average optimal allocation for the first six
thermal units. Tables 5 and 6 show similar convergence
behavior of enhanced FDO compared to the FDO using 200
epochs with 400 and 700 power demand. However, the
optimal fitness factor produces less impact than the effect
produced when testing on 100 epochs.)is can be due to the
dimension reduction that occurs in higher generations.
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Table 3: Twenty-four units used with a chunk of 6 units in the exploring capacity with a power demand of 400MW and 700MW.

Units Pmin Pmax a B C
1 7 15 0.602842 22.45526 85.74158
2 7 45 0.602842 22.45526 85.74158
3 13 25 0.214263 22.52789 108.9837
4 16 25 0.077837 26.75263 49.06263
5 16 25 0.077837 26.75263 49.06263
6 3 14.75 0.734763 80.39345 677.73
7 3 14.75 0.734763 80.39345 677.73
8 3 12.28 0.514474 13.19474 44.39
9 3 12.28 0.514474 13.19474 44.39
10 3 12.28 0.514474 13.19474 44.39
11 3 12.28 0.514474 13.19474 44.39
12 3 24 0.657079 56.70947 574.9603
13 150 600 0.00068 18.19 1000
14 50 200 0.00071 19.26 970
15 50 200 0.0065 19.8 600
16 50 200 0.005 19.1 700
17 50 160 0.00738 18.1 420
18 20 100 0.00612 19.26 360
19 25 125 0.0079 17.14 490
20 50 150 0.00813 18.92 660
21 50 200 0.00522 18.27 765
22 30 150 0.00573 18.92 770
23 100 300 0.0048 16.69 800
24 150 500 0.0031 16.76 970

Starts

Initialize Scouts using Sobol
Sequence

Find best artificial Scout bee

Calculate fitness weight (fw)
based Eq. 21

If fw = 0 or 1
or

xi,t fitness = 0

Calculate Pace using Eq.
pace = xi,t * r

No
If fw > 0 and fw < 1

*

*

Calculate Pace using Eq. 
r < 0, pace = (xi,t – xi,t) * fw * –1

and
r ≥ 0, pace = (xi,t – xi,t) * fw

Update best solution
using Eq. 8

Max iteration met?

Use best solution as fitness function Eq. 8, and calculate FC,
EC and P1 using Eqs. 2, 3, 4End

No Yes

Yes

Figure 5: Flowchart for the enhanced FDO algorithm along with ELD application.

10 Computational Intelligence and Neuroscience



4.3. Fuel Cost. Fuel cost minimization on the same
hydroenergy and power demand is a big issue when several
units are mimicking in parallel. )is can be optimized by
considering the current fuel cost as the global best for each of
the individuals in the FDO. However, the minimal risk is
premature convergence, which leads to double computing
cases and wastage of time with the cost approximately equal
to the standard fuel cost. Robust population initialization
decreases the chance of premature convergence. Hence, the
enhanced FDO used optimal fitness factors in combination
with the Sobol operator to minimize the fuel cost.

It can also be observed in Tables 3–5 that the fuel cost
difference between FDO and enhanced FDO is notable for all
24 thermal units on 100 and 200 epochs with a power de-
mand of 400 and 700 sequentially. However, this significant
minimal difference in cost can impact the whole unit
generation cost. )e trends for each chunk of the thermal
unit from Tables 4–6 confirm the directly proportional re-
lationship between the power demand and the fuel cost

directly. )e minimization range is constant between them,
which explicates the strong divergence and influential fitness
factor. Increasing power demand will lead the fuel cost to
increase with a constant proportion of difference produced
by FDO and enhanced FDO.

4.4. Transmission Loss. Transmission error is essential for
significant distance potential transmission, and it grows with
an expansion in the measure of capacity to be dispatched.
)erefore, the utilization of inexhaustible force from the
sustainable plants close to the heap focuses diminishes the
transmission losses. Appropriating the sustainable power
sources all through the working time frames as opposed to
utilizing them during their accessible period will assist with
diminishing both expense and the transmission loss.

Compared to the optimal emission allocation and fuel
cost, the authors have received the best optimal transmission
loss results. )e enhanced algorithm FDO reduced the loss

Table 5: Comparison of simulation results on the ELD problem
(FDO vs. enhanced FDO) with nonlinear optimization on 100
epochs and 700 power demand.)e optimal values are exhibited in
boldface.

Units Power demand� 700
Optimal allocation emission (lbs)

FDO Enhanced FDO
1 85.7416 85.74158
2 85.7416 85.74158
3 108.9837 83.36202838
4 49.0626 49.06263
5 49.0626 49.06263
6 525.6109 347.0304788
Total fuel cost ($) 6.51E + 05 6.46E+ 05
Transmission loss 2.2609 9.27E-04
7 259.65771 258.266736
8 44.39 44.39
9 44.39 44.39
10 44.39 44.39
11 44.39 44.39
12 265.4517495 264.1743532
Total fuel cost ($) 4.50E + 05 4.45E+ 05
Transmission loss 2.6695 0.0011
13 33.35092403 33.16801208
14 104.2882238 103.890753
15 104.0208305 103.6249588
16 103.3245773 102.9315033
17 103.1925346 102.8020805
18 253.7447758 253.5834798
Total fuel cost ($) 3.73E + 06 3.71E+ 06
Transmission loss 1.9219 7.88E-04
19 210.6754314 210.3359493
20 110.5273588 110.1212242
21 109.860002 109.4539346
22 181.2722755 180.8655902
23 54.11026706 53.84868486
24 35.56430084 35.37544006
Total fuel cost ($) 3.92E + 06 3.90E+ 06
Transmission loss 2.0096 8.23E-04

Table 4: Comparison of simulation results on the ELD problem
(FDO vs. enhanced FDO) with nonlinear optimization on 100
epochs and 400 power demand.)e optimal values are exhibited in
boldface.

Units Power demand� 400
Optimal allocation emission (lbs)
FDO Enhanced FDO

1 70.44063664 69.91458228
2 69.28036315 68.72201216
3 38.43849912 37.87285707
4 31.18554733 30.67657178
5 31.07224457 30.56379958
6 160.2587123 162.2504561
Total fuel cost ($) 2.05E + 05 2.04E+ 05
Transmission loss 0.676 2.79E-04
7 111.6951678 111.360789
8 44.39 44.39
9 44.39 44.39
10 44.39 44.39
11 44.39 44.39
12 111.431507 111.0794924
Total fuel cost ($) 1.05E + 05 1.04E+ 05
Transmission loss 0.6867 2.81E-04
13 18.32981341 18.24689868
14 59.0172677 58.85809285
15 58.93086524 58.77200905
16 58.7043227 58.5458324
17 58.92968203 58.77222232
18 146.7176828 146.8052033
Total fuel cost 1.25E + 06 1.24E+ 06
Transmission loss 0.6296 2.59E-04
19 122.1815342 122.1372312
20 62.6886485 62.53294149
21 62.13776388 61.98118821
22 103.4629522 103.3564131
23 30.48017867 30.36716223
24 19.70886257 19.62533477
Total fuel cost ($) 1.31E + 06 1.30E+ 06
Transmission loss 0.6599 2.71E-04
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with a 60% rate on average. )e authors can perceive that in
Table 4, FDOminimizes the loss to 0.676, 0.6867, 0.6296, and
0.6296 for four chunks of the thermal unit with 100 epochs
and 400 power demand as compared to the enhanced FDO,
which reduces it to 2.79E-04, 2.81E-04, 2.59E-04, and 2.71E-

04 for four chunks of the thermal unit with 100 epochs and
400 power demand sequentially. Enhanced DFO signifi-
cantly outperformed standard FDO for minimization
transmission loss.

Likewise, the enhanced algorithm FDO decreased the
loss by a 300% rate regularly.)e study can comprehend that
in Table 5, FDOminimizes the loss to 2.2609, 2.6695, 1.9219,
and 2.0096 for four chunks of the thermal unit with 100
epochs and 700 power demand as contrasted to the intended
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Figure 6: Convergence comparison (optimal allocation emission)
of FDO with the enhanced variant of FDO on the first 6 thermal
units with 100 epochs and different power demands.
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Figure 7: Convergence comparison (transmission loss) of FDO
with the enhanced variant of FDO on the 24 thermal units with 100
epochs and different power demands.
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Figure 9: One-way ANOVA test comparison (optimal allocation
emission) of FDO with the enhanced variant of FDO on the 24
thermal units with 100 epochs and different power demands.
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FDO, which overcome it to 9.27E-04, 0.0011, 7.88E-04, and
8.23E-04 for four chunks of the thermal unit with 100 epochs
and 700 power demand sequentially.

Tables 6 and 7 explicitly formulate the same trends
between standard and enhanced FDO with 200 significant
differences in transmission error on 200 epochs and 400 and
700 power demand. Figure 6 confirms the optimal con-
vergence comparison in the case of optimal allocation
emission (FDO with the enhanced variant of FDO on the
first six thermal units with 100 epochs and different power
demands). Figures 7 and 8 dispense the clear-cut trans-
mission loss difference. Units are presented on the X-axis,
while transmission loss is enlisted on Y-axis.

To validate the obtained results, ANOVA statistical
analysis for Figures 9 and 10 reinforces the best performance
of the enhanced FDO algorithm and encourages the solution
for other constraints as well. )e box representation for
enhanced FDO with 400 power demand is proved as an
optimal solution with optimal chunk. Similarly, the interval
plot representation for enhanced FDO with 700 power

demand is determined as an optimal solution with an op-
timal chunk.

5. Conclusion

)is research work introduced a variant of the FDO algo-
rithm motivated by scout bees in the hive exploring the
process of seeking food from a pool of suitable options. )e
enhanced variant is utilized to solve the economic load
dispatch problem. FDO and its modified version are mo-
tivated to upgrade the minimization capability during
weight optimization of economic load dispatch. Each in-
dividual of the scout bee is represented as output power
generated through each thermal unit. )e study deals with
three types of constraints in this work: power balance ca-
pacity, transmission loss, and optimal emission allocation. In
the beginning, the exploration executed by enhanced FDO is
dependent on a simplistic fitness factor that delivers a less
optimal solution by sticking into local minima and trans-
forms some of its decision variables through their constraint

Table 6: Comparison of simulation results on the ELD problem
(FDO vs. enhanced FDO) with nonlinear optimization on 200
epochs and 400 power demand.)e optimal values are exhibited in
boldface.

Units Power demand� 400
Optimal allocation emission (lbs)

FDO Enhanced FDO
1 69.91436113 69.91435917
2 68.72177747 68.72177539
3 37.87262247 37.87262039
4 30.67636117 30.67635931
5 30.56358919 30.56358733
6 162.251291 162.2512984
Total fuel cost ($) 2.04E + 05 2.04E + 05
Transmission loss 2.45E-06 2.69E-12
7 111.3606533 111.360652
8 44.39 44.39
9 44.39 44.39
10 44.39 44.39
11 44.39 44.39
12 111.0793492 111.079348
Total fuel cost ($) 1.04E + 05 1.04E + 05
Transmission loss 2.47E-06 2.72E-12
13 18.24686486 18.24686456
14 58.85802787 58.85802729
15 58.7719442 58.77194362
16 58.5457677 58.54576712
17 58.77215804 58.77215747
18 146.8052396 146.8052399
Total fuel cost ($) 1.24E + 06 1.24E + 06
Transmission loss 2.27E-06 2.50E-12
19 122.1372134 122.1372132
20 62.53287799 62.53287743
21 61.98112435 61.98112378
22 103.3563698 103.3563694
23 30.36711614 30.36711573
24 19.62530071 19.62530041
Total fuel cost ($) 1.30E + 06 1.30E + 06
Transmission loss 2.38E-06 2.62E-12

Table 7: Comparison of simulation results on the ELD problem
(FDO vs. enhanced FDO) with nonlinear optimization on 200
epochs and 400 power demand.)e optimal values are exhibited in
boldface.

Units Power demand� 700
Optimal allocation emission (lbs)

FDO Enhanced FDO
1 85.74158 85.74158
2 85.74158 85.74158
3 83.36112205 83.36111401
4 49.06263 49.06263
5 49.06263 49.06263
6 347.0304661 347.030466
Total fuel cost ($) 6.46E + 05 6.46E + 05
Transmission loss 8.15E-06 8.95E-12
7 258.266172 258.266167
8 44.39 44.39
9 44.39 44.39
10 44.39 44.39
11 44.39 44.39
12 264.1738376 264.173833
Total fuel cost ($) 4.45E + 05 4.45E + 05
Transmission loss 9.57E-06 1.05E-11
13 33.16793762 33.16793696
14 103.8905912 103.8905898
15 103.6247976 103.6247962
16 102.9313433 102.9313419
17 102.8019216 102.8019202
18 253.5834156 253.583415
Total fuel cost ($) 3.71E + 06 3.71E + 06
Transmission loss 6.92E-06 7.60E-12
19 210.3358119 210.3358107
20 110.121059 110.1210576
21 109.4537694 109.453768
22 180.8654252 180.8654237
23 53.84857844 53.8485775
24 35.37536322 35.37536254
Total fuel cost ($) 3.90E + 06 3.90E + 06
Transmission loss 7.23E-06 7.94E-12
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violation. After applying the Sobol operator for population
initialization and chaotic sine map for the optimal fitness,
redistribution power operators are connected.)e enhanced
operator ensures the feasibility of a probable solution that
the thermal unit will take as an input and barely estimate the
balance power constraint. Furthermore, the enhanced
population initialization approach consolidates a quasi-
random Sabol sequence to create the initial solution in the
multidimensional search space. A regular 24-unit system is
applied with diverse power demands for experimental
evaluation. )e experiential results acquired utilizing the
enhanced variant of FDO confirm the superior performance
in terms of low transmission loss, low fuel cost, and low
emission allocation compared to the standard FDO. As a
part of our future work, the authors are inspired by the
hybridization of FDO with other metaheuristic algorithms
such as BA, DE, and PSO. )e authors aimed at taking the
best qualities from BA as local search capability, DE as
optimal mutation factor, and PSO as inertia weight and
incorporating them in FDO to achieve the best results.
Furthermore, the authors are also interested in the fine-
tuning of FDO parameters in combination with ELD con-
straint and their hyperparameter tuning. Additionally, the
hybridized version of FDO will be evaluated to investigate
the influence of objective evaluations on dimension
reduction.

Abbreviations

ELD: Economic load dispatch
POZ: Prohibited operating zone
VPE: Valve-point effects
QBA: Quantum bat algorithm
CEED: Combined economic emission dispatch

ADE-MMS: Evolution algorithm integrating with
multiple mutation strategies

WEV: EVs and wind farms
WE_DEED: Dynamic economic emission dispatching

based on WEV system
IMA: Motion optimization algorithm
BA: Bat algorithm
ABC: Artificial bee colony
CSA: Chaotic-based self-adaptive
NSGA-RL: Learner nondominated sorting genetic

algorithm
CCDE: Chaotic-crisscross differential evolution
DEA: Differential evolution algorithm
ADE-MMS: Self-adaptable differential evolution

algorithm integrating with multiple
mutation strategies

MCSA: Modified crow search algorithm
EEDP: Multi-objective economic and

environmental dispatch problem
COA: Coyote optimization algorithm
CEED: Combined economic and emission dispatch
ECED: Emission-controlled economic dispatch
FDO: Fitness-dependent optimizer
FDOSOOPs: FDO with single-objective optimization

problems
FDOMOOPs: Multi-objective optimization problems.
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