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1. Introduction
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Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Huntington’s disease (HD) is characterised by movement disorders, cognitive impairments, and psychiatric problems. The abnormal
generation of reactive oxygen species and the resulting oxidative stress-induced mitochondrial damage in neurons upon CAG
mutations in the HTT gene have been hypothesized as the contributing factors of neurodegeneration in HD. The potential use of
antioxidants against free radical toxicity has been an emerging field in the management of ageing and many neurodegenerative
disorders. Neural stem cells derived adult neurogenesis represents the regenerative capacity of the adult brain. The process of adult
neurogenesis has been implicated in the cognitive functions of the brain and is highly modulated positively by different factors
including antioxidants. The supportive role of antioxidants to reduce the severity of HD via promoting the functional neurogenesis
and neuroprotection in the pathological adult brain has great promise. This review comprehends the recent studies describing the
therapeutic roles of antioxidants in HD and other neurologic disorders and highlights the scope of using antioxidants to promote
adult neurogenesis in HD. It also advocates a new line of research to delineate the mechanisms by which antioxidants promote adult
neurogenesis in HD.

chromosome 4 [3-5]. The CAG mutations ultimately result
in the abnormal expansion of polyglutamine (polyQ) tracts

Huntington’s disease (HD) is an autosomal dominant neu-
rodegenerative syndrome associated with abnormal CAG
expansions in the Huntington (HTT) gene [1-3]. The mutant
HTT contains polymorphic CAG repeats in excess of 39
in exon 1 of the gene present in the short arm of the

in the HTT protein, which leads to misfolding and loss
of protein function [6, 7]. The polyQ expansion has been
identified to be the primary inducer of degeneration of
medium spiny neurons (MSNs) in the striatum and leads
to neurodegeneration to other regions of brain, including
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the cortex, hippocampus, hypothalamus, and brain stem in a
progressive manner [7-9]. The epidemiology of HD suggests
that the disease occurs worldwide, but its prevalence varies
depending upon genetic diversity and geographical regions
[9, 10]. The rate of incidence of HD is considerably higher in
the Caucasian population than the Asian population. While
an estimate shows the prevalence and increasing trend of
HD in Western Europe, Australia, North America, and the
United Kingdom, India represents a large number of total HD
cases in Asia [11, 12]. Single nucleotide polymorphism (SNP)
at the HTT locus in association with the genetic diversity,
lifestyle, food, and environmental factors is presumed to be
the reasons for the variations in the frequency of HD among
the human population [13]. HD has been characterised
by choreiform movements, dystonia, cognitive deficits, and
psychiatric problems [14]. These symptoms have been accom-
panied by neurodegeneration along with an abnormal level of
neurotransmitters, microglial activation, reactive astrogliosis,
and impaired neurogenesis [15]. Recently, HD patients have
also been characterised with different types of behavioural,
motor, and aggressive symptoms [16, 17].

All the abovementioned problems aggravate the develop-
ment of HD and contribute to gradual deterioration of the
physical abilities and mental processes. Importantly, people
with HD have problems in taking care of their daily routine,
such as food consumption, due to difficulty in swallowing
(dysphagia), which may occur during the later stages of
the disease. Further, abnormalities in energy metabolism
caused by mitochondrial dysfunctions add to severity of
the disease. The loss of muscle function in the mandibular
regions, pharynx, and oesophagus could lead to disorders
like bruxism (grinding the teeth), failure to intake of food
and choking, which could ultimately lead to death [16, 18].
Currently, there are no available treatments that can delay
the onset or arrest the progression of the disease, while the
focus of medical care is limited to merely managing the
neurological symptoms of HD. This is mainly due to lack of
knowledge about the underlying biology of the disease.

Of the few therapeutic options available for the treat-
ment of HD, tetrabenazine has been an approved drug by
the Food and Drug Administration (FDA) for minimising
the clinical symptoms of involuntary movements [19-23].
Other treatment strategies for HD include administration
of antipsychotic and antidepressant drugs [21, 22]. Antipsy-
chotic drugs like haloperidol [23], fluphenazine [24], clon-
azepam [25], amantadine [26], and levetiracetam [27] might
help in controlling panic attacks, aggression, and choreiform
movements, while antidepressants like fluoxetine [28], ser-
traline [29, 30], nortriptyline [31], and lithium [32] are used
to stabilize depression, anxiety associated mood swings, and
negative thoughts. In addition, riluzole is frequently used as
a neuroprotective drug to control glutamatergic neurotrans-
mission in HD [33, 34]. Deep brain stimulation (DBS) has
been proposed as a technique to manage chorea and other
motor symptoms like dystonia and cognitive deficits in HD
[35]. Alternatively, using recombinant antibody fragments
to neutralise the HTT aggregates [36] and stem cell trans-
plantation [37] have also been tried with limited success. In
addition, adapting to the aforementioned treatment strategies
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warrants a very careful approach and highly vigilant individu-
als to carry out the procedures, as most of these strategies and
routes of administration have side effects including nausea,
fatigue, abnormal neuroexcitability, and tissue disruption
[38] that could exacerbate the severity of HD symptoms
[39]. Thus, developing novel and noninvasive therapeutic
strategies that are efficient but have no or minimal side effects
are important for the successful treatment of HD and will
have a promising therapeutic appeal. Meanwhile, the benefits
of physical activities, an enriched environment with the aid
of dietary supplements, and palliative care therapies have
been considered in conjunction with the drug treatment as
noninvasive and relatively affordable management strategies
for HD.

2. Detrimental Roles of Oxidative Stress in
Huntington’s Disease

There have been many hypotheses proposed for the mani-
festation of neurodegeneration associated clinical symptoms
in HD. Among them, polyQ expansion associated oxidative
stress that leads to caspase mediated neuronal cell death is
considered as a potential cause of neuropathological changes
in HD [9]. Free radicals are highly reactive molecules that
feature unpaired electrons on their valence orbital with the
ability to render various molecular and cellular vulnerabilities
due to their unstable reactive nature [40, 41]. The most
common biologically relevant free radicals are superoxide
(O7), hydroxyl (OH™), and nitric monoxide (NO) species and
are referred to as reactive oxygen species (ROS) and reactive
nitrogen species (RNS) [41, 42]. Free radicals are provoked in
cells by enzymatic and nonenzymatic mechanisms through
abnormal metabolic, genetic, and cell cycle events that occur
as a consequence of electromagnetic radiation, ageing, infec-
tions, immunological alteration, intoxication, abnormal diet,
malnutrition, and deficiency in vitamins and trace elements
[43]. Besides, defects or mutations in the free radicals scav-
enging metabolic enzymes such as glutathione peroxidases,
nitric oxide synthase, peroxiredoxins, and superoxide dismu-
tases are responsible for the accumulation of free radicals
[44, 45]. The expressions of these detoxifying enzymes
are controlled by the Nrf2-ARE complex pathway [46]. In
general, highly regulated free radicals generated in the body
can be of potential use in development and maintenance
of the tissues associated with improvement of the longevity
of organisms. As per the free radical theory of ageing, the
abnormally fabricated free radicals are harmful to the normal
structure and functioning of cells and tissues [46-48]. In
order to combat the negative impact of free radicals, cells
deploy defense mechanisms such as free radical scavenging
activity by antioxidants, as a normal physiological process
[49]. The imbalance between the production of free radicals
and the ability of cells to counteract or detoxify free radicals
can eventually lead to DNA oxidation, protein nitration,
and lipid peroxidation, culminating in cellular oxidative
stress [50, 51]. Prolonged oxidative stress and failure in
defense mechanisms could ultimately result in ageing related
chronic diseases such as atherosclerosis [52], cancer [53],
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diabetes [54], rheumatoid arthritis [55], ischemic stroke [56],
cardiovascular diseases [57], chronic inflammation [58], and
neurodegenerative diseases including Alzheimer’s disease
(AD) [59] and Parkinson’s disease (PD) [60], in addition to
HD (6], 62].

The brain is highly susceptible to free radical mediated
oxidative damage, which is largely due to its high metabolic
rate and oxygen and energy consumption under the protec-
tive isolation by the blood brain barrier from the circulation
[62]. ROS target neuronal cells by promoting formation
of DNA-protein cross-linked harmful adducts through oxi-
dation of both the backbone and the side chain of the
protein and DNA molecules [62, 63]. Various indices of free
radical mediated damage have been identified as aetiologies
of several neurodegenerative conditions including HD [61].
While a reciprocal relationship exists between the length of
CAG repeats and the phenotype severity of HD, recent data
gathered from the experiments on the HD specific embryonic
stem cells (ESC) and induced pluripotent stem cell (iPSC)
models indicate the deleterious effects of oxidative damage on
the expansion of CAG triplets in the HTT gene [64-68]. The
polyQ mechanisms that account for the selective neuronal
loss in the brain affected by HD are multifaceted in nature
[67]. Biomarkers for oxidative damage like heme oxygenase,
3-nitrotyrosine, and malondialdehyde (MDA) are found to
be elevated in the striatum, cortex, and serum of human HD
subjects [69-71]. The number of polyQ repeats in the HTT
protein is found to be responsible for oxidative damage to the
cell membrane, DNA, and enzymes responsible for the ATP
production of mitochondria in HD [70, 71]. Besides, Lim et al.
reported the disruption of mitochondrial Ca** homeostasis
by free radicals in the striatal neurons of postmortem human
HD brains [72]. Thus, free radical induced mitochondrial
damage, followed by decreased ATP production, provides
a strong mechanism for provoking the apoptotic pathways
in HD brains [73]. The interactions between free radical
induced oxidative stress, defects in mitochondrial energy
metabolism, and excitotoxicity have widely been implicated
in the neuropathogenicity of HD. Evidence of the role of
oxidative stress in priming the pathogenesis of HD has been
identified by higher plasma levels of lipid peroxidation in
presymptomatic HD patients [74-76]. In addition, the mito-
chondrial permeability transition pore (mPTP), a nonspecific
channel, is highly susceptible to the fluctuation of calcium
homeostasis and oxidative stress, which in turn are consid-
ered to be major contributors to mitochondrial dysfunction
in HD [77]. Store-operated calcium entry (SOCE), a process
caused by lower of Ca** from the endoplasmic reticulum
(ER), induces the influx of Ca? from the extracellular space.
The activity of SOC channels in medium spiny neurons
(MSNs) was found to be high in transgenic YACI28 mice
model of HD [78]. Recently, the PPAR-y pathway has been
linked to the induction of superoxide/ROS in HD [79]. This
suggests that the oxidative damage induced molecular and
cellular changes in the circulation appear to be the initiator of
the early pathogenic events in HD. Taken together, oxidative
stress plays a crucial role in the neuropathology of HD and

is a potential target for the development of novel therapeutic
interventions for the neuroprotective management of HD.

3. Neuroprotective Roles of
Antioxidants against Oxidative
Stress-Induced Complications in
Neurodegenerative Disorders

Free radicals when overproduced need to be biologically
scavenged or quenched by converting them into metabol-
ically nondestructive cellular molecules. This protective
mechanism called the antioxidant defense system prevents
free radical mediated damage of cells, which lead to var-
ious diseases and ageing [49, 80-82]. When endogenous
antioxidant defenses are inadequate to scavenge the free
radicals completely, diet or drug-derived antioxidants may
be particularly important in protecting against a number
of human diseases [76]. Antioxidant defense mechanisms
involve both enzymatic (superoxide dismutase, catalase, glu-
tathione peroxidase, and glutathione reductase) and nonen-
zymatic (vitamins A, C, and E, glutathione) strategies. Other
antioxidants include albumin, bilirubin, ferritin, ceruloplas-
min, melatonin, uric acid, lipoic acid, mixed carotenoids,
coenzyme Q10, bioflavonoids, antioxidant minerals (copper,
zinc, manganese, and selenium), and the cofactors (folic acid,
vitamins Bl, B2, B6, and B12) [80, 81]. Specific quenching of
the free radicals and chelating redox metals by antioxidants
could possibly influence the gene expression profile of the
tissue. The toxic metal induced lipid peroxidation and DNA
fragmentation can be controlled by metal-binding proteins
like ferritin, transferrin, ceruloplasmin, and others such as
metallothionein [49]. Glutathione S transferases are one
of the many enzymatic entities in cells and body fluids
that reduce the level of ROS [82]. Protective effects of
exogenously administered antioxidants have been extensively
studied using experimental animal models and cell lines
and have provided a strong insight into the relationship
between free radicals and associated disease complications
[83, 84]. The study carried out by Chanvitayapongs et al.
demonstrated the antioxidant property of resveratrol, which,
when combined with vitamin C and/or E, has a greater
protective effect by reducing cell death in neurodegenerative
diseases including AD [85]. The amyloidal beta (Af8) induced
neurotoxicity and the underlying molecular pathological
mechanisms in AD are found to be inhibited by natural
antioxidants such as Ginkgo biloba, flavonoids, soybean
isoflavones, theanine, and nicotine in cellular models as well
as transgenic animal models of AD [86]. Long-term dietary
supplementation of pomegranates, figs, and dates reduced
the inflammatory cytokines during ageing in APPsw/Tg2576
transgenic mouse model of AD [87]. Essa et al. identified
that a diet rich in walnut helps to reduce the risk of
developing PD and delay its onset due to the cumulative
antioxidant and mitochondrial protective effects exerted by
walnut constituents [88]. The pomegranate oil on 3-nitro
propionic acid (3-NP) induced cytotoxicity in rat pheochro-
mocytoma (PC-12) neuronal cells enhanced the levels of
enzymatic and nonenzymatic antioxidants by neutralising



ROS or enhancing the expression of the antioxidant genes
[89]. Rezai-Zadeh et al. demonstrated that epigallocatechin-
3-gallate (EGCG), the main polyphenolic constituent of
green tea through its beta-secretase activity, reduced Apf
aggregation in neuron-like cells (N2a), transfected with the
human “Swedish” mutant amyloid precursor protein (APP)
and in primary neurons derived from Swedish mutant APP-
overexpressing Tg APPSW transgenic mice model of AD [90].
L-Dihydroxyphenylalanine (L-dopa) used in the treatment
of PD produced free radicals during its normal metabolism
and this side effect was shown to be reduced by antioxidants
in order to improve the efficacy of L-dopa therapy [91]. A
series of orally bioavailable antioxidants including MitoQ,
MitoVitE, and Mito TEMPOL are known to bypass the
biological membranes, accumulate within mitochondria, and
effectively protect against mitochondrial oxidative damage
and are useful in treating neurodegenerative disease like PD
[92].

In relation to the effects of antioxidants on HD pathology;,
a number of biomolecules have been tested and characterised
using preclinical animal models of HD and cell lines express-
ing different length of CAG repeats. Among them, transgenic
models of HD, R6-lines (R6/1 and R6/2) [93, 94], knock-
in YACI28 mouse model [95], and rats or mouse injected
with acute and toxic quinolinic acid [96] and 3-NP [97] have
extensively been validated. In various paradigms, R6/2 mice
that are supplemented with creatine, vitamin C, coenzyme
Q, tauroursodeoxycholic acid (TUDCA), docosahexenoic
acid (DHA), and eicosapentenoic acid showed increased
life span and motor performance in association with either
reduced free radicals or reduced polyQ aggregates in the
brain [98, 99]. Chronic administration of JM6, an inhibitor
of kynurenine-3-monooxygenase extended the life span,
prevented synaptic loss, and decreased microglial activation
in the R6/2 transgenic mouse and drosophila models of
HD [100, 101]. A recent study indicated the significance of
anthocyanin-treatment on CAG repeat instability in R6/1
transgenic mouse model of HD [102]. Treatment of experi-
mental rats with 5-diethoxyphosphoryl-5-methyl-1-pyrroline
N-oxide (DEPMPO) or with N-acetylcysteine (NAC) pro-
tects against oxidative damage induced by 3-NP and therefore
acts against HD [103]. Besides, fumaric acid ester, dimethyl-
fumarate, has been shown to provide neuroprotection and
to suppress the dyskinetic movements through the activation
of Nrf2 pathway in knock-in YAC-128 and transgenic R6/2
models of HD [104]. Van Raamsdonk et al. demonstrated the
attenuation of striatal neuroprotection by antioxidant effects
of cystamine YAC-128 model [105]. Further, treatment of
melatonin significantly ameliorated the increased lipid per-
oxidation within the striatum of brain in the 3-NP model of
HD [106]. In the same line of evidence, treatment of curcumin
and carvedilol in 3-NP injected rats reduced the severity of
motor and cognitive impairments [107, 108]. The treatment of
resveratrol, naringin, sertraline, protopanaxatriol, embelin,
puerarin, and olive oil was known to protect the experi-
mental animal models against 3-NP induced oxidative stress
and neurotoxicity [109]. Neurodegeneration in the striatum
was prevented by TUDCA, a hydrophilic bile acid with
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antioxidant properties, which ameliorated the locomotor and
cognitive deficits in a 3-NP injected rat model of HD [110].
Lycopene, a carotenoid pigment and phytochemical naturally
found in fruits and vegetables, has the ability to reduce oxida-
tive stress markers and improved behaviour in a 3-NP model
of HD [111]. Low levels of cystathionine-c-lyase, required for
production of cysteine, have been reported in HD pathology,
which is mainly responsible for glutamate excitotoxicity.
N-Acetylcysteine (NAC), an antioxidant supplement rich
in cysteine, normalised the glutamate level, mitochondrial
dysfunction, and oxidative stress when administered to R6/1
model [112].

The ameliorative effects of s-allylcysteine, copper, cur-
cumin, safranal, ksheerabala, quercetin, and tert-butylhydro-
quinone against neurotoxicity have been described in quino-
linic acid (QA) induced rat model of HD [113]. Antioxi-
dant selenium, an essential element required by glutathione
peroxidase, has been reported to reduce the lipid perox-
idation within the striatum of QA rat model in a dose
dependent manner [114]. Metal-containing catalytic antiox-
idant metalloporphyrins have emerged as a novel class of
potential therapeutic agents that quench ROS in an effective
manner. The dietary supplementation of lipoic acid has
supported the longevity and delaying the weight loss in both
the R6/2 and N171-82Q transgenic lines [115]. In addition,
administration of L-carnitine dramatically extended the sur-
vival, ameliorated the motor performance, and decreased
the number of intranuclear polyQ aggregates in the N171-
82Q mice [116]. Another potent antioxidant, «-tocopherol
(vitamin E), along with idebenone attenuated glutamate-
induced neuronal death in HD cell lines like N18-RE-105
[117]. CDDO-MA (2-cyano-N-methyl-3,12-dioxooleana-1,9
(11)-dien-28 amide) treatment significantly attenuated 3-NP-
induced loss of striatal neuronal nuclear antigen (NeuN)
positive neurons [118]. Grape seed phenolic extract (GSPE)
is a good metal chelator that inhibited polyQ aggregation
and reduced the carbonyl levels in PC-12 cells expressing
103 glutamines fused with anEGFP reporter (HTT103Q-
EGFP) [119]. However, the adverse effects of prolonged intake
of antioxidants and their overdosages cannot be entirely
excluded. Taken together, further investigation needs to be
carried out to understand the mechanism and molecular
pathways behind the above-discussed biological effects of
antioxidants.

Recently, the benefits of flavonoid-rich dietary supple-
ments have clearly been recognized in improving cognition
by protecting degenerating neurons, by enhancing existing
neuronal function, or by stimulating neuronal regeneration
[120]. While neuroprotective natures of antioxidants against
free radical damage have been extensively characterised,
the neuroregenerative potential of antioxidants has recently
evolved due to the neural plastic roles of adult stem cells
of the brain. As a result, a number of naturally occurring
dietary antioxidants have been identified with properties
that support neurogenesis. The role of antioxidants has
also been implicated in the functional outcomes in ageing
and neurodegenerative disorders and their protective role
is clearly linked to such outcomes in the abovementioned
studies.
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In addition, the neuroprotective effects of various natural,
synthetic, and endogenous cannabinoids have been demon-
strated in several in vitro and in vivo neurotoxicity models
[121]. Peroxynitrite is involved in METH-induced dopamin-
ergic neurotoxicity and the neurons can be protected against
METH-induced neurotoxicity and striatal dopamine deple-
tion by use of selective antioxidants, NOS inhibitors, and per-
oxynitrite decomposition catalysts [122]. Supplementation of
selenium and antioxidants protect against METH-induced
dopaminergic toxicity and the generation of OONO™ in PC-
12 cell line and in mouse striatum [122]. Ascorbate is present
as one among the few antioxidants in extracellular fluid and
is homeostatically regulated but modulated by glutamate-
mediated activity [123]. Colle et al. demonstrated that met-
allothioneins and metallothionein-like proteins, which are
isolated from mouse brain, act as neuroprotective agents by
reducing oxidative stress. Probucol (PB), a phenolic lipid-
lowering agent, possesses antioxidant property of scavenging
free radicals and acts as a NMDA receptor antagonist, thereby
promoting neuroprotection [124]. However, none of the
abovementioned studies could suggest effective treatment
strategies that could completely reverse the disease pathology.
Effective management of degenerative diseases cannot be
achieved by strategies that focus only on neuroprotection,
whereas neuroregeneration through stem cell mediated adult
neurogenesis needs to be promoted, in order to compensate
for the functional deficits that occur due to neuronal loss.

4. Functional Significance and Regulation of
Adult Neurogenesis

The adult brain retains the capacity to generate new neurons
by the process called neurogenesis in specific regions of
the organ [125-128]. The actively occurring neurogenesis is
restricted to three defined neurogenic regions in the adult
brain under normal conditions, namely, (1) the subgranular
zone (SGZ) in the dentate gyrus (DG) of the hippocampus
[126, 127]; (2) the subventricular zone (SVZ) of the lateral
ventricles [129]; and (3) third ventricles of the hypothalamus
[130]. In the hippocampal SGZ, proliferating NSCs develop
into intermediate progenitors, which generate neuroblasts
or immature neurons. These newly generated immature
neurons migrate into the inner granule cell layer (GCL) and
differentiate into new granule neurons of the hippocampus
[128]. Further, these newborn neurons extend dendrites from
DG towards the molecular layer (ML) and project axons
that form the mossy fibber tract in the hilus region. In the
SVZ, proliferating radial glia-like cells give rise to transient
amplifying cells that generate migrating neuroblasts [128,
131]. Through the rostral migratory system (RMS), neurob-
lasts migrate towards the olfactory bulb (OB) [131]. In the
OB, immature neurons differentiate into different subtypes of
interneurons in granule cell layer (GCL) and glomerular layer
(GLOM). Neural progenitor cells identified in the ependymal
layer of the third ventricle of the adult brain migrate and
differentiate into mature neurons in the hypothalamus [130]
(Figure 1).

The potential roles of adult neurogenesis in various
neurophysiological processes like motor functions, learn-
ing and memory process, olfaction, and the regulation of
hypothalamus-pituitary-adrenal (HPA) axis have been exten-
sively characterised [130, 132]. Adult neurogenesis has been
known to be an integral component in neural plasticity,
brain homeostasis, maintenance, and tissue remodelling
[130]. Adult neurogenesis is a multistep process that includes
stem cell proliferation, cell cycle exit, and fate determina-
tion of adult neural progenitors followed by differentiation,
maturation, and integration of mature neurons into the
neural circuits [130, 133]. This process has been shown to be
modulated by many positive and negative factors [128, 130-
134].

The ageing process, exposure to prolonged stress, abnor-
mal levels of glucocorticoids, radiation, prolonged drug
abuse, and chronic neuroinflammation are known to nega-
tively influence adult hippocampal neurogenesis by inhibit-
ing the proliferation and differentiation of NSCs or promot-
ing the cell death of newborn granule cells [130, 135,136]. This
could lead to cognitive decline and loss of control of the HPA
axis and may render the susceptibilities to neuropsychiatric
and neurodegenerative disorders leading to cognitive impair-
ments [137, 138]. Moreover, many of neuropsychiatric and
neurodegenerative disorders are characterised with impaired
adult neurogenesis. It has been shown that neurogenesis is
impaired in the hippocampus of transgenic R6 mouse lines
[139-141], transgenic rat model of HD [142], and knock-in
YAC128 model [143]. However, in chemically induced acute
neurodegenerative models and HD patients, neurogenesis
is increased in the SEL and SVZ, respectively [144, 145].
The increased neurogenesis in the SVZ in combination with
abnormal migration of neuroblasts in the striatum is also
observed in a toxic rat model of HD [145]. Thus, the abnormal
reactive neurogenesis in the striatum has been observed
as a common hallmark in HD [146]. Acute neurological
conditions like stroke, epilepsy, and traumatic brain injuries
have also been associated with increased adult neurogenesis
[147, 148]. In HD, the reactive neurogenesis in striatum has
been speculated to be an attempt of stem cell mediated
regeneration to overcome neuronal dysfunctions and neu-
ronal loss. Thus, the endogenous self-regenerative measures
adapted by HD brain through neurogenesis to overcome
neurodegeneration highlight the possibility of exploiting
promotion of antioxidant-mediated neural regeneration as a
management strategy for HD.

The positive regulators of neurogenesis comprise physi-
cal activity, environmental enrichment, growth factors, and
antioxidants derived from diet. It is evident that physical
activity such as running promotes neurogenesis by increasing
the proliferation of NSCs in the SGZ of the dentate gyrus,
thereby expanding the pool of progenitor cells available for
further neuronal differentiation in the hippocampus [149].
Spontaneous physical activity and task-based learning are the
two important components of an enriched environment that
promotes hippocampal neurogenesis [150]. Neurotrophic
factors, cytokines, and growth factors regulate the adult
neurogenesis by controlling proliferation, maturation, differ-
entiation, and survival of neuronal cells. Systemic infusion of
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neuropathology and neurogenesis in HD.

insulin growth factor-1 (IGF-I) increased the proliferation of
NSCs, frequency of neuronal differentiation, and survival in
the adult rat hippocampus [151]. Jin et al. demonstrated that
the angiogenic protein, vascular endothelial growth factor
(VEGF), stimulates the proliferation of NSCs in murine cere-
bral cortical cultures and in adult rat brains, thus promoting
neurogenesis apart from angiogenesis [152]. Intracerebroven-
tricular infusion of epidermal growth factor-1 (EGF-1) and
fibroblast growth factor-2 (FGF-2) increased proliferation
of NSCs in the SVZ of the adult rat brain [153]. Ciliary
neurotrophic factor (CNTF) supported adult neurogenesis as
CNTF knockout mice showed reduced neurogenesis [154].
Cotman and Berchtold reported that voluntary exercise
increased the levels of brain-derived neurotrophic factor
(BDNF) and other growth factors which in turn stimulated
neurogenesis [155]. Nonsteroidal anti-inflammatory drugs
(NSAIDs) are recognized to increase adult neurogenesis and
thus aid in the process of neuroprotection [156]. Chronic
treatment with various antidepressants like tranylcypromine,
reboxetine, fluoxetine, and haloperidol is reported to increase
neurogenesis in early adulthood and experimental models of
stress [157]. It has been reported that neuronal differentiation
and survival are associated with TGF-beta signaling and

thus TGF-beta signaling remains as a crucial regulator of
adult neurogenesis [15, 142, 158]. Moreover, it has also been
reported that adult neurogenesis is positively regulated by
diet and it could prevent cognitive decline during ageing,
as well as to counteract the effect of stress and depression
[159]. It was shown recently that a reduction in calorie intake
increases hippocampal neurogenesis in adult rodents and
that this effect is partly mediated by BDNF [160]. Taken
together, the decline in brain plasticity and mental process
can possibly be reestablished by the activation of NSCs that
have the ability to self-renew and develop into neurons or glial
cells. As no specific treatments are available as a cure to HD,
neuronal stem cell (NSC) mediated neurogenesis provides a
regenerative strategy to replace the neuronal loss and neural
plasticity including motor impairments, cognitive functions,
and mood that are affected in HD.

5. Role of Oxidative Stress on the Regulation
of Adult Neurogenesis

The functional impairments of NSC, particularly neurogene-
sis, represent an increasingly prominent contributor to multi-
ple CNS diseases and the process is highly altered by elevated
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levels of oxidative stress. Oxidative stress caused by increased
ROS has been considered to affect neurogenesis and cognitive
functions [161]. Acute exposure of NSCs to ketamine leads
to increased cell proliferation whereas the chronic incubation
results in cellular damage via altered mitochondria pathways
and induces cellular apoptosis [162]. Superoxide dismutases
(SODs) scavenge the superoxide radicals by converting them
to hydrogen peroxide and oxygen molecule thus acting as
first-line defense to protect cells [163]. The SOD deficient
mouse model showed reduction in the generation of new
neurons in the hippocampus upon cranial irradiation [164].
Cranial irradiation, an effective treatment for brain tumors,
leads to persistent elevation of oxidative stress and suppres-
sion of hippocampal neurogenesis [165]. Increased oxidative
stress following irradiation is expected to play a major role
in the suppression of hippocampal neurogenesis and the
associated cognitive deficits. Walton et al. suggested that the
production of ROS is a part of the routine maintenance of
physiological neurogenesis, but chronic oxidative stress may
play a role in loss of function in ageing and progressive
CNS diseases [165]. Accelerated age-dependent decline in
adult neurogenesis is a consequence of oxidative stress.
Conditional deletion of the clock gene Bmall (Bmall™”/") in
mice accelerated ageing, neurodegeneration, and cognitive
deficits through oxidative damage [166]. Moreover, oxidative
stress promotes aneuploidy and formation of neurofibrillary
tangles in the neurogenic regions of the brain, contributing
to neurodegeneration in AD. Sirtuin protein family members
(e.g., Sirtl, Sirt2) are considered to be important in determin-
ing the redox state in NSCs and also provide potential targets
for modulating adult neurogenesis [167]. Taken together,
increased levels of oxidative stress by high accumulation of
ROS have negative effect on adult neurogenesis during age-
ing, neuroinflammation, and neurodegeneration [168]. Thus,
targeting oxidative stress represent a novel way to regulate
adult neurogenesis. This in turn will help in decreasing the
pathogenesis of neurocognitive disorders including HD by
promoting neurogenesis in order to compensate the neuronal
loss, which could pave a path for supporting the cognitive
functions (Figure 2).

6. Supportive Role of Antioxidants in
Promoting and Regulating Adult Brain
Neurogenesis

The cognitive health of an organism is maintained by
the capacity of hippocampal neurogenesis. Recently, ben-
efits of antioxidants have emerged as a potent strategy to
support the cognitive function through the regulation of
adult neurogenesis. Consumption of potent antioxidants, for
example, melatonin and polyunsaturated fatty acids, has a
significant effect in lowering the decline of neurogenesis and
attenuating the impairment of cognitive function [169-171].
Impairment of hippocampal neurogenesis in rat models of
chronic alcoholism by elevation of oxidative stress can be
reversed by treating with ebselen, a drug with antioxidant
property [152]. Curcumin has been shown to increase adult
neurogenesis in the hippocampus of adult rodents. An

antioxidant-fortified food in an enrichment plan affected
the survival of new neurons in the aged canine brain and
is associated with improvement in cognitive performance
[170]. Administration of flavonoids like 3'—methy1ated epi-
catechin and 4'-methylated epicatechin to animal models
improved cognitive performance by promoting neurogenesis
[171]. Qu et al. demonstrated that Rhodiola crenulata extract
(RCE), containing a potent antioxidant salidroside, promotes
neurogenesis in the hippocampus of intracerebroventricular
injected streptozotocin model of AD [172]. Polyphenols are
abundant micronutrients present in plant-derived foods,
fruits, and beverages such as tea, red wine, cocoa, and
coffee and also act as powerful antioxidants [173]. In rats,
polyphenols increased hippocampal plasticity and improved
learning and memory performance, while protecting neurons
against injury induced by neurotoxins suppress neuroinflam-
mation and the potential to promote cognitive function. In
general, dietary polyphenols seem to exert positive effects on
anxiety and depression via regulation of adult hippocampal
neurogenesis [174]. Flavonoids protect the brain in many
ways through enhancement of existing neuronal function
or by stimulating neuronal regeneration [175]. Polyphenol-
rich Ginkgo biloba extracts and other flavanoids have been
shown to protect hippocampal neurons from oxidative stress,
nitric oxide, and beta-amyloid-induced neurotoxicity [176].
An et al. reported that the supplementation of flavanoids
(XBXT-2) in rats subjected to chronic stress shows increased
neurogenesis and increase in BDNF levels [177]. Different
polyphenols are shown to exert their effects on adult hip-
pocampal neurogenesis via different mechanisms of action,
such as by activating the MAP kinase pathway or stimulating
the expression and release of neurotrophic factors [178].
Cocoa powder and chocolate contain a large percentage of
flavonoids, mainly epicatechin that interacts through sig-
naling cascade proteins and lipid kinases thereby inhibiting
neuronal death by apoptosis induced by oxygen radicals and
promoting neuronal survival and synaptic plasticity [179].
In addition, flavonoids preserve cognitive abilities in rats
during ageing and lower the risk of AD stress and stroke in
humans [179]. Thus, neurogenic properties of antioxidants
have great significance in therapeutic interventions for brain
diseases. However, reports on the effect of antioxidants in
regulating adult neurogenesis in HD are limited. While R6/2,
R6/1, YACI128 mice, and TgHD rats have been characterised
with induced NSCs quiescence and impaired neurogenesis,
the elevated level of neuroinflammation related factors like
TGEF-beta appears to inhibit the regenerative ability of the HD
brain [15]. Free radicals involved oxidative damage observed
in HD might also act synergistically with neuroinflammation
to impede the proneurogenic signals in HD. Indeed, combi-
nations of antioxidant therapy along with physical exercise
may exert beneficial effect to promote neuroregeneration in
HD.

HD is accompanied by both cognitive and motor defect,
which is caused by progressive loss of striatal neurons.
Increased neuronal cell death has also been described in the
cortex and the hippocampus of HD brains in addition to the
striatum [9]. Recently, adult neurogenesis has been identified
in regions other than hippocampus and SVZ-OB such as
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FIGURE 2: Graphical representation for the possible roles of free radicals and antioxidants on neuronal functions in control and HD conditions.
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mechanism is impaired, resulting in oxidative damage. (c) Various therapeutic options to overcome the disruption caused by oxidative stress

on cellular functions of neuron in HD.

amygdala and hypothalamus which are responsible for fear,
memory, and the regulation of neuroendocrine functions,
respectively [180, 181]. Interestingly, it has also been reported
that neurogenesis occurs in the cortex of the adult monkey
[181, 182] and normal rat [183], suggesting that neurogenesis
of adult brain is widespread. Induction of adult neurogenesis
in response to many CNS trauma and neurological diseases
has been reported by several studies in the past decade [184,
185]. It has been demonstrated that ischemia is a well-known
factor to contribute to reactive neurogenesis in the cortex
[147, 148, 186, 187]. The abnormal cortical neurogenesis has
also been reported in multiple sclerosis [188] and ALS [189].
Considering these facts, it can be speculated that regeneration
of damaged brain through cortical neurogenesis can occur

in the brains of HD subjects. However, reports on adult
cortical neurogenesis remains a subject of ongoing debate
[190]. Hence, these findings need to be reconfirmed and vali-
dated with better experimental models. Future studies should
focus on confirming the occurrence of neurogenesis in the
cortex of damaged adult brains, since cortical neurogenesis
is important for compensating the loss of motor functions in
HD cases.

While a new line of research focusing on cortical neuro-
genesis is necessary to implicate its role in brain regeneration,
reactive neurogenesis in the striatum of both normal and
pathogenic adult brain including HD subjects has recently
been well established [143, 145, 191]. As the striatum plays an
important role in the planning and modulation of movement,
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it raises a question whether striatal neurogenesis is required
for compensating loss of motor tasks in HD. Abnormal cell
proliferation and reactive neuroblastosis in the striatum have
been observed in several cases of HD brains [146] as a
mechanism to replenish the loss of neurons in the striatum.
However, in many such cases the migrating and resident
neuroblasts undergo apoptosis before maturing into neurons
in the striatum. Hence, survival of neurons does not occur in
the striatum of HD [143, 191, 192]. As a part of compensatory
mechanism against QA striatal lesion-induced neuronal loss,
the brain promotes neurogenesis in the SVZ, from where neu-
roblasts migrate to the damaged areas of the striatum [144].
Ernst and Frisén demonstrated the presence of neuroblasts in
the striatum of the human brain using doublecortin (DCX)
and polysialylated neuronal cell adhesion molecule (PSA-
NCAM) immunostainings and confirmed the occurrence of
neurogenesis in the striatum [191, 192]. However, they did
not observe the survival of newborn neurons in the normal
striatum as well as in HD cases, confirming the premature
depletion of neuroblasts before their integration into the
striatal tissue. The failure of neuronal differentiation in the
striatum and reactive striatal neuroblastosis has been reca-
pitulated in the rodent models of HD [143, 144, 146]. Taken
together, it can be hypothesized that the migrating SVZ born
neuroblasts and/or neuroblasts generated by the striatum
might provide the neurophysiological support to the striatum
to overcome the motor deficits to certain extent. In this
respect, it will be very interesting to see if antioxidants can
contribute to the terminal differentiation, integration, and
survival of reactive neuroblasts in the degenerated striatum of
HD. It is possible that antioxidants may provide substratum
and trophic support in addition to mitigating ROS generated
by striatal gliosis and neurodegeneration in HD.

7. Conclusion

HD is a progressive neurodegenerative disease that has been
refractory to treatment. Despite the enormous research focus
on HD, no valid treatment that can alleviate the symptoms
of HD has been developed. This could be attributed to
the complex nature of the disease and lack of evidence
on a precise molecular target for therapeutic intervention.
Generation of free radicals leading to oxidative stress (OS)
damage contributes to neuronal loss in HD and the oxida-
tive stress could be reduced by supplementation of natural
antioxidants. Adult neurogenesis can act as an important tool
for regenerative therapy of HD brains as it contributes to
the cognitive functions of the adult brain. Neurogenesis has
been shown to be upregulated by numerous antioxidants.
Impaired hippocampal neurogenesis and reactive striatal
neurogenesis have been the characteristics of HD brains.
Naturally occurring antioxidants might therefore provide
neurotropic as wells as proneurogenic and neuroprotective
support for the HD brain, in order to overcome the motor and
cognitive impairments. However, the complete relationship
between oxidative stress and neuroregeneration, and the
molecular mechanism by which antioxidants support the

process of adult neurogenesis by triggering various signaling
cascades, needs further diligent investigation.
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