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Abstract
The close association of Epstein–Barr virus (EBV) infection with non-keratinizing nasopharyngeal carcinomas and
a subset of gastric carcinomas suggests that EBV infection is a crucial event in these cancers. The difficulties
encountered in infecting and transforming primary epithelial cells in experimental systems suggest that the role
of EBV in epithelial malignancies is complex and multifactorial in nature. Genetic alterations in the premalignant
epithelium may support the establishment of latent EBV infection, which is believed to be an initiation event.
Oncogenic properties have been reported in multiple EBV latent genes. The BamH1 A rightwards transcripts (BARTs)
and the BART-encoded microRNAs (miR-BARTs) are highly expressed in EBV-associated epithelial malignancies
and may induce malignant transformation. However, enhanced proliferation may not be the crucial function of
EBV infection in epithelial malignancies, at least in the early stages of cancer development. EBV-encoded gene
products may confer anti-apoptotic properties and promote the survival of infected premalignant epithelial cells
harbouring genetic alterations. Multiple EBV-encoded microRNAs have been reported to have immune evasion
functions. Genetic alterations in host cells, as well as inflammatory stroma, could modulate the expression of EBV
genes and alter the growth properties of infected premalignant epithelial cells, encouraging their selection during
carcinogenesis.
© 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.

Keywords: Epstein–Barr virus; nasopharyngeal carcinoma; gastric carcinoma; lymphoeptithelioma-like carcinomas; BART s; LMP1

Received 7 August 2014; Revised 11 September 2014; Accepted 16 September 2014

No conflicts of interest were declared.

Introduction

Epstein–Barr virus (EBV) is a human cancer-associated
virus that infects >90% of the global population [1].
Despite its close association with a range of lymphoid
and epithelial malignancies, the virus does not cause
major symptoms in the majority of lifelong carriers with
EBV-infected B memory lymphocytes [2,3]. The role of
EBV in transformation in human malignancies remains
unclear, particularly in epithelial cancers (but see a
recent review elsewhere in this Issue for the role of EBV
in lymphomas [3]). For the past two decades, increasing
interest has focused on the EBV-associated epithelial
cancers that represent 80% of all EBV-associated malig-
nancies [1]. Among these, nasopharyngeal carcinoma
(NPC) and EBV-associated gastric cancers (EBVaGCs)
are the most common, with 78 000 and 84 000 new
cases, respectively, reported annually worldwide [1].
Clonal EBV genome and the expression of a subset of
viral latent gene products are consistently detected in

practically every cell in these cancers [4,5]. Therefore, a
crucial role of EBV in the pathogenesis of these cancers
has been postulated.

NPC is a distinctive histological subtype of head and
neck cancer arising from the nasopharynx. The inci-
dence and mortality rates of NPC are remarkably high
in southern China and South-East Asia, but NPC is
rarely seen in Western countries [6]. According to the
recent World Health Organization (WHO) classifica-
tion, NPC is classified into two major histological sub-
types: non-keratinizing carcinoma (either differentiated
or undifferentiated) and keratinizing squamous cell car-
cinoma [7]. Non-keratinizing NPC is consistently asso-
ciated with EBV infection and accounts for the majority
of NPCs in endemic regions. It is commonly described
as lympho-epithelioma of the nasopharynx because of
its prominent lymphocytic infiltration (Figure 1). EBV
latent infection is also seen in keratinizing NPCs from
endemic regions, but not in non-endemic regions. In
summary, almost 98% of all NPCs are EBV-associated.

© 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.



324 SW Tsao et al

Non-keratinizing
NPC

A

B

H&E

EBER

LMP1

Primary NPC

NPC patient-derived xenograft (PDX)

C15 C17 Xeno-2117

Primary LELC of lung

LMP1

Gastric
Adenocarcinoma

LELC of Lung LELC of Tonsil EBV-positive
Cholangiocarcinoma

Figure 1. Epstein–Barr virus (EBV) latent infection in various epithelial malignancies. (A) Histopathology of Epstein–Barr virus
(EBV)-positive carcinomas (upper panel) and their corresponding EBER in situ hybridization (lower panel). Nasopharyngeal carcinomas
(NPC) most commonly form syncytial sheets or scattered undifferentiated carcinoma cells among dense lymphoplasmacytic infiltrate, and
hence display features of lympho-epithelioma-like carcinoma (LELC). A subset of gastric carcinomas which harbour EBV show morpho-
logical features of LELC or, more commonly, resemble the usual gastric adenocarcinoma but with variable amounts of lymphoplasmacytic
infiltrate. EBV-positive carcinomas in lung and other head and neck regions (e.g. tonsil) have the morphological features of LELC. Rarely,
cholangiocarcinoma can harbour EBV. EBV-positive cholangiocarcinoma usually displays morphology of adenocarcinoma with small tubular
glands among dense lymphoplasmacytic infiltrate. A representative case of EBV-associated gastric adenocarcinoma, LELC of lung and tonsil
and EBV-positive cholangiocarcinoma, are illustrated. (Upper panel) Haematoxylin and eosin (H&E) stain, original magnification=×400;
(lower panel) EBER in situ hybridization, original magnification=×400. (B) Detection of LMP1 expression in NPC and LELC of lung by
immunohistochemical (IHC) staining: (upper panel) LMP1 staining pattern in representative samples of NPC and LELC of lung; LMP is typ-
ically expressed in only a small population of scattered carcinoma cells: (lower panel) LMP1 expression patterns in three NPC xenografts;
in Xeno-2117 and C17, LMP1 is also expresssed in a small population of scattered carcinoma cells; however, in C15, the IHC staining signal
of LMP1 exhibits diffuse positivity; original magnification=×400.

EBV infection is also detected in two types of
gastric cancer; in 16% of conventional gastric ade-
nocarcinomas and 89% of lympho-epithelioma-like
gastric carcinomas. In summary, EBVaGCs represent
approximately 10% of all gastric cancers and are not
an endemic disease [8,9]. Lymphoeptithelioma-like
carcinoma (LELC) is defined as a poorly differentiated
carcinoma with dense lymphocytic infiltration and
has similar histological features to undifferentiated
NPC. In addition to NPC and EBVaGC, EBV is also
consistently detected in LELCs of the salivary gland,
lung and intrahepatic biliary epithelium (Figure 1),
which are rare tumour subtypes found in these regions

[10,11]. The close association of EBV infection with
LELC implies that the poorly differentiated properties
of epithelial cells and an inflammatory environment are
involved in viral oncogenesis [12], which may also be
true for EBV-associated lymphomas [3]. The selective
expression of EBV genes (type II latency) is believed to
contribute to the malignant transformation of epithelial
cells by disrupting various cellular processes and sig-
nalling pathways. The distinct mutation signature and
methylation pattern identified in EBVaGC illustrate
that EBV infection facilitates a unique and alternate
tumourigenic process in epithelial malignancies [13,14].

© 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2015; 235: 323–333
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Table 1. Viral gene expression patterns in different Epstein–Barr virus (EBV) latency types
EBV latency EBV gene transcription* Examples

Type 0 EBERs Resting memory B cells
Type I EBERs, EBNA1, BART s Burkitt’s lymphoma
Type II EBER, EBNA1, LMPs, BART s Hodgkin’s disease, T/natural killer cell lymphoma, nasopharyngeal carcinoma,

gastric carcinoma, other lympho-epithelioma-like carcinomas (?)
Type III EBERs, EBNA1, EBNA-LP , EBNA2, EBNA3A,

EBNA3B, EBNA3C , LMPs
Transformed B cells (lymphoblastoid cell lines); human immunodeficiency

virus patients, post-transplant lymphoproliferative disorders

*BART s, BamH1 A transcripts; EBERs, non-coding RNA; EBNA, EBV nuclear antigen; LMP , genes for latent membrane proteins.

EBV infection in epithelial cells

EBV readily infects and transforms primary B cells
in vitro into proliferating lymphoblastoid cell lines,
which strongly supports its role in B cell malignancies.
Lymphoblastoid transformation of B cells by EBV in
vivo is the major cause of infectious mononucleosis,
a self-limiting lymphoproliferative disease in immuno-
competent individuals [2]. Primary infection in humans
is believed to be initiated by the virus crossing the
epithelium of the oropharynx, infecting the naïve B
cells present in the Waldeyer’s tonsillar ring circum-
scribing the entrance to the nasopharynx and orophar-
ynx. Through a series of viral latency transcription
programmes, the EBV-infected B cells are eventu-
ally driven into resting memory B cells and life-long
infection is established. The differentiation of mem-
ory B cells into plasma cells triggers lytic infection
and releases EBV particles that infect the oropharyn-
geal epithelial cells for viral replication and transmis-
sion [15]. Persistent EBV infection is maintained by a
check-and-balance of the immune system in the body
to eliminate EBV-infected cells. In immunocompro-
mized persons, including organ-transplantation recipi-
ents and human immunodeficiency virus patients, this
intricate balance is tipped, resulting in an uncontrolled
proliferation of EBV-infected lymphocytes that can be
life-threatening.

Distinct EBV entry mechanisms in epithelial cells
EBV infects B cells and epithelial cells with differential
tropism. EBV readily infects B lymphocytes by binding
its envelope protein, gp350, to the CR2 (CD21) present
on the B cell surface. Binding of viral gp42 with the
human leukocyte antigen (HLA) class II protein on the
B cell surface activates the core fusion machinery of
EBV, which involves the viral envelope proteins gB and
gHgL [16,17]. EBV infection of epithelial cells is much
more inefficient; neither the CR2 nor the HLA class II
protein are expressed on the epithelial cell surface. A
recent study reported that viral gHgL interacts with the
integrin complex, αvβ6 and αvβ8, of epithelial cells to
trigger the fusion of the EBV envelope protein with the
cell membrane and facilitate entry [17]. Gp42 impedes
the entry of EBV into epithelial cells by interfering with
binding to the gHgL complex. Interestingly, EBV par-
ticles released from epithelial cells are rich in gp42,
facilitating their infection of B cells but not of epithelial
cells, whereas those released from B cells are lacking

in gp42, facilitating their infection of epithelial cells.
This dual cell tropism suggests that EBV shuttles con-
tinuously between B cells and epithelial cells during its
infection cycle, which may be crucial for the establish-
ment of persistent infection in humans [16,17]. Another
EBV glycoprotein, BMRF2, is involved in the infection
of polarized epithelial cells at the basolateral surface by
cell-free virus through an interaction with α5β1 [18].

Notably, EBV infection of nasopharyngeal epithe-
lial cells is greatly enhanced by transforming growth
factor-β1 (TGF-β1), which is known to regulate inte-
grin assembly and actin dynamics [19]. The downstream
events after infection and the intracellular trafficking of
EBV to the nucleus for gene transcription have yet to be
defined. Latent EBV infection is rarely detected in nor-
mal pharyngeal epithelium, but is consistently detected
in precancerous lesions and invasive NPC [20,21]. The
establishment of latent EBV infection in premalignant
epithelial cells may represent an essential initiation step
in the development of epithelial malignancies.

Host factors modulate persistence EBV latent
infection
EBV infection in epithelial cells exhibits an expres-
sion programme that is distinct from that of B cells
(Table 1). EBV infection of primary B cells initi-
ates a robust growth and proliferation programme in
which type III latency genes are expressed, includ-
ing non-coding RNAs (EBERs), six nuclear proteins
(EBNA1, EBNA-LP, EBNA2, EBNA3A, EBNA3B
and EBNA3C) and three membrane proteins (LMP1,
LMP2A and LMP2B) [22]. In contrast, EBV infection
does not induce clonal expansion in primary epithelial
cells [23]. EBNA-LP, EBNA2 and EBNA3C, which
play a crucial role in B cell immortalization and cell
cycle progression, are not expressed in infected epithe-
lial cells. A more restricted group of latent genes (type
II latency) are expressed, including EBNA1, LMP1,
LMP2A and EBERs [2,19,23,24]. Notably, high lev-
els of BamHI A rightward transcripts (BARTs) are
expressed in both NPC and EBVaGC, suggesting their
involvement in epithelial malignancies [24–26].

Host cell factors and genetic alterations have a pro-
found influence on the gene expression and growth
properties of EBV in infected cells. EBV infection
was shown not to transform or induce the prolifera-
tion of primary or immortalized nasopharyngeal epithe-
lial cells [19]. EBV-infected cells arrest or enter into
senescence, with increased expression of p16 and p21

© 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2015; 235: 323–333
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[27]. The inactivation of p16 and/or over-expression
of cyclin D1 over-ride the growth-inhibitory effects of
EBV infection in these cells, resulting in stably infected
cells that express type II latent genes [26]. Both p16
inactivation and cyclin D1 over-expression are com-
monly present in premalignant nasopharyngeal epithe-
lium [6,27,28]. The polycomb complex protein, Bmi-1,
which is over-expressed in 39% of NPCs, efficiently
immortalizes primary nasopharyngeal epithelial cells
and supports latent EBV infection [29,30]. Hence, an
intricate interplay of host cell factors and viral gene
expression is probably involved in the regulation of the
growth and transformation properties of EBV-infected
epithelial cells.

In EBV-associated epithelial malignancies, the undif-
ferentiated properties of the epithelial cells may be a
prerequisite for establishing latent EBV infection and
activation of the viral lytic programme may be induced
by differentiation. In immunocompromized patients,
lytic infection with EBV occurs in oral hairy leukoplakia
at the lateral sides of the tongue. The expression of the
immediate early lytic gene, BZLF1, was only detected
in the upper differentiated layers of the EBV-infected
epidermis but not in the basal undifferentiated epithelial
layer [31]. Notably, differentiation-responsive elements
were found to be present in the promoter (Zp) of the
BZLF1 gene [32]. In EBV-infected epithelial cell mod-
els, induction of cell differentiation by TGF-β1 resulted
in the expression of BZLF1 and the lytic reactivation
of EBV [33]. These findings indicate the importance of
cell differentiation in persistent latent EBV infection in
epithelial cells.
ΔNp63, an isoform of the p53 family protein p63, is

highly expressed in undifferentiated cells at the basal
layers of stratified epithelium and plays an important
role in squamous differentiation. In EBV-associated
NPC, ΔNp63 is commonly over-expressed and
may contribute to the maintenance of EBV latent
infection [34]; ΔNp63 knockdown in EBV-infected
telomerase-immortalized normal oral keratinocytes can
induce lytic gene expression [33,35]. On the other hand,
the genetic alterations in premalignant epithelial cells
can also perturb cellular differentiation to support latent
EBV infection [6,27,36]. Notably, over-expression of
cyclin D1 dampened the differentiation response in
immortalized nasopharyngeal epithelial cells treated
with high levels of serum and calcium and suppressed
lytic EBV gene expression in infected cells [27]. All
these studies support a crucial role of epithelial differ-
entiation in the regulation of lytic and latent infection
of EBV in epithelial cells, an area that warrants further
investigation (see also a review elsewhere in this Issue,
that discusses the mechanisms of evading immunity
during latency and of inducing lytic cycle as potential
therapeutic approaches [37]).

Contribution of EBV latent infection
to oncogenesis

The presence of a clonal episomal genome suggests that
EBV infection is an early event in the oncogenic trans-
formation process in EBV-associated epithelial malig-
nancies. Many studies have demonstrated that both lytic
and latent EBV genes may be involved in the tumouri-
genesis of human malignancies [38,39]. However, the
role of lytic EBV infection in epithelial malignancies
is unclear. Recurrent lytic activation of EBV promotes
genome instability and drives the progression of NPC
cells to acquire a more malignant phenotype [40], sug-
gesting an interplay between lytic and latent EBV genes
in the pathogenesis of epithelial malignancies. Lytic
EBV genes may induce genomic stability in infected
cells and latent viral genes may provide survival signals
to genetically altered cells.

In EBV-associated epithelial malignancies, EBV
may provide only a subset of the oncogenic hits and
additional events are required to complete malignant
transformation. Recent comprehensive molecular char-
acterization of EBVaGC revealed a distinct genomic
signature that featured genome-wide hypermethyla-
tion, frequent p16/CDKN2A silencing and PIK3CA
mutations, and recurrent amplification of JAK2, PDL-1
and PD-L2 [13,14]. Notably, several molecular char-
acteristics, including extreme DNA hypermethylation,
frequent p16 inactivation, recurrent alterations in the
PI3K–AKT pathway and a rarity of p53 mutations,
were also found in NPC [6,36,41]. Our pilot study has
also detected frequent over-expression of PDL-1 and
PD-L2 in both NPC tumour lines and primary tumours
(unpublished data), suggesting a unique oncogenic
process for EBV-associated epithelial malignancies.
Among the genetic changes identified, inactivation
of the p16/CDKN2A gene is consistently detected in
almost all of these EBV-associated epithelial cancers
[6,14,36]. As shown in our in vitro study, p16 silencing
is essential for persistent EBV infection in the epithelial
cells [27]. It is believed that p16 inactivation is an early
event prior to clonal expansion of EBV-infected cells
and is the most crucial genetic change in the develop-
ment of EBV-associated epithelial malignancies. The
discovery of PD-L1 and PD-L2 over-expression as
common events in EBV-associated NPC and EBVaGC
indicates the importance of immune evasion in the
tumorigenic process [14]. The up-regulation of these
immune editing proteins may help EBV-infected cells
to survive in response to the host immune response.
Notably, the consistent PIK3CA mutation found in
EBVaGC suggest a role for PI3K–AKT pathway
activation. Aside from these reported events, the contri-
bution of chromatin remodelling in the development of
EBV-associated epithelial malignancies is pinpointed
by the high frequency of ARID1A mutations [13,14,41].
Although p53 mutation is common in most epithelial
malignancies, including non-EBV-associated gastric
cancers, it occurs in <10% of primary EBV-associated

© 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2015; 235: 323–333
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Figure 2. Epstein–Barr virus (EBV) latent genes target cancer hallmarks of epithelial malignancies. EBV contributes multiple cancer
hallmarks of epithelial malignancies by expressing type II latent genes. These EBV latent genes induce oncogenic properties by disrupting
various cellular and signalling machineries, as described in this review. The constitutively expressed latent genes (EBNA1, EBER1/2 and
miR-BART s) are shown in the green boxes. They mainly contribute to the resistance of cell death, the counteraction of the host immune
responses and the induction of genomic instability. The heterogeneously expressed LMPs (orange boxes) are viral oncogenes and play roles in
almost all described cancer hallmarks. The expression of high levels of LMPs in a subset of tumour cells may help them to acquire stemness
properties and drive tumour progression in invasive epithelial cancers.

NPCs and EBVaGCs [6,14,36,41]. In NPCs, p53 muta-
tion is always found in advanced disease and metastasis
[6,41]. A significant difference in the mutational rate
of p53 between EBVaGCs and other gastric cancer
subtypes strongly supports the possible role of EBV
infection in interference of p53 function during cancer
development [14]. Lastly, the relatively low mutation
rate reported in the whole-exome sequencing study of
NPCs provides new evidence for the role of EBV in
tumourigenesis. In EBV-associated epithelial cancers, a
number of oncogenic properties and aberrant signalling
pathways may be triggered by the EBV-encoded gene
products; thus, only a few additional acquired genetic
changes are required for the transformation process.

In EBV-associated epithelial malignancies, the latent
genes, including EBNA1, EBERs and BARTs, including
miR-BARTs, are consistently expressed in all tumour

cells. However, the heterogeneous expression of LMP1
and LMP2A has also been commonly detected in
these cancers. These viral genes may contribute to
tumourigenesis by targeting various hallmarks of cancer
described by Hanahan and Weinberg [42] (Figure 2).
The transformation properties of these EBV genes
and their encoded products commonly expressed in
EBV-associated epithelial malignancies are highlighted
below.

Epstein–Barr virus nuclear antigen 1 (EBNA1)
EBNA1 is an important latent viral protein that is
required for the persistence of EBV genomes in all
EBV-associated malignancies. It governs the replication
and mitotic segregation of EBV episomes to maintain
a stable number of EBV genome in daughter cells
after cell division [22]. In EBV-infected epithelial cells,

© 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2015; 235: 323–333
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EBNA1 plays an emerging role in promoting cell sur-
vival upon DNA damage and inducing genetic instability
[43]. In both NPCs and EBVaGCs, EBNA1 can disrupt
the promyelocytic leukaemia (PML) nuclear bodies that
contain many cellular proteins for the regulation of pro-
cesses such as cell survival, DNA repair and p53 activa-
tion [44]. It can induce the loss of PML nuclear bodies by
binding and regulating CK2 kinase or ubiquitin-specific
protease 7, which degrades p53 [44]. Thus, EBNA1 may
contribute predominantly by reducing p53 levels to pro-
mote the survival of cells upon DNA damage. More-
over, EBNA1 has been reported to promote DNA dam-
age in NPC cells by inducing reactive oxygen species
and up-regulating the oxidative stress response pro-
teins SOD1 and Prx1 [45]. The enhanced survival of
these EBNA1-expressing cells harbouring DNA damage
may enhance the genetic instability of the EBV-infected
epithelial cells and promote oncogenesis. EBNA1 may
also contribute to oncogenesis by modulating various
signalling pathways, including suppressing TGF-β1 sig-
nalling [46] and enhancing nuclear accumulation of the
distinct NF-κB complex p50–p50–bcl3, which inhibits
the phosphorylation of IKKα/β and nuclear translocation
of p65/RelA [47]. This unique NF-κB signal was shown
to be important in modulating the tumour microenviron-
ment and enhancing the survival of NPC cells.

EBV-encoded small RNA 1/2 (EBER1/2)
In EBV-infected cells, two EBV small non-poly-
adenylated RNAs, EBER1 and EBER2, are abundantly
expressed. They are 167 and 172 nucleotides long,
respectively, and form double-stranded RNA-like struc-
tures. These transcripts may promote cellular growth
and modulate innate immunity in EBV-associated can-
cers [48]. Their double-stranded RNA-like structures
allow them to interact with the retinoic acid-inducible
gene 1 (RIG-1) and Toll-like receptor 3 (TLR3), which
then induce the phosphorylation of a downstream effec-
tor molecule, IRF-3, and the release of insulin-like
growth factor 1 (IGF-1) [48,49], which stimulates
autocrine growth of infected cells. Nevertheless, the
role of EBERs in EBV oncogenesis is still unclear. On
the one hand, EBERs were reported to be responsible
for innate immune activation by EBV, which results
in the production of antiviral and antiproliferative
cytokines, such as type 1 interferons (IFNs). On the
other hand, EBERs counteract the effects of IFNs by
inhibiting their major downstream signalling events
[50–52]. EBERs inhibit phosphorylation of the cellular
substrate of PKR, eIF-2α, which signals the transla-
tional block of protein synthesis. By inactivating PKR
signalling, EBV-infected cells are also protected from
the Fas-mediated apoptosis induced by IFNs [52].

BamH1 A rightwards transcripts (BART s)
BARTs are a family of multispliced rightward tran-
scripts from the BamH1 A region of the EBV genome
[53]. The BARTs are abundantly expressed at extremely
high levels only in EBV-infected epithelial cancers, but

not in EBV-transformed lymphocytes [14,25,53], and
it has been postulated that BARTs play a crucial role
in EBV-associated epithelial malignancies. The protein
products produced by in vitro translation of several open
reading frames in the spliced transcripts, such as RPMS1
and A73, were shown to function as negative regulators
of the NOTCH and RACK1 signalling pathways, respec-
tively [54,55]. However, evidence for the endogenous
expression of potential BART-encoded proteins is still
lacking. Another possibility is that BARTs may act as
long non-coding RNAs, which are involved in repres-
sive complexes to regulate cellular gene expression [25].
Notably, the expression of BARTs is regulated by inter-
feron regulatory factors (IRF5 and IRF7) and possibly
NF-κB signals [56]. This highlights the potential impor-
tance of local inflammation and the role of inflamma-
tory cytokines in the expression of BARTs. The func-
tional roles of BARTs in contributing to EBV-associated
tumourigenesis have yet to be defined.

EBV encodes a number of microRNAs located within
the BARTs (miR-BARTs) [26,53], all of which are
transcribed from the same BART transcript and derived
from intron processing. miR-BARTs are approximately
8–13-fold higher in epithelial than B cells [57]. In
NPC and EBVaGC, miR-BARTs are expressed at var-
ious levels, due to different biogenesis and processing
[26,58,59]. These abundantly expressed miR-BARTs
are believed to play a key role in tumourigenesis by
targeting multiple viral and cellular genes. Preven-
tion of apoptosis is a major function of miR-BARTs
in epithelial cancers. Three BART cluster-1 miRNAs
(miR-BART1-5p, -16 and -17-5p) can down-regulate
the expression of EBV-encoded LMP1 to avoid the
growth inhibition effect and alter the balance of
the growth-promoting and pro-apoptotic actions of
LMP1 by fine-tuning its expression [60]. Importantly,
expression of miR-BART5, miR-BART16 and multiple
miR-BARTs in cluster 1 directly impairs apoptosis by
targeting the pro-apoptotic proteins PUMA, TOM22
and BIM, respectively [61–63]. In addition to these
intrinsic effects, miR-BARTs may protect EBV-infected
premalignant or malignant epithelial cells by impair-
ment of the host immune response. miR-BART2-5p
suppresses the expression of major histocompatibility
complex class I-related chain B (MICB), involved in the
initiation of immune responses that eliminate infected
cells by activating the NKG2D type II receptor in
natural killer cells, CD8 αβT cells and γδT cells [64]. In
contrast, miR-BART3 targets a nuclear importer recep-
tor, importin 7 (IPO7), for immune evasion [63]. It is
believed that miR-BART3 may be transported to neigh-
bouring immune cells via exosomes and thereby inhibits
IPO7 expression, impairing their cytotoxic function.
Notably, we recently showed that miR-BART22 sup-
pressed expression of the immunogenic viral antigen
LMP2A to protect NPC cells from immunological attack
[65]. miR-BARTs are also involved in various other
oncogenic processes. miR-BART3-5p promotes cellular
growth by targeting the DICE1 tumour-suppressor
gene and miR-BART9 targets E-cadherin to enhance

© 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2015; 235: 323–333
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invasiveness and metastatic ability of NPC cells [66,67].
Furthermore, the miR-BARTs facilitate EBV latency
by limiting the expression of multiple lytic genes (e.g.
BZLF1, BRLF1 and BALF5) in infected epithelial cells
[68,69]. The identification of target genes that mediate
the functions ascribed to miR-BARTs may unveil the
role of EBV in the oncogenesis of epithelial cancers.

BamH1-A fragment rightward reading frame 1
(BARF1)
BARF1 is a homologue of human colony stimu-
lating factor 1 receptor (CSF1R), encoded in the
BamH1 A region, and is highly expressed in NPC
and EBVaGC [70,71]. The expression of BARF1 can
immortalize monkey kidney primary epithelial cells
and transform immortalized nasopharyngeal epithelial
cells that express H-ras [72,73]. At present, its onco-
genic role remains controversial and awaits further
investigation [70].

Latent membrane proteins (LMP1 and LMP2)
LMP1 and LMP2A exert multiple oncogenic prop-
erties and have transformation potential in epithelial
cells by activating multiple signalling pathways and
modulating the expression of various oncogenes and
tumour-suppressor genes. As viral oncogenes, they may
drive the transformation of epithelial cells by the induc-
tion and maintenance of tumour phenotypes, including
cell proliferation, resistance to apoptosis, invasion and
motility and angiogenesis [74,75].

LMP1 is a transmembrane protein that acts as a
constitutively activated tumour necrosis factor receptor
1. It activates multiple signalling pathways, including
NF-κB, JNK–p-38, PI3K–AKT, ERK–MAPK and
JAK–STAT [74,75]. LMP1 can stimulate the growth of
NPC cells by up-regulating growth factor receptors (e.g.
EGFR, c-Met) and suppressing cell cycle regulators
(e.g. p16, p21) [76–78]. To enhance cell survival, LMP1
can promote the expression of anti-apoptotic proteins
(e.g. survivin and Mcl-1) or inactivate pro-apoptotic
proteins (e.g. Bad and Foxo3a) [74,75]. LMP1 enables
epithelial cells to resist the growth-suppressive effect of
TGF-β1 by inducing inhibitor of differentiation-1 (Id-1)
[79]. It also contributes to angiogenesis by reducing
degradation of hypoxia inducible factor-1α (HIF-1α)
and inducing the expression of vascular endothelial
growth factor (VEGF) expression [80]. Recently, we
found that LMP1 inhibits the LKB–AMPK pathway to
alter cellular metabolism [81]. In addition to inducing
epithelial–mesenchymal transition (EMT), LMP1 was
reported to induce cancer stem/progenitor-like cells
in NPC cells, possibly by activating the Hedgehog
signalling pathway [82–85]. Notably, LMP1 may
modulate the tumour microenvironment and induce
tumour-promoting inflammation via activating NF-κB
pathways [74,75]. Most importantly, LMP1 can induce
promoter hypermethylation and epigenetic silenc-
ing of cellular genes through the activation of DNA

methyltransferase 1 (DNMT1) and the polycomb group
protein, Bmi-1 [86,87], contributing to the global
methylation and inactivation of multiple cancer genes
in EBV-associated epithelial cancers.

LMP2A and LMP2B are transcribed from two dis-
tinct forms of mRNA that share the same exons 2–9.
Only LMP2A has the N-terminal cytoplasmic domain
that contains multiple signalling domains that con-
tribute to the modulation of several signalling pathways,
including PI3K–AKT, RhoA and MAPK–ERK [75].
To date, few studies have addressed the function of
LMP2B in epithelial cells. Through activation of the
PI3K–AKT pathway and phosphorylation of GSK3,
LMP2A induces remarkable phenotypic changes,
including anchorage-independent growth in soft agar
and promotes β-catenin signalling in epithelial cells
[88–90]. It also inhibits cellular differentiation and
promotes cell survival through the PI3K–Akt-mediated
stabilization of ΔNp63 [91]. Other roles of LMP2A
include counteraction of the growth inhibitory and
pro-apoptotic effects of TGF-β1 during epithelial car-
cinogenesis and the promotion of proliferation and
protein synthesis in cells by the activation of the mTOR
pathway [92,93]. LMP2A promotes the invasive and
migratory properties of epithelial cells, which may
relate to the metastatic phenotype [94,95]. Similar to
LMP1, LMP2A can also activate the Hedgehog sig-
nalling pathway that induces cancer stem-like properties
[85]. Exogenous expression of LMP2A induces EMT,
stimulates stem cell marker expression and enhances
the acquisition of side-populations in NPC cells [96].
Interestingly, LMP2A was reported to be localized at
the tumour-invasive front [96]. These findings support a
role of LMP2A in the induction of cancer stem cells in
EBV-associated epithelial malignancies.

The possible role of heterogeneous LMP
expression in tumourigenesis

The expression of LMP1 and LMP2A in NPC and
EBVaGC is heterogeneous in terms of prevalence and
distribution within the tumours [75]. Although LMP1
protein was previously reported to be expressed in
20–40% of NPCs, recent sensitive approaches using
immunohistochemical staining have revealed LMP1
expression in almost 100% of primary NPC specimens
[74,75,97]. By high-coverage transcriptome sequenc-
ing, low to high levels of LMP1 expression were found
in primary EBVaGCs, despite the absence in previous
reports [14,25]. To define its precise role in oncogen-
esis, LMP1 expression patterns need to be evaluated
comprehensively in these cancers, using sensitive meth-
ods. Nevertheless, the most important concept is that
LMP1 expression is highly heterogeneous among the
malignant cells in NPCs or other EBV-related epithelial
cancers.

LMP1 is always expressed in rare individual cells and
small clusters in the primary tumours of NPC, as well
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as in well-established xenografts (Figure 1). Notably,
LMP1 is detected in premalignant lesions and is espe-
cially concentrated in the basal layers [27,97]. These
findings imply that LMP1 participates in tumour initi-
ation, although it is only constitutively expressed in a
subpopulation of malignant cells. As high-level LMP1
expression inhibits cell growth and induces apopto-
sis in epithelial cells, it may be suppressed by vari-
ous mechanisms in the majority of malignant cells in
epithelial cancers, while only a subset of cells sustain
a high level [74]. As mentioned above, LMP1 might
be involved in the maintenance of stem cell proper-
ties and LMP-expressing epithelial cells may exhibit a
cancer stem/progenitor-like cell phenotype that is resis-
tant to induced apoptosis. The significant up-regulation
of LMP1 in NPC sphere-forming cells supports this
hypothesis [98].

Based on the cumulative evidence, we hypothesize
that LMP1 may play different roles in the early and late
stages of cancer development. The tumourigenesis pro-
cess may start after the establishment of a persistent
latent EBV infection in epithelial cells with stem-like
properties, probably the basal stem cells over-expressing
anti-apoptotic BCL2 [99]. The expression of EBV latent
genes may protect the infected cells from the host
immune response and inhibit apoptosis during clonal
expansion. In precancerous lesions, the majority of
dysplastic cells may express stemness properties and
allow a high level of LMP1 expression to trigger its
oncogenic functions, inducing genetic instability and
epigenetic changes. A large variety of genetic and epi-
genetic changes may be induced and accumulated in
these LMP1-expressing cells and persist in their pro-
genies. Cells that contain acquired genetic/epigenetic
alterations that can substitute for LMP1 functions may
then become the dominant population during cancer pro-
gression. LMP1 is down-regulated to avoid its cyto-
toxic effects in the majority of advanced malignant
cells, except for the rare cancer stem/progenitor cells
present in invasive tumours. The constitutive activa-
tion of multiple signalling pathways (e.g. NF-κB and
PI3K–AKT) and the epigenetic silencing of E-cadherin
in NPC are consistent with this hypothesis, which would
also explain the genome-wide hypermethylation and
relatively greater number of mutations identified in
EBVaGC. Similar to LMP1, the expression of LMP2A
is also confined to a subset of malignant cells, because
of its immunogenicity. More studies are needed to define
these speculative roles of LMP proteins in the develop-
ment of EBV-associated epithelial cancers.

Contribution of chronic inflammation
in EBV-infected epithelial malignancies

Both NPCs and EBVaGCs arise from a special type of
mucosal epithelium that is heavily infiltrated with
lymphoid elements, often referred to as MALTs
(mucosa-associated lymphoid tissues). Chronic inflam-
mation may contribute to the malignant transformation

of premalignant epithelial cells [100]. Reactive oxygen
species induced by, or secreted from, activated inflam-
matory cells may enhance DNA damage and genomic
instability in nearby epithelial cells, which may generate
clones of genetically altered precursors susceptible to
latent EBV infection. Inflammation-mediated mutage-
nesis may enhance the development of cancer through
the subsequent clonal expansion of EBV-infected
premalignant cells.

The role of inflammatory stroma and the rich cytokine
milieu will also have a major impact on growth pro-
motion and the expression of EBV latent or lytic
genes in infected epithelial cells. Cytokines released
from inflammatory cells may activate the NF-κB and
STAT3 signalling pathways in EBV-infected epithelial
cells, stimulating their growth and survival. In NPC,
the expression of LMP1 or the occurrence of somatic
changes constitutively activates NF-κB signalling and
up-regulate inflammatory cytokines, thereby further
recruiting more inflammatory lymphocytes [47]. In our
study, we also found that the IL-6–STAT3 signalling
axis is potentiated in EBV-infected nasopharyngeal
epithelial cells, promoting a positive feedback loop
of LMP1 expression [101]. These data suggest that
EBV may co-evolve with infected host cells to mod-
ulate latent EBV gene expression and cell signalling
pathways for NPC development. Defining the impact
of chronic inflammation on EBV-infected epithelial
cells will contribute to our understanding of its role in
pathogenesis in undifferentiated NPCs and EBVaGCs.

Concluding remarks

EBV infection is listed as a Group I carcinogen category
by the International Agency for Research on Cancer
(IARC). Although the oncogenic properties of multiple
EBV latent genes, notably LMP1 and LMP2A, have been
demonstrated, their concerted actions and interplay with
host genetic alterations in the transformation of prema-
lignant epithelial cells into cancer cells remains elusive.
The abundant expression of BARTs and miR-BARTs
strongly implicates their roles in the pathogenesis of
these cancers. EBV infection may offer immune eva-
sion and survival advantages to infected tumour cells
for their selective growth in vivo. The impact of chronic
inflammation, revealed by the characteristically heavy
infiltration of lymphocytic cells, to the growth and sur-
vival of EBV-infected cells during tumour initiation and
progression remains to be further elaborated. Defining
the role of inflammatory stroma will be important for
understanding the pathogenic role(s) of EBV infection
in epithelial malignancies and may provide effective
therapeutic targets for clinical management of these dis-
eases. Recently, whole EBV genome sequencing stud-
ies have revealed the NPC-derived EBV strains from
endemic region, which show significant difference from
the reported EBV genomes from non-endemic popu-
lations [102–106]. The findings suggest the existence
of disease specific viral variations which may possess
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higher oncogenic properties, propensity for infection
of epithelial cells and persistence of the latent pro-
gramme, or less efficiency in inducing host immune
response, especially in the NPC endemic population.
The hypothesis can be confirmed by comparing these
tumour-derived EBV strains with viral strains from the
blood and saliva samples of patients and healthy indi-
viduals in the endemic region. Comprehensive charac-
terization of the properties of these putative pathogenic
strains might provide new insights to the role of EBV in
epithelial malignancies.
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