
RESEARCH ARTICLE

Activity Prediction and Molecular Mechanism
of Bovine Blood Derived Angiotensin
I-Converting Enzyme Inhibitory Peptides
Ting Zhang1, Shaoping Nie2, Boqun Liu1, Yiding Yu1, Yan Zhang1, Jingbo Liu1*

1 Laboratory of Nutrition and Functional Food, Jilin University, Changchun, Jilin, China, 2 State Key
Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China

* ljb168@sohu.com

Abstract
Development of angiotensin I-converting enzyme (ACE, EC 3.4.15.1) inhibitory peptides

from food protein is under extensive research as alternative for the prevention of hyperten-

sion. However, it is difficult to identify peptides released from food sources. To accelerate

the progress of peptide identification, a three layer back propagation neural network model

was established to predict the ACE-inhibitory activity of pentapeptides derived from bovine

hemoglobin by simulated enzyme digestion. The pentapeptide WTQRF has the best pre-

dicted value with experimental IC50 23.93 μM. The potential molecular mechanism of the

WTQRF / ACE interaction was investigated by flexible docking.

Introduction
Hypertension is a risk factor for cardiovascular diseases including coronary heart disease, pe-
ripheral artery disease and stroke. [1, 2] Recently, several food-derived bioactive peptides have
been found playing a significant role in decreasing blood pressure. Therefore, more and more
attention has been paid to peptides from food sources with antihypertensive activity. [3]

Most of the antihypertension peptides regulate blood pressure by inhibiting the activity of
angiotensin I-converting enzyme (ACE, EC.3.4.15.1). ACE is a zinc- and chloride- dependent
metallopeptidase, which belongs to the M2 family of zinc metallopeptidases. [4, 5] It converts
angiotensin I to angiotensin II (a potent vasoconstrictor) as well as inactivates the vasodilator
bradykinin. [6] ACE plays a crucial role in the renin-angiotensin system (RAS), which is well
known for its regulation of blood pressure and fluid homeostasis. [7, 8] Nowadays, inhibitors
of ACE have been considered as first-line therapy for hypertension. [9, 10] It has been reported
that a number of bioactive peptides, which derived from food sources, have ACE-inhibitory ac-
tivity. Chibuike C. Udenigwe [11] summarized the major approaches in bioactive peptides re-
search as the classical approach, the bioinformatics approach and the integrated approach.
This classification is also suitable for ACE-inhibitory peptides.

The classic approach is the most widely used method for the discovery of ACE-inhibitory
peptides from food proteins, involving peptides production (solvent extraction, enzyme
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hydrolysis, and microbial fermentation), purification (membrane-based separation and chro-
matography techniques) and identification (mass spectrometry methods). There are a number
of ACE-inhibitory peptides derived from different food sources and obtained by the classic ap-
proach. For instance, ACE-inhibitory peptides derived from soy protein such as DLP, DG, IA,
ILAGNQ, FFL, IYLL, VMDKPQG, IFL, WL, TPRVF, YVVFK, PNNKPFQ, EDENNPFYLR,
NWGPLV, IPPGVPYWT, VLIVP, LAIPVNKP, LPHF, SPYP and WL, were found in pub-
lished articles. [12–17] In wheat germ hydrolysates, 16 peptides [18] with the IC50 value of less
than 20 μM, composed of 2–7 amino acid residues were identified. And IAP [19] was identified
in wheat gliadin hydrolysates. In pork meat hydrolysates digested by in vitro gastrointestinal
digestion, 12 peptides were identified. [20] Also, in beef rump (biceps femoris) hydrolysates,
Jang and Lee [21] identified VLAQYK.

In order to circumvent some challenges of the classical approach, the bioinformatics ap-
proach has been recently applied towards the discovery of ACE-inhibitory peptides encrypted
in food proteins. This approach was recently used to study the distribution of ACE-inhibitory
peptides within the primary structure of typical food proteins. [22]

Following the identification of bioactive peptides from protein sets by bioinformatics in da-
tabases populated following the classical approach, the remainder of the purportedly “inactive”
peptides can be analyzed in silico to identify structural patterns that have previously been asso-
ciated with known bioactivities. [11]

Moreover, the strengths of each approach can be combined as deemed fit to enhance the
discovery and use of ACE-inhibitory peptides. Bioinformatics software can be used to simulate
proteolytic specificities of enzymes in order to establish the peptide database in silico. [11]
Quantitative structure-activity relationship (QSAR) studies are widely undertaken for model-
ing the bioactivities such as the bioactivity of ACE-inhibitory peptides [22–26] and the sweet-
ness of compounds [27]. Neural network, as a kind of artificial intelligence, has been applied to
modeling non-linear systems, simulating the chaos bioprocess and predicting the results. It
turns out to have higher modeling accuracy and generalization capacity [28] and becomes a po-
tentially effective tool in modeling the QSAR.

Bovine blood, as a by-product generated in great volume in industrial abattoirs, gives rise to
several possibilities for their recovery and use. The use of bovine blood as a food component
has been widely reported due in part to their high nutritional value and there are many studies
have recently demonstrated that bovine blood proteins can be used to obtain bioactive pep-
tides. This is important because it gives an added value to bovine blood. A number of bioactive
peptides released from bovine hemoglobin hydrolysates have been reported. [29–32] It is a
highly desirable but difficult task to identify bovine blood derived peptides. In this aspect, pre-
diction model would be a useful technique to highlight potential ACE-inhibitory
peptides identification.

It was found that ACE has two homologous domains (the N-domain and the C-domain),
each containing an active center. [33] The C-domain of ACE has been proved to be the domi-
nant angiotensin-I converting site, which has a conserved HEXXH zinc-binding motif, for con-
trolling blood pressure and serving cardiovascular functions. [34, 35] If inhibitory peptides
occupied the active site of the C-domain of ACE and bound to specific amino acid residues,
ACE will lose its activity. Therefore, it is possible to reveal the ACE inactivation mechanisms
by analyzing the structural consequences of ACE-inhibitor interactions. [34]

In this study, we established a database of potential pentapeptides derived from bovine he-
moglobin by simulated enzyme digestion, and a prediction model of ACE-inhibitory pentapep-
tides by back propagation neural network (BPNN). The peptide with best predictive value was
synthesized and its IC50 of ACE was measured. We also sought to elucidate the potential
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molecular mechanism of how the peptide with best predictive value exerts its ACE-inhibitory
effects by automated molecular docking.

Materials and Methods

Materials and Chemicals
Angiotensin converting enzyme from rabbit lung, hippuryl-L-histidyl-L-leucine, hippuric acid
and HPLC grade acetonitrile, trifluoroacetic acid were purchased from Sigma Chemical Co.
(St. Louis, Mo., U.S.A.). All the other reagents were analytical grade.

Dataset
A total of 24 unique pentapeptides were collected from published articles with IC50 of ACE
from 0.00948μM to 848 μM in Table 1. [16, 36–48] Due to the wide range of IC50 value, the
negative logarithm of IC50 (pIC50) was used ranging from-2.928 to 2.023.

Molecular Descriptors Calculation
Ten molecular descriptors were calculated for analogs of peptides including structural, spatial,
thermodynamic and electronic. Structural descriptors included the number of rotatable bond
(Rotbond), the number of hydrogen bond acceptor (H bond acceptor), the number of hydro-
gen bond donor (H bond donor), the number of ring (Ring) and the number of arcomatic ring
(AR). [49–51] The molecular fractional polar surface area (PSA) [52] was used as spatial de-
scriptor. The thermodynamic descriptors were taken to describe the hydrophobic character
(ALog P: logarithm of the partition coefficient in octanol / water and Log D: logarithm of the
partition coefficient in octanol / water in pH 7.4) and refractivity (MR: molar refractivity). [49]
The atomic polarizabilities (Apol) were calculated as electronic descriptors. [50] Peptide struc-
tures were generated by Accelrys Discovery Studio 3.5 software (Accelrys Inc., San Diego,
USA) and the energy was minimized with CHARMm program using steepest descent and con-
jugate gradient techniques. All descriptors were calculated by calculate molecular
properties protocol.

Modeling by Back-Propagation Neural Network (BPNN)
To construct a BPNN, the Levenberg-Marquardt algorithm [53] was used to train the network.
With all data normalized, the descriptors and the pIC50 of dataset were introduced as input
and output values, respectively. In order to avoid overfitting, the dataset was randomly classi-
fied for training, validation, and test sets. To verify the suitable number of nodes in hidden
layer and transfer function, the mean square error (MSE) and pearson correlation coefficient
(R) of each BPNNmodel were calculated.

Simulated Enzyme Digestion and BPNN Prediction
Pepsin and trypsin degrade food proteins into peptides, which are critical in human digestion
of protein. The online software Peptide Cutter (http://web.expasy.org/peptide_cutter/) can pre-
dict potential cleavage sites cleaved by proteases, including pepsin and trypsin, in a certain pro-
tein sequence. As hemoglobin is composed of four poly peptide subunits, two α and two β, we
used Peptide Cutter to predict the potential pentapeptides of subunit α (accession number,
P01966) and β (accession number, P02070), respectively. All pentapeptides were described by
descriptors mentioned above. And then, put the normalized descriptors into the best BPNN
model as input data to predict the ACE-inhibitory activity.
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Peptide Synthesis
The peptide was synthesized (ChinaPeptides Co. Ltd., Shanghai, China) by the solid phase pro-
cedure peptide using FMOC protected amino acids synthesis. The purity (95%) and the molec-
ular masses of the peptides were determined by HPLC and mass spectrometry.

Assay for ACE-Inhibitory Activity
The ACE-inhibitory activity of the peptide with best predict value was measured according to
Liu, et al. [54]

Docking
The 3-D structure of human ACE was imported from Protein Data Bank (1O8A.pdb, a crystal
structure of human ACE). The structure of peptide was generated by DS and the energy was
minimized with CHARMm program. Automated molecular docking was performed using the
flexible docking tool of DS software in the presence of cofactors (zinc and chloride ions). The
binding site with a radius of 15 Å and a coordinates x: 45.0463, y: 38.6842, z: 45.8268. Evalua-
tion of the molecular docking was performed according to the scores and total potential energy
in order to obtain the best pose of peptide. The DS software was used to identify the hydrogen
bonds as well as the hydrophobic, hydrophilic, electrostatic and coordination interactions be-
tween residues present within ACE active site.

Results and Discussion

Structural Features Analysis
Most of the ACE-inhibitory peptides derived from egg white hydrolysates in our lab previously
[55–57] were pentapeptides. Therefore, we are interested in ACE-inhibitory pentapeptide and
try to build a prediction model based on a pentapeptides database (Table 1). It shows that 75%
of the pentapeptides taken from literature have 1 or 2 hydrophobic amino acid residues. A half
of these pentapeptides contain aromatic or hydrophobic amino acid residues at the
C-terminus, which are beneficial to ACE-inhibitory activity. [24] In addition, 66.67% of these
pentapeptides contain hydrophilic amino acid residues in the second amino acid residues from

Table 1. The IC50 (μM) of ACE of 24 pentapeptides as taken from literature.

No. Sequence IC50 No. Sequence IC50

1 ARHPH 0.0156 13 MRWRD 2.1

2 DIGYY 3.4 14 RINKK 0.0183

3 DKIHP 113.1 15 RYLGY 0.71

4 DYVGN 0.72 16 SLPQN 0.00948

5 ERYPI 8.76 17 TVVPG 2.2

6 EVPKA 324.77 18 TYKEE 0.0186

7 IKYGD 4.5 19 TYLGS 0.86

8 KDERF 848 20 VKQGF 20.3

9 KDYRL 26.5 21 VLIVP 1.69

10 LDIQK 27.6 22 WVPSV 0.501

11 LPYPY 28.9 23 YTAGV 23.38

12 LVQGS 43.7 24 YVVFK 44

doi:10.1371/journal.pone.0119598.t001
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the C-terminus. The aforementioned common structural features can be used to instruct ACE-
inhibitory peptides’ design.

The molecular descriptor (Tables 2, 3) calculation is a logic and mathematical procedure
which converts the chemical information of a molecule into some useful data. Most of the
number ranges of descriptors of Pentapeptides derived from hemoglobin simulated enzyme di-
gestion included in the scope of the reported pentapeptides, except the molar refractivity of
GHGAK. The range of MR of reported pentapeptides is 111.291 to 186.874, while the GHGAK
is 107.89. Nevertheless, the predicted IC50 of GHGAK is the fourth lowest among the seven he-
moglobin pentapeptides, because the BPNN is a nonlinearity model, leading to a nonlinear re-
lationship between the input and the output.

BPNNmodel Building
There were three layers in the BPNNmodel (input layer, hidden layer and output layer), while
the number of nodes in hidden layer was not certain. So that we trained BPNNmodels with
different number of nodes in hidden layer and different transfer functions to obtain the suitable
model structure (Fig. 1, Fig. 2 and S1 Table, S2 Table). For the log-sigmoid & purelin transfer
function, the highest MSE appears when the number of hidden layers is twelve. However, in
terms of the tan-sigmoid & tan-sigmoid transfer function, the MSE is relatively low when the
number of hidden layers is between four and fifteen, and the lowest MSE (0.0587 ± 0.0351) is
obtained when it reaches seven. Besides, seven hidden layers with the log-sigmoid & purelin
transfer function bring the highest determination coefficient (square of R, 0.3819 ± 0.2781).
Therefore, we decided to select 10–7–1 as the topological structure of BPNN and the tan-sig-
moid transfer function as the transfer function between both input layer & hidden layer and
hidden & output layer. To improve the accuracy of the final model, we set the aim as R> 0.9
and trained 10–7–1 BPNN with tan-sigmoid transfer function & tan-sigmoid transfer function
several times. The MSE and correlation coefficients of this model were in acceptable ranges as
shown in Table 4. These correlation coefficients indicate that there is a strong correlation be-
tween the predicted and experimental result and the MSE (0.162) is acceptable. The plots of ex-
perimental versus predicted values (Fig. 3) confirmed the discussed results. Hence, we chose
this one as the final model. To our knowledge, it was the first time applying BPNN to predict
the IC50 of ACE of pentapeptide. In our previous work [58], a BPNNmodel was built to predict
the IC50 of ACE of tripeptide. The MSE of the tripeptide model (0.2148) is higher than this
pentapeptide model (0.0162). Meanwhile, the R of the tripeptide model (0.854) was less than
this new model (0.9176). These differences possibly resulted from the difference of descriptors.

Activity Prediction and Experimental Verification
After simulated enzyme digestion of hemoglobin, seven pentapeptides among all the cleavage
fragments were obtained. The descriptor calculated value and the predicted IC50 were shown in
Table 3. The pentapeptide WTQRF and AAWGK contain two or three hydrophobic amino
acid residues, which is in agreement with the common features of the 24 reported pentapep-
tides, and show a low predicted IC50. The AHRYH, WTQRF and FTPVL contain hydrophpbic
or aromatic amino acid residues in the C- terminus which contribute to ACE inhibition. For
the second amino acid residues from C-terminus, the PTTKT, WTQRF and AAWGK contain
hydrophilic amino acid residues, which also match the common features of the 24 reported
pentapeptides. Obviously, WTQRF conforms to all the aforementioned common features. It
include three hydrophilic amino acid residues (Thr, Gln, Arg) and two hydrophobic amino
acid residues with aromatic (Trp) / heterocyclic (phe) ring in their side chain. It molecular
weight is 736.83 g / mol. The hydrophobic amino acid residues in both of the N- and C-
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Table 2. Descriptors of 24 peptides.

No. ALog P MR Apol Log D Rot bond Ring AR H bond acceptor H bond donor PSA

1 -3.40648 150.01 21,842.80 -5.211 16 3 2 8 9 0.472

2 -0.5315 148.186 23,371.50 -3.62 17 2 2 10 7 0.417

3 -1.57883 140.478 21,007.90 -6.343 18 2 1 9 6 0.43

4 0.1427 125.13 20,031.40 -6.645 16 1 1 10 7 0.496

5 -4.17411 162.498 24,053.20 -4.59 19 2 1 9 8 0.43

6 -1.75544 123.385 18,340.80 -6.673 16 1 0 8 5 0.423

7 1.17668 137.363 21,169.30 -5.804 19 1 1 9 7 0.438

8 -7.64934 157.324 24,572.40 -9.119 24 1 1 10 9 0.492

9 -0.97576 165.622 24,679.50 -6.381 23 1 1 9 10 0.46

10 -1.4409 141.829 20,908.70 -6.554 22 0 0 9 7 0.444

11 -0.18578 165.819 24,392.10 -0.486 13 4 2 8 5 0.32

12 2.40026 116.474 16,937.50 -5.206 16 0 0 8 7 0.459

13 -1.4177 186.874 28,111.80 -5.953 24 2 2 9 12 0.502

14 4.6319 160.264 22,613.60 -7.87 25 0 0 7 11 0.482

15 1.46736 169.636 25,104.30 -2.379 19 2 2 8 10 0.419

16 0.616643 127.519 18,710.70 -6.491 16 1 0 9 7 0.486

17 1.08715 111.291 15,909.40 -3.97 11 1 0 7 5 0.392

18 -6.51692 146.046 23,291.50 -8.625 22 1 1 12 8 0.483

19 2.27823 127.141 19,082.70 -4.319 15 1 1 9 8 0.439

20 0.263857 141.365 20,960.90 -5.071 19 1 1 7 7 0.418

21 -0.2278 137.092 18,644.10 -0.405 14 1 0 6 4 0.299

22 -10.8299 147.072 21,425.80 -1.896 13 3 2 7 6 0.354

23 -0.94115 120.919 18,224.60 -3.266 13 1 1 8 7 0.424

24 -1.6435 168.555 24,814.30 -0.956 19 2 2 7 7 0.34

doi:10.1371/journal.pone.0119598.t002

Table 3. Pentapeptides derived from hemoglobin simulated enzyme digestion.

AAWGK AHRYH FTPVL GHGAK PTTKT TSKYR WTQRF

Proteases Trypsin Pepsin Pepsin Trypsin Pepsin Pepsin Pepsin

Subunit α β β α α α β

ALogP -4.704 -5.548 -1.547 -7.589 -7.283 -6.927 -3.789

MR 130.843 168.635 145.081 107.89 125.207 157.139 186.729

Apol 19,654.10 25,184.50 20,818.60 16,291.60 18,110.90 23,078.30 27,793.80

LogD -4.702 -4.691 -1.54 -6.806 -7.28 -6.915 -2.911

Rot bond 15 19 14 15 16 21 21

Ring 2 3 2 1 1 1 3

AR 2 3 1 1 0 1 3

H bond acceptor 6 9 7 7 9 9 8

H bond donor 7 11 5 7 9 12 11

PSA 0.414 0.47 0.326 0.487 0.46 0.492 0.439

BPNN output 0.5093 0.7990 0.4534 0.4983 0.2890 0.3204 0.8501

Predicted IC50 (μM) 2.5513 0.0938 4.8240 2.8916 31.4255 21.9784 0.0524

doi:10.1371/journal.pone.0119598.t003
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Fig 1. The MSE of different structure of BPNNmodels.

doi:10.1371/journal.pone.0119598.g001

Fig 2. The coefficient of determination (square of pearson correlation coefficient) of different
structure of BPNNmodels.

doi:10.1371/journal.pone.0119598.g002
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terminus as well as the hydrophilic amino acid residues in the second amino acid residues from
C-terminus may make main contribution to ACE inhibition. The result of predicted IC50 indi-
cated that the peptide WTQRF has the best inhibitory activity of ACE. The experimental IC50

of WTQRF is 23.93 μM, which is similar to a pentapeptide identified from egg white protein in
our lab before (RVPSL, IC50 20 μM). [54] The difference between predicted and experimental
IC50 may bring from data normalization.

Molecular Docking
Interactions between ACE and inhibitor are fundamental to ACE-inhibitory processes. In this
work, docking is used to predict the preferred orientation of WTQRF to ACE when they bound
to each other to form a stable complex. The free energy of binding represents the binding affin-
ity between ACE and WTQRF. The molecular docking study of WTQRF presenting within the
ACE catalytic site in the presence of the cofactor showed the best pose with potential binding
energy:- 749.747 kj / mol. It is indicated that the ligand bind tightly to the receptor and the
ACE-WTQRF complex is stable. As we know, ligand-protein affinities are influenced by non-
covalent intermolecular interactions between the two molecules. The best pose of WTQRF was
stabilized mainly by hydrophobic and hydrophilic interactions (Fig. 4), electrostatic interac-
tions (Electrostatic energy:- 154.728 kj / mol; Van der Waals energy:- 898.743 kj / mol) and hy-
drogen bond (Table 5).

The hydroxyl group of Tyr 360, the guanidine and the ɛ-amino group of Arg 522 showed
significant importance of the binding between WTQRF and ACE by hydrogen bond. The
docking result suggested that WTQRF contact with residues Met 223, Ala 354, 356, Tyr 360,
394, Phe 391, Pro 407, 519, Val 518 by hydrophobic interactions and with residues His 353,
383, 387, 413, Ser 355, 517, Arg 402, 522, Glu 384, 403, 411, Asn 406, Val 518 by hydrophilic
interactions. The active site of ACE was constituted of a zinc ion and a HEXXH. . .E motif, in-
cluding His 383, Glu 384, His 387 on helix α 13 and Glu 411 on helix α 14. [34, 59] The
WTQRF were positioned to interact with the HEXXH. . .E motif. Furthermore, the interactions
between inhibitors and Zn2+ at the ACE active site also play a significant role in modulating ca-
talysis. [60] It is believed that the shorter distance between the Zn2+ and the carbonyl oxygen of
the peptide, the greater the degree of ACE inhibition. [34]

Conclusion
In this present work, a back propagation neural network model was built to predict the IC50 of
ACE of pentapeptides. The topological structure was 10–7–1 and the transfer function was
tan-sigmoid transfer function & tan-sigmoid transfer function. We also built a database of po-
tential pentapeptides derived from bovine hemoglobin by simulated enzyme digestion and
found that WTQRF has the highest predictive value with experimental IC50 23.93 μM. The mo-
lecular docking result indicated that Tyr 360 and Arg 522 gave a significantly contribution to
the stabilization between WTQRF and ACE. The result also demonstrated that the short dis-
tance between the Zn2+ and the carbonyl oxygen of the peptide are desirable to the ACE-

Table 4. MSE and correlation coefficients of final BPNN model.

MSE Pearson Kendall Spearman

0.0162 0.9176** 0.7536** 0.8887**

** Significant difference is p<0.01.

doi:10.1371/journal.pone.0119598.t004
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Fig 3. Predicted versus experimental plots for BPNNmodel.

doi:10.1371/journal.pone.0119598.g003

Fig 4. WTQRF binding with the active site of ACE, the conformation extracted from docking result.

doi:10.1371/journal.pone.0119598.g004
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inhibitory activity. The enzyme kinetics investigation as well as docking and molecular dynam-
ics simulation analysis will be our further study.

Supporting Information
S1 Table. The MSE of different structure of BPNNmodel.
(DOC)

S2 Table. The coefficient of determination (square of pearson correlation coefficient) of
different structure of BPNNmodels.
(DOC)
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