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Abstract

Serology data are an increasingly important tool in malaria surveillance, especially in low
transmission settings where the estimation of parasite-based indicators is often problematic.
Existing methods rely on the use of thresholds to identify seropositive individuals and estimate
transmission intensity, while making assumptions about the temporal dynamics of malaria
transmission that are rarely questioned. Here, we present a novel threshold-free approach
for the analysis of malaria serology data which avoids dichotomization of continuous antibody
measurements and allows us to model changes in the antibody distribution across age in a
more flexible way. The proposed unified mechanistic model combines the properties of revers-
ible catalytic and antibody acquisition models, and allows for temporally varying boosting and
seroconversion rates. Additionally, as an alternative to the unified mechanistic model, we also
propose an empirical approach to analysis where modelling of the age-dependency is
informed by the data rather than biological assumptions. Using serology data from
Western Kenya, we demonstrate both the usefulness and limitations of the novel modelling
framework.

Introduction

Despite the significant progress made in the control of malaria worldwide, this still remains a
significant public health threat in many countries, particularly in Sub-Saharan Africa [1]. Even
with the decline of malaria prevalence in endemic countries [2], there are still challenges that
require robust mechanisms for monitoring malaria transmission and evaluation of elimination
efforts [1].

Classical methods of estimating malaria risk rely on the detection of the Plasmodium para-
site in humans and mosquito populations. Plasmodium falciparum (Pf) is the most prevalent
malaria parasite in Africa, while Plasmodium vivax (Pv) dominates in the Americas and South
East Asia [1]. Parasite prevalence is determined by the proportion of infected individuals at the
time of data collection [3, 4], while the entomological inoculation rate (EIR) is the rate at
which individuals are bitten by infectious mosquitoes [5]. Both of these measures may vary
over time due to the joint effect of several environmental factors, and the precision with
which they can be estimated is often low, particularly in low transmission settings [3, 4].
Additionally, the collection of entomological data is labour-intensive, expensive and excludes
the recruitment of children, due to ethical considerations [6–8].

Several studies have shown the utility of serological markers as a viable alternative for esti-
mating transmission intensity. Because of the persistence of antibodies, serological markers (1)
provide information on cumulative exposure to the pathogen over time, (2) smooth out the
effect of seasonality in transmission, and (3) allow estimation of transmission intensity with
more feasible sample sizes even in low transmission settings [3, 8–10].

Antibody responses to blood-stage malaria parasites provide protection against clinical dis-
ease, however this response does not confer sterile immunity, therefore individuals remain sus-
ceptible to repeated infections [11, 12]. In malaria endemic settings, antibody levels generally
increase as individuals become older, are boosted by repeated infection and decay in the
absence of re-infection [4, 13]. Using existing knowledge on the dynamics of transmission,
malaria serology models aim to derive a measure of transmission which can be used to moni-
tor trends in endemic areas over time.

The most commonly used approach to estimate malaria transmission intensity is based on
the classification of individuals as seronegative and seropositive which is then used as the input
of a reversible catalytic model (RCM), to estimate the seroconversion rate, which quantifies the
rate at which individuals convert from seronegative to seropositive [4, 8, 9]. Assuming latent
seronegative and seropositive distributions in the sample, mixture models fitted to the anti-
body distribution are used in order to identify optimal thresholds for the classification of indi-
viduals into seropositives and seronegatives [4, 14]. The major drawback of this approach is
that it can generate biased estimates of transmission intensity as a result of the misclassifica-
tion, especially among inconclusive cases whose probabilities of belonging to either group are
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close to 50% [15, 16]. Bollaerts et al. [15] and Hens et al. [16] pro-
pose a ‘direct’ method of estimating seroprevalence from continu-
ous antibody measurement using an underlying mixture model,
which avoids the use of thresholds and thus the bias arising
from the misclassification of individuals. In those publications,
the direct method is applied to Salmonella and Varicella-Zoster
virus antibody data. This approach has not been applied to ana-
lyse malaria serology data and, in this paper, we propose a mod-
elling framework that is inspired by Hens et al. [16].

In addition to the seroconversion rate, boosting rates, i.e. the
rate at which antibody levels are acquired, can also be used as a
marker for transmission intensity [4, 17, 18]. Antibody acquisi-
tion models (AAMs) have been developed as an alternative
approach to RCMs, and do not involve the use of thresholds
but instead rely on the full antibody measurements in order to
estimate boosting rates. However, in the context of malaria ser-
ology, current formulations of the AAM assume that the anti-
body measurements follow a log-Gaussian distribution, clearly
an invalid assumption in the case of a bi-modal distribution
arising from the mixing of the seropositive and seronegative
populations [17].

RCMs and AAMs that have been applied to the analysis of
malaria serology data make strong assumptions on the temporal
dynamics of transmission, which are generally restricted to the
following patterns: constant transmission, a sharp stepwise drop
in transmission and a linear drop in transmission [4, 17–19].
The validity of these assumptions is often questionable, and
more flexible functional forms for the variation of transmission
over time have not been considered in the context of malaria
serology.

In this paper, we develop a unified mechanistic model for the
analysis of malaria serology data which combines the properties of
mixture models, RCMs and AAMs in order to reliably estimate
malaria transmission intensity. We also show that the additional
flexibility brought by this novel model allows a better description
of temporal dynamics of malaria transmission. In addition to this,
we present an alternative empirical approach to account for the
age-dependency of the antibody distributions and use this
approach to validate the unified mechanistic model.

The structure of the paper is as follows. Section ‘Existing mod-
els’ provides an overview of current models for malaria serology
analysis. Section ‘A unified mechanistic model for the analysis
of malaria serology data’ introduces a unified mechanistic
model and outlines an alternative empirical approach that can
be used to analyse malaria serology data. In section ‘Analysis of
malaria serology data from Western Kenya’, we apply this new
framework to cross-sectional antibody data from Western
Kenya, and section ‘Discussion’ is a discussion of the results.
Finally, section ‘Conclusion’ provides a summary and conclusion.

Existing models

Mixture models

In the context of malaria and other infectious diseases, mixture
models are developed under the assumption that the population
of interest is indeed a mixture of latent seropositive and seronega-
tive populations [4, 20]. More formally, let Yi denote the log-
transformed antibody measurement for the i-th individual. Let
S+ and S− be a shorthand notation for ‘seropositive’ and ‘sero-
negative’ classifications, respectively. Assuming independent and
identically distributed realisations for a sample of n individuals,

we write the density function of Yi as

f (yi) =
∏n
i=1

[(1− p)fS− (yi; mS− , s
2
S− )+ pfS+ (yi; mS+ , s

2
S+ )], (1)

where fS+ is a univariate log-Gaussian distribution with mean mS+

and variance s2
S+ for the S+ population, and analogously for S−;

finally, pis the probability of being S+.
Let Ci and C∗

i denote the random variables representing clas-
sification based on the mixture model and true classification of
the i-th individual, respectively. One approach is to define a sero-
positivity threshold, usually mS− + 3sS− , above which Ci is S

+, and
S− if below [4, 15, 16, 19, 21]. An alternative, more elaborate,
approach is to first calculate the probability of belonging to
group C∗

i , conditional on the antibody measurement Yi = yi, i.e.

P(C∗
i = S+|yi) = pfS+ (yi; uS+ )

(1− p)fS− (yi; uS− )+ pfS+ (yi; uS+ )

P(C∗
i = S−|yi) = 1− P(C∗

i = S+|Yi = yi).

(2)

Based on two probability thresholds, c− and c+, the classifica-
tion Ci is

Ci =
S− if P(C∗

i =S−|Yi = yi) ≤ c−

I if c− , P(C∗
i =S−|Yi = yi) , c+

S+ if P(C∗
i =S+|Yi = yi) ≥ c+

⎧⎨
⎩ , (3)

where I is an additional classification label introduced to denote
inconclusive cases. In serology analysis, a common approach is
to exclude these cases, depending on the type of disease, and
report the proportion of inconclusive cases [15, 16, 22].

In malaria serology, most studies favour the first threshold-based
approach that does not introduce the classification for inconclusive
cases [17–19, 23–25]. This is likely due to the nature of antibody
responses to malaria infections which result in a large proportion
of ‘inconclusive’ cases, as reported by Sepúlveda et al. [4].

However, both of these threshold-based approaches are prone
to misclassification, which can create bias in estimating epidemio-
logical parameters [4, 15, 16]. Furthermore, current applications
of mixture models in malaria serology analysis do not take into
account the age-dependence of antibody levels, and assume that
the mixing of S+ and S− is the same across all ages, which may
further exacerbate the issue of misclassification.

The two component mixture Gaussian models also do not
account for antibody boosting upon re-exposure to malaria para-
sites. Sepúlveda et al. [4] present an extension to the traditional
mixture model where more components are added in order to
account for this boosting effect. These components can be inter-
preted as varying degrees of malaria exposure; unexposed, once
exposed, twice exposed, etc. Assuming a known number of com-
ponents, say K, the sampling distribution is given by

f (yi) =
∏n
i=1

∑K
k=1

pkfk(yi; uk)

[ ]
. (4)

The number of components K is then treated as an additional
parameter to estimate using the profile likelihood. However, the
interpretation of the components of the model is problematic
due to ambiguity about classification rules, particularly when
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component means are close together. This approach also further
compounds the problem of inconclusive cases as they occur across
multiple components.

Reversible catalytic models

Following the dichotomisation of the continuous antibody mea-
surements through the application of a mixture model, the result-
ing S+ and S− outcomes are modelled using an RCM. A common
assumption of the RCM is that individuals are born S− and, after
becoming S+ upon exposure to malaria, can revert to S− in the
absence of exposure. This mechanistic approach is illustrated in
Figure 2a. Since antibody data are assumed to represent the
cumulative exposure of individuals during their lifespan, the age
of individual prior to the sample collection is used as a proxy
for historical time.

Let λ(a) denote the seroconversion rate for an individual at age
a and ω the seroreversion rate. According to the RCM, the tem-
poral dynamics that regulate the proportion of S+ individuals of
age a, hence p(a), are expressed by the following differential
equation

dp
da

= l(a)(1− p(a))− vp(a). (5)

In the above equation, λ(a) is a measure of the underlying
transmission intensity which is associated with the gold standard
indicator of transmission, the EIR [8], while ω is typically fixed
and assumed to be constant [4]. However, some authors
Bosomprah [19] and Akpogheneta et al. [26] suggest that ω
may be age-dependent. Sepúlveda et al. [4] argue that the malaria
serology data often carry little information in the estimation of ω, a
problem which will persist also in our novel modelling framework.
Hence, throughout this paper, we shall make the working assump-
tion of a constant ω. Note that the reciprocals of λ and ω estimates,
i.e. 1/λ and 1/ω, indicate the estimated number of years within
which seroconversion and seroreversion would occur, respectively.

Three transmission profiles have so far been proposed to
model the seroconversion rate λ(a). The simplest assumes a
constant transmission, hence λ(a) = λ for all a. In this case, the
differential equation in (5) gives the following solution

p(a) = l

l+ v
(1− e−(l+v)a). (6)

In the equation above, the proportion of S+ at older ages
reaches a maximum value of about λ/(λ + ω). In other words, in
a cohort of an initially malaria-naive population, p(a) will ultim-
ately reach a plateau at which the number of individuals serocon-
verting is the same as the number of individuals seroreverting
[4, 8]. However, these assumptions may be too stringent as they
ignore changes in transmission that may be due, for example, to
the introduction of control interventions [4, 20, 21].

To tackle this issue, one approach is to assume a transmission
profile with a sharp drop in transmission at the time of interven-
tion. In this model, two transmission rates are estimated: λ1 and
λ2 which represent the transmission rates before and after the
drop, respectively. An alternative approach to account for control
interventions is to assume a linear reduction in the seroconver-
sion rate λ(a), rather than a step-change as we have just illustrated.
However, in this case, the differential equation in (5) cannot be
solved analytically and numerical procedures must instead be
used.

In the study by Yman et al. [17], the two transmission profiles
that do not assume a constant λ(a) provide a better fit to the data.
However, assumption of a step-change or linear drop in λ(a) may
be inappropriate in the presence of major or prolonged malaria
outbreaks within the historical time-frame considered. In general,
the validity of any of these profiles is dependent on a variety of

Fig. 1. An illustration of the mixture model showing the bi-modal distributions for the S− (red) and S+ (blue) populations. The dotted line in (a) shows the sero-
positivity threshold mS− + 3sS− , above which individuals are classified as S+. The grey rectangle in (b) shows the inconclusive cases as defined by equation (3). In
this case, the probability thresholds c− and c+ have been set to 90%. Individuals below this grey region are classified as S−, while individuals above this region are
classified as S+. These data are taken from the Pf AMA1 analysis in section ‘Analysis of malaria serology data from Western Kenya’.

Fig. 2. (a) This figure is a representation of the reversible catalytic model (RCM)
where individuals transition between seronegative (S−) and seropositive (S+) states
through the SCR, λ(a)and the SRR, ω. (b) This figure is a representation of the super-
infection model (SIM) where individuals can have their antibodies ‘boosted’ through
increasing seropositive (S+…) states depending on the cumulative exposure to mal-
aria parasites.
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factors, including intervention history, climate and vector charac-
teristics. More recently, Varela et al. [27] propose a model where
the number of times that λ changed in the past, which is also esti-
mated from the data.

Where seropositivity is defined using the traditional two-
component Gaussian mixture model, there is still the issue of
how to account for antibody boosting due to repeated exposure
to malaria parasites. Bosomprah [19] suggests an extension to
the RCM, which involves creating more seropositive classes in a
superinfection model (SIM), similar to the multi-component mix-
ture model described by Sepúlveda et al. [4]. In this framework, a
seronegative individual can transition to the first seropositive
class, S+, upon first exposure, and subsequently to a higher sero-
positive class S++ upon re-exposure, and so on, as illustrated in
Figure 2b. The SIM also faces challenges with interpretation of
results where initial exposure and boosting between the multiple
seropositive classes may be conflated [3, 4].

Antibody acquisition models

An alternative modelling approach to estimate transmission
intensity is to use AAMs [17, 18]. Unlike RCMs, AMMs use
the full antibody measurements without requiring any dichotomi-
sation of the data. More specifically, AAMs are used to estimate
the boosting rate, i.e. the rate at which antibodies are acquired,
a marker for transmission intensity [4, 17, 18, 28]. Let μ(a) denote
the average antibody level in the general population of individuals
of age a. Assuming that following exposure to parasites, μ(a) is
boosted at a rate γ(a) and assuming a constant decay rate r, we
can express this mechanism through the following differential
equation

dm
da

= g(a)− rm(a). (7)

We can then use the above equation to infer changes in average
antibody levels as a function of age a. Finally, in order to fit (7)
using likelihood-based methods of inference, the antibody levels
of individuals at age a are assumed to follow a log-Gaussian dis-
tribution with mean μ(a) and variance σ2 [4, 17, 18].

Similar to the way the way seroconversion rates have been
modelled in RCMs (section ‘Reversible catalytic models’), previ-
ous studies have considered three transmission profiles for the
specification of γ(a). The simplest approach assumes that γ(a) =
γ is constant which leads to the following solution of (7)

m(a) = g

r
(1− e−ra). (8)

Similarly to RCMs, extensions of the AAM assumes either a
step-change or linear reduction in the boosting rate γ; see
Sepúlveda et al. [4], Yman et al. [17] and Weber et al. [18] for
more details.

Direct comparison of γ and λ from the AAM and RCM,
respectively, may not be possible as these estimate different sero-
logical indicators. However, Yman et al. [17] find that the AAMs
provide a more consistent fit to age-dependent antibody data
compared to RCM fit to age-dependent seroprevalence data.
Additionally, AAMs provide better precision in parameter estima-
tion and appear to be more robust to sample size reduction. It has
been found that AMMs often provide a good fit to serological data
in high to moderate transmission settings, where a large

proportion of individuals may be seropositive [17], or where an
antigen is highly immunogenic, leading to high seropositivity to
its antibody in the population [18].

A unified mechanistic model for the analysis of malaria
serology data

In this section, we develop a statistical modelling framework
which extends the standard mixture model outlined in section
‘Mixture models’ to incorporate both the RCM and AAM dynam-
ics and provides a more flexible approach to model time changes
in the seroconversion rate and boosting rate. In this unified
framework, the mixing probabilities – i.e. probability of belonging
to the S+ and S− populations – are modelled based on the RCM,
while the means of the two latent S+ and S− distributions are
informed by AAM dynamics.

To avoid the need of solving complex differential equations, we
re-express (5) with a discrete-time difference equation, i.e.

p(a)− p(a− 1) = l(a)(1− p(a))− vp(a)

or, equivalently,

p(a) = l(a)+ p(a− 1)
1+ l(a)+ v

.

Assuming that λ(0) = 0, and by iteratively applying the above
expression, we then obtain

p(a) =
∑a
h=1

l(h)∏a
k=h (1+ l(h− k)+ v)

. (9)

This allows us to specify any function for λ(a) without being
constrained to three options described in section ‘Reversible cata-
lytic models’. The above describes the proportion of S+ indivi-
duals who are aged a, p(a), as a weighted sum of transmission
intensities occurring in all the years since birth, λ(h), with weights
decreasing exponentially as we move further back in time from
the time of data collection.

We apply this same idea to the AAM, allowing for temporally
varying γ(a). More specifically, by using a discrete-time dynamic
we re-write (7) as

m(a)− m(a− 1) = g(a)− rm(a)

or, equivalently,

m(a) = 1
1+ r

(g(a)+ m(a− 1)).

By applying the above expression iteratively and assuming that
γ(0) = 0, we obtain that

m(a) =
∑a
h=1

g(h)
1

1+ r

( )a−h+1

. (10)

Similar to the interpretation of (9), in this expression, the
mean antibody level at age a, μ(a), is given by weighted sum of
all the boosting rates since birth, γ(h), and the weights given are
exponentially decaying. The assumptions of λ(0) = 0 and γ(0) =
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0 may not be strictly valid, however, this is a pragmatic choice
since the true boosting and seroconversion rates at birth are not
known but are expected to be close to zero on account of under-
developed immune responses to malaria in infants who rely on
maternal antibodies up to 9 months after birth [28–30].

To model the temporal changes in λ(h) and γ(h), in the
absence of a detailed information on intervention history, a prag-
matic approach is to use a log-linear regression in the years before
the time of data collection, which is expressed as

l(h) = exp {l0 + l1(a− h)}

g(h) = exp {g0 + g1(a− h)},
(11)

where h corresponds to a given age of an individual before the
time of collection and, thus, a− his the years before the time of
data collection. Finally, l0, l1, g0 and g1 are regression parameters
to estimate (Fig. S1 of the Supplementary material further illus-
trates the mechanism of this approach).

Assuming μ(ai) in (10) to be the mean level of antibodies in
the S− population, the density function of the resulting mixture
model using the ‘direct’ approach is

f (yi) =
∏n
i=1

[(1− p(ai))fS− (yi; m(ai), s
2
S− )

+p(ai)fS+ (yi; dm(ai), s
2
S+ )],

(12)

where δ > 1 is a multiplicative factor accounting for the higher
mean levels of antibodies in the S+ population. In the ‘direct’
approach, we utilise the underlying structure of the mixture dis-
tribution in order to estimate transmission parameters in the uni-
fied mechanistic model, thus avoiding dichotomisation of the
antibody measurements while accounting for age dependency of
the mean and probabilities of the mixture. The resulting structure
of the unified mechanistic model is summarised in Figure 3(a).

When analysing cross-sectional data, estimation of the model
in (12) can be problematic because of the large number of para-
meters to estimate. In the absence of a large amount of data, the
approach we follow in this paper is to consider two models, one
assuming a time-varying seroconversion rate and a constant
boosting rate, and a second where the reverse is assumed.
Comparison between the two models is then carried out based
on a goodness-of-fit index, such as the Akaike Information
Criterion (AIC).

Another simplification that we introduce in the maximisation
of the likelihood function is to fix the seroreversion rate ω. In
practice, we found that using numerical optimisation with a con-
tinuous ω was unstable as a result of a very flat likelihood surface.

Alternative empirical approaches to model age-dependency

When the interest is in describing the effect of age on the distri-
bution of antibody data, an empirical, rather than mechanistic
approach, may provide a better statistical solution. Additionally,
the empirical approach outlined in this section can be used to val-
idate the unified mechanistic model by assessing the discrepancy
between the age distributions generated by the two modelling
approaches.

To this end, we modify the framework introduced in the pre-
vious section by replacing the modelling of mixing probability
based on RCMs, and the mean level of antibodies based on

AAMs, with their empirical counterparts. More specifically, we
model the age-dependency in λ(a) and p(a) using a log-linear
and logit-linear regression as

log
p(a)

1− p(a)

{ }
= a1 + f1(a)

log {m(a)} = a2 + f2(a),

(13)

where f1(a) and f2(a) are functions that can be specified with the
aid of simple graphical tools, such as scatter plots. The resulting
structure of the empirical model is summarised in Figure 3b,
and we give examples of this in the application of section
‘Analysis of malaria serology data from Western Kenya’.

Analysis of malaria serology data from Western Kenya

We analyse data collected from a cross-sectional survey conducted
in Rachuonyo South District, in the western Kenyan highlands, in
2011. At the time, malaria transmission in Rachuonyo South was
described as generally low but highly heterogeneous, with an aver-
age of 14.8% malaria prevalence [31]. Transmission was charac-
terised as seasonal, following peaks in rainfall, typically between
March–June and October–November [31, 32].

Most malaria was attributed to Pf, with predominant vector
species being Anopheles gambiae s.s., A. arabiensis and A. funestus
[33, 34]. Malaria control interventions at the time included the
distribution of long-lasting insecticide-treated nets which had
been ongoing for many years, and indoor residual spraying
which started in 2009 [34]. Further details of the study design
and data collection can be found in Bousema et al. [31, 34]

In the study, finger prick blood was collected from all partici-
pants on filter paper and used to detect total immunoglobulin G
antibodies against the blood-stage Pf antigen apical membrane
antigen 1 (Pf AMA1) using the enzyme-linked immunosorbent
assay. Optical density (OD) values were obtained for this antigen
and are the outcome that we model in this analysis, which we
restrict to individuals between 1 and 16 years of age. Children
under 1 year old are excluded from the analysis due to the effect
of maternal antibodies, which are present at birth, and are
believed to wane between 6 and 9 months [9, 17, 35]. The
upper age range of 16 years is selected to exclude older individuals
whose antibody levels may exhibit a noisier distribution and thus
hinder the ability of the model to detect changes in transmission
in the recent past from the time of data collection [17].

The data-set consists of n = 9549 children. Figure 4 shows the
age and OD distributions of the individuals included in the
analyses.

We fit both unified mechanistic and empirical models to the Pf
AMA1 antibody data using the maximum likelihood method of
estimation. To obtain 95% confidence intervals (CIs) for the
model parameters estimates, we use parametric bootstrap. In
this procedure, parameter estimates from the respective models
are used to generate 1000 replicate datasets. For each of the data-
sets, we refit the model and re-extract the parameter estimates in
order to construct the bootstrap distribution, and therefore the
CIs. We also account for the truncated nature of the antibody dis-
tributions, due to the exclusion of individuals under age 1 and
over age 16, by using truncated log-Gaussian distributions. The
upper limit of the truncation is estimated for each age group as
the maximum observed value of OD.

Epidemiology and Infection 5



Based on the comparison between the AIC values (see Table 2
in the Supplementary material), preliminary analysis of the Pf
AMA1 data shows that a unified mechanistic model that
assumes a time-varying seroconversion rate λ(a) and a constant
boosting rate γ provides a better fit to the data than a model
where the reverse assumptions is made (i.e. constant λ and
time varying γ(a)). We let ω take three values, namely 0.01,
0.5 and 1, hence assuming that seroreversion events among
individuals would occur between 1 and 100 years [8, 9, 26].
In what follows, we present results for the best performing
value for ω, i.e. ω = 0.01.

To summarise, the unified mechanistic model parameters
to estimate via maximum likelihood are the following: l0and
l1 which are related to the seroconversion rate λ as described
by (9) and (11); boosting rate γ and decay rate r from (10);
and the mixture distribution parameters δ, s2

S− and s2
S+

from (12).
For the empirical model, μ(a) and the mixing probability are

modelled according to (13), and are informed by Figure 5. We

apply a linear spline with a knot at age 10, based on the empirical
trend for μ(a) observed in Figure 5a, to give

m(a) = exp {b1 + b2a+ b3(a− 10)I(a . 10)}, (14)

where I(a > 10) is an indicator function that takes value 1 if a > 10,
and 0 otherwise. Based on Figure 5b, we introduce the log-
transformed age as a logit-linear predictor for p(a), such that

p(a) = exp {b̃0 + b̃1 log a}

1+ exp {b̃0 + b̃1 log a}
. (15)

Thus, the model parameters to estimate for the empirical
model are: the regression coefficients β1, β2 and β3 in (14), and
b̃0 and b̃1 in (15); and, as in the unified model, δ, s2

S− and s2
S+ .

Results of this analysis indicate strong evidence of age-
dependency for the mixing probabilities of Pf AMA1. Figure 6
shows a bi-modal antibody distribution between ages 5 and 10,

Fig. 3. (a) This figure is a representation of the unified mechanistic model, showing how the reversible catalytic model and antibody acquisition model are incor-
porated into the mixture model for antibody data. (b) This figure is a representation of the empirical model used to model age-dependence in the mixing prob-
abilities and mean antibody level.
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which is less evident in younger and older individuals. Both the
empirical and mechanistic models are able to capture the increase
in the means of antibodies for the S+ and S− distributions, with
younger children having generally lower antibody levels than
older individuals.

By comparing the fitted density functions of mixture distribu-
tions between the mechanistic and empirical models for Pf AMA1
(Fig. 6), we notice that, while there is a general agreement between
the two models, there are visible discrepancies at certain ages.
These are more evident in very young individuals at age 1, and
in older children from around age 8 onward, where the empirical
model indicates a more noticeable peak for the S− distribution.

Finally, the estimates for δ and s2
s+ from the unified mechan-

istic and empirical models are comparable, with largely overlap-
ping 95% confidence intervals (Table 1).

With regards to λ(h), Figure 7 shows the estimated changes in
this parameter in the 16 years before data collection. The results
indicate a decrease in transmission in recent years.

Finally, based on the AIC, we note that the unified mechanistic
model is larger, suggesting that inferences from the mechanistic
model should be drawn with caution. This is because the mech-
anistic model may not provide an equally good description of
the antibody distribution across all ages as shown by the discrep-
ancies between the red and blue lines of Figure 6. However,
because the differences between the models are not substantial,
we believe that the unified mechanistic model does provide useful
insights into time variations of the seroconversion and boosting
rates, for which the empirical model does not provide any
information.

Discussion

We have introduced a unified mechanistic model which (1) avoids
the dichotomisation of continuous antibody data and (2) provides
a more flexible way for modelling antibody distributions while
allowing for the joint estimation of seroconversion and boosting
rates, namely λ(a) and γ(a), respectively.

The additional flexibility is obtained by modelling the age-
dependency of antibody distributions and the temporal variations
in λ(a) and γ(a) which are informed by RCM and AAM, respect-
ively. The disadvantages of dichotomising continuous data into
binary data, a common practice in the standard use of RCMs,
are well established. Dichotomisation can lead to the loss of infor-
mation which affects the ability to reliably recover regression rela-
tionships and the precision of parameter estimates [36–40]. The
proposed unified modelling framework in this paper avoids this
problem by making use of the full continuous antibody distribution.

As an alternative approach to the mechanistic framework, we
have proposed the use of an empirical approach where the age
dependency is informed by the data rather than by biological
assumptions. The choice between the unified and empirical mod-
els may depend on the research context. The mechanistic
approach allows for the estimation of λ(a) and γ(a) that may be
of intrinsic scientific interests, whilst the empirical model does
not provide any information on these. In our application, the
empirical model provided a better fit to and, hence a better
description of, the antibody distributions for different ages,
although the discrepancies between the fitted antibody distribu-
tions of the empirical and unified models were minimal.

Fig. 4. Descriptive plots of the age distribution (a) and the log OD distribution (b) of individuals aged 1–16, who are included in the Pf AMA1 antibody analysis.

Fig. 5. Exploratory analysis of the Rachuonyo South District Pf AMA1 antibody data. (a) This figure shows the geometric mean OD across age while (b) shows the
proportions of S+ individuals, p, as defined by (1), using the seropositivity threshold (i.e. mS− + 3sS− ). The circle sizes in (b) are proportional to the sample size in
each age group.
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One of the main issues of the proposed unified modelling
framework is that it requires a large amount of data in order to
reliably estimate the model parameters. In cases where the

separation between the seronegative and seropositive populations
is weak, this may result in very uncertain estimates. For example,
additional analysis of the antigen Pf MSP119 showed limited

Fig. 6. Age-dependent mixture distributions of Pf AMA1 antibodies for individuals 1–16 years of age in Rachuonyo South District. The red line indicates distributions
derived from the unified mechanistic model, while the blue dotted line indicates distributions derived from the alternative empirical model.

Table 1. Maximum likelihood estimates with associated 95% CIs (within brackets) for the unified mechanistic model (UFM) and empirical model (EM), fitted to the Pf
AMA1 antibody data

Equation Parameter UFM EM

Equations (9) and (11) l0 −2.696 (−2.627, −2.397)

l1 0.246 (0.202, 0.264)

Equation (10) γ −1.5 (−1.687, −1.291)

r 3.806 (3.122, 4.754)

Equation (12) δ 31.086 (27.637, 37.837) 28.348 (25.265, 34.197)

s2
s− 2.506 ⋅ 10−3 (2.169 ⋅ 10−3, 2.914 ⋅ 10−3) 1.895 ⋅ 10−3 (1.613 ⋅ 10−3, 2.288 ⋅ 10−3)

s2
s+ 23.977 (15.783, 46.364) 36.063 (23.244, 70.104)

Equation (14) β1 −3.141 (−3.191, −3.087)

β2 0.052 (0.046, 0.058)

β3 −0.021 (−0.032, −0.005)

Equation (15) b̃0 −3.031 (−3.194, −2.69)

b̃1 2.005 (1.915, 2.188)

AIC 29 791.910 29 711.460

The Akaike Information Criterion (AIC) is also reported.
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evidence of a bi-modal distribution or age dependency in the mix-
ture distribution, making the estimation of the proposed model
unfeasible. More generally, mixture models may be difficult to
estimate, especially in areas of high transmission where a great
majority of the population is seropositive [3, 17]. Additionally,
the seroreversion rate ω may also difficult to estimate in this
scenario and, for this reason, is often fixed [4]. This is one of
the main limitations in RCMs, which also applies to the unified
mechanistic model. Generally, to alleviate the problem of over-
parametrisation, further simplification of the model may be
considered by, for example, assuming a constant λ(a). In such
scenarios, however, we believe selection between models should
also be guided by scientific, a not purely statistical, judgement,
while also taking into consideration the levels uncertainty
inherent to each model.

More complex functional forms for modelling time-changes in
λ(a) and γ(a) than a log-linear regression, as used in this paper,
could also be considered. For example, polynomials and smooth-
ing splines would be a natural choice to increase the flexibility of
the model. Alternatively, contextual knowledge on events that
may have significantly impacted transmission in the past, such
as interventions and malaria outbreak, may also be used to inform
the modelling of λ(a) and γ(a). However, the increased flexibility
comes at the cost of an increased model complexity which may
make the model very difficult, if not impossible, to estimate.

Conclusion

We have proposed a unified modelling framework for the analysis
of malaria serology data which allows for the joint estimation of
seroconversion and boosting rates. Our framework makes the
best possible use of the data by avoiding the dichotomisation of
the continuous antibody measurements, a common practice in
the analysis of malaria serology data. More importantly, the uni-
fied framework allows to critically assess and evaluate assump-
tions on the heterogeneity of biological indicators of malaria
transmission using a principled likelihood-based framework.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821000753.

Data. R scripts for the implementation of the unified mechanistic and empir-
ical models are available on request from the authors.

Acknowledgements. We thank all those who contributed to the collection
of data included in this paper, specifically the survey participants in Kenya,
and the KEMRI/CDC research team. Thanks to Dr Lindsey Wu, Professor
Chris Drakeley and Dr Gillian Stresman for useful discussions on this

work.Irene Kyomuhangi is a Commonwealth Scholar, funded by the UK
government

Conflict of interest. None.

References

1. World Health Organization et al. (2019) World malaria report 2019.
2. The Malaria Atlas Project. Available at https://malariaatlas.org/ (Accessed

11 December 2019).
3. Pothin E et al. (2016) Estimating malaria transmission intensity from

Plasmodium falciparum serological data using antibody density models.
Malaria Journal 15, 79.

4. Sepúlveda N et al. (2015) Current mathematical models for analyzing
anti-malarial antibody data with an eye to malaria elimination and eradi-
cation. Journal of Immunology Research, 2015, Article ID 738030. https://
doi.org/10.1155/2015/738030.

5. Kilama M et al. (2014) Estimating the annual entomological inoculation rate
for Plasmodium falciparum transmitted by Anopheles gambiae sl using three
sampling methods in three sites in Uganda. Malaria Journal 13, 111.

6. Smith T et al. (2004) Relationships between the outcome of Plasmodium
falciparum infection and the intensity of transmission in Africa. The
American Journal of Tropical Medicine and Hygiene 71, 80–86.

7. Tusting LS et al. (2014) Measuring changes in Plasmodium falciparum
transmission: precision, accuracy and costs of metrics. Advances in
Parasitology 84, 151–208.

8. Corran P et al. (2007) Serology: a robust indicator of malaria transmission
intensity? Trends in Parasitology 23, 575–582.

9. Drakeley CJ et al. (2005) Estimating medium-and long-term trends in
malaria transmission by using serological markers of malaria exposure.
Proceedings of the National Academy of Sciences 102, 5108–5113.

10. Bousema T et al. (2010) Serologic markers for detecting malaria in areas
of low endemicity, Somalia, 2008. Emerging Infectious Diseases 16, 392.

11. Long CA et al. (2017) Immune responses in malaria. Cold Spring Harbor
Perspectives in Medicine 7, a025577.

12. Cockburn IA et al. (2018) Malaria prevention: from immunological con-
cepts to effective vaccines and protective antibodies. Nature Immunology
19, 1199–1211.

13. Akpogheneta OJ et al. (2010) Boosting antibody responses to
Plasmodium falciparum merozoite antigens in children with highly sea-
sonal exposure to infection. Parasite Immunology 32, 296–304.

14. Kwiatkowski DP (2005) How malaria has affected the human genome
and what human genetics can teach us about malaria. The American
Journal of Human Genetics 77, 171–192.

15. Bollaerts K et al. (2012) Estimating the population prevalence and force of
infection directly from antibody titres. Statistical Modelling 12, 441–462.

16. Hens N et al. (2012) Modeling Infectious Disease Parameters Based on
Serological and Social Contact Data: A Modern Statistical Perspective,
vol. 63. Springer Science & Business Media 3, pp. 79–85.

17. Yman V et al. (2016) Antibody acquisition models: a new tool for serological
surveillance of malaria transmission intensity. Scientific Reports 6, 19472.

18. Weber GE et al. (2017) Sero-catalytic and antibody acquisition models to
estimate differing malaria transmission intensities in Western Kenya.
Scientific Reports 7, 16821.

19. Bosomprah S (2014) A mathematical model of seropositivity to malaria
antigen, allowing seropositivity to be prolonged by exposure. Malaria
Journal 13, 12.

20. Cook J et al. (2010) Using serological measures to monitor changes in
malaria transmission in Vanuatu. Malaria Journal 9, 169.

21. Cook J et al. (2011) Serological markers suggest heterogeneity of effective-
ness of malaria control interventions on Bioko Island, equatorial Guinea.
PLoS ONE 6, e25137.

22. Del Fava E et al. (2016) Estimating age-specific immunity and force of
infection of varicella zoster virus in Norway using mixture models. PLoS
ONE 11(9), pe0163636.

23. von Fricken ME et al. (2014) Age-specific malaria seroprevalence rates: a
cross-sectional analysis of malaria transmission in the Ouest and Sud-Est
departments of Haiti. Malaria Journal 13, 361.

Fig. 7. Changes in λ over historical time as derived from the unified mechanistic
model fitted to Pf AMA1 antibody data. The blue lines indicate 95% CIs. ‘Years
ago’ corresponds to (a− h) as described in (11).

Epidemiology and Infection 9

https://doi.org/10.1017/S0950268821000753
https://doi.org/10.1017/S0950268821000753
https://malariaatlas.org/
https://malariaatlas.org/


24. Arnold BF et al. (2017) Measuring changes in transmission of neglected
tropical diseases, malaria, and enteric pathogens from quantitative anti-
body levels. PLoS Neglected Tropical Diseases 11, e0005616.

25. Ashton RA et al. (2015) Geostatistical modeling of malaria endemicity
using serological indicators of exposure collected through school surveys.
The American Journal of Tropical Medicine and Hygiene 93, 168–177.

26. Akpogheneta OJ et al. (2008) Duration of naturally acquired antibody
responses to blood-stage Plasmodium falciparum is age dependent and
antigen specific. Infection and Immunity 76, 1748–1755.

27. Varela M-L et al. (2020) Practical example of multiple antibody screening
for evaluation of malaria control strategies. Malaria Journal 19, 1–12.

28. White MT et al. (2014) Dynamics of the antibody response to
Plasmodium falciparum infection in African children. The Journal of
Infectious Diseases 210, 1115–1122.

29. Moormann AM (2009) How might infant and paediatric immune
responses influence malaria vaccine efficacy? Parasite Immunology 31,
547–559.

30. Doolan DL et al. (2009) Acquired immunity to malaria. Clinical
Microbiology Reviews 22, 13–36.

31. Bousema T et al. (2013) The impact of hotspot-targeted interventions on
malaria transmission: study protocol for a cluster-randomized controlled
trial. Trials 14, 1–12.

32. Stresman GH et al. (2017) Impact of metric and sample size on determin-
ing malaria hotspot boundaries. Scientific Reports 7, 45849.

33. Stuckey EM et al. (2012) Simulation of malaria epidemiology and control
in the highlands of western Kenya. Malaria Journal 11, 357.

34. Bousema T et al. (2016) The impact of hotspot-targeted interventions on
malaria transmission in Rachuonyo South District in the Western Kenyan
Highlands: a cluster-randomized controlled trial. PLoS Medicine 13,
e1001993.

35. Dobbs KR et al. (2016) Plasmodium malaria and antimalarial antibodies
in the first year of life. Parasitology 143, 129–138.

36. Fedorov V et al. (2009) Consequences of dichotomization.
Pharmaceutical Statistics: The Journal of Applied Statistics in the
Pharmaceutical Industry 8, 50–61.

37. Altman DG et al. (2006) The cost of dichotomising continuous variables.
BMJ 332, 1080.

38. Royston P et al. (2006) Dichotomizing continuous predictors in multiple
regression: a bad idea. Statistics in Medicine 25, 127–141.

39. Bennette C et al. (2012) Against quantiles: categorization of continuous
variables in epidemiologic research, and its discontents. BMC Medical
Research Methodology 12, 21.

40. Kyomuhangi I et al. (2020) Understanding the effects of dichotomization of
continuous outcomes on geostatistical inference. Spatial Statistics, 100424.

10 Irene Kyomuhangi and Emanuele Giorgi


	A unified and flexible modelling framework for the analysis of malaria serology data
	Introduction
	Existing models
	Mixture models
	Reversible catalytic models
	Antibody acquisition models

	A unified mechanistic model for the analysis of malaria serology data
	Alternative empirical approaches to model age-dependency

	Analysis of malaria serology data from Western Kenya
	Discussion
	Conclusion
	Acknowledgements
	References


