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Abstract: A compact dual-frequency (38/60 GHz) microstrip patch antenna with novel design is
proposed for 5G mobile handsets to combine complicated radiation mechanisms for dual-band
operation. The proposed antenna is composed of two electromagnetically coupled patches. The first
patch is directly fed by a microstrip line and is mainly responsible for radiation in the lower band
(38 GHz). The second patch is fed through both capacitive and inductive coupling to the first patch
and is mainly responsible for radiation in the upper frequency band (60 GHz). Numerical and
experimental results show good performance regarding return loss, bandwidth, radiation patterns,
radiation efficiency, and gain. The impedance matching bandwidths achieved in the 38 GHz and
60 GHz bands are about 2 GHz and 3.2 GHz, respectively. The minimum value of the return loss is
−42 dB for the 38 GHz band and−47 for the 60 GHz band. Radiation patterns are omnidirectional with
a balloon-like shape for both bands, which makes the proposed single antenna an excellent candidate
for a multiple-input multiple-output (MIMO) system constructed from a number of properly allocated
elements for 5G mobile communications with excellent diversity schemes. Numerical comparisons
show that the proposed antenna is superior to other published designs.

Keywords: MIMO; 5G mobile handsets; dual-band antenna; microstrip patch antenna;
millimeter-wave

1. Introduction

Fifth Generation (5G) technology has been a matter of controversy due to the enormous increase of
users connected with their smartphones to the network relative to the scarcity of the available current
bandwidth of the Fourth Generation (4G) technology [1]. This has led to the severe need for larger
capacity and faster data rates [2–6], which are currently 100 times faster, and are expected to be 1000
times faster by 2030 [7]. Wireless channel capacity can be increased without the necessity for additional
spectra or power in environments rich in scattering when introducing 5G mobile communication
techniques [8–10]. This can be applied by increasing the number of antennas at the transmitter and/or
the receiver of the wireless link [11–19]. As a consequence of requiring multiple antennas in a compact
system like a mobile handset, the single antenna should be compact and operate at different required
bands as required [20,21]. The present paper offers a solution for such low profile antennas operating
at 38 and 60 GHz frequency bands.

The unused millimeter-wave electromagnetic spectrum (30–300 GHz) has attracted attention due
to its multi-gigabit/s transmission rate exploiting widely available bandwidth to meet the demands
of 5G applications which require high quality and low latency transmission [22–26]. The frequency
bands centered at 28, 38, 60, and 73 GHz have been allocated for 5G mobile communications by
the International Telecommunications Union (ITU) [27]. Bands of 59–64 GHz are allocated by the
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Federal Communications Commission (FCC) as an unlicensed band for short-range and wireless
communications at high speeds [28]. The frequency band around 60 GHz has particular importance
because of the wide 7–9 GHz frequency range of unlicensed spectra available. However, significant
attenuation is caused by oxygen molecules in the atmosphere to react with radio frequency (RF)
signals, reaching up to 10 dB/km. Due to this defect, the 60 GHz band is not a suitable band for
wireless communication applications and long-range radar. For this reason, the dual-band (38/60 GHz)
microstrip patch antenna proposed in the present work could be a good solution for forthcoming 5G
antenna systems that utilize the 60 GHz frequency band, and provides the 38 GHz frequency band
(a potential candidate for next generation communication) as an additional operational band due to its
low oxygen absorption rates relative to the 60 GHz band [29].

Recently, a significant amount of research work has provided numerous designs for mobile handset
antennas for 5G applications. In [29], a 28 GHz four-port MIMO antenna is proposed, where each
antenna has an end-fire gain of about 10 dBi by employing an array of metamaterial unit cells. The work
of [30] introduces a 60 GHz antenna that consists of H-shaped and E-shaped slots on the radiating
patch. A two-port 5G dual-band (28/38 GHz) MIMO antenna system is proposed in [31]. This antenna
is realized using two arrays, each consisting of three elements. In [32], a dual-band (38/54 GHz)
microstrip patch antenna is proposed. The work of [27] proposes a 38 GHz slotted patch antenna for 5G
wireless applications. A circularly polarized magneto-electric dipole antenna with high efficiency based
on printed ridge gap waveguide is proposed in [33] to operate in the frequency range of 29.5–37 GHz.
The work of [34] presents a compact antenna design with polarization and pattern diversity operating
in the frequency band (34–38 GHz) for MIMO-based 5G mobile communication systems.

The present work proposes a novel (38/60 GHz) dual-band microstrip patch antenna for 5G mobile
phones. The proposed patch can be used either as a single antenna or an element to construct compact
MIMO antenna systems. In addition, due to the very weak coupling between adjacent elements of the
proposed dual-band antenna, it can be used to construct high-gain compact arrays for 5G applications
requiring smart antennas with capabilities of beam steering and detection of direction of arrival.
The proposed antenna is composed of two patches: the first is inset-fed by a microstrip line, whereas
the second is fed using both capacitive and inductive coupling to the first patch. The dimensions of the
first patch are set so that the patch operates at the 38 GHz band, whereas the second patch is designed
to operate at the 60 GHz band. Combining these two bands in a single compact antenna will save
the power and space needed in a mobile handset. The radiation patterns produced by this antenna
are shown to be suitable for 5G mobile communications. It should be noted that the electromagnetic
simulations presented in the present work were performed using the commercially available CST
Studio Suite® software package.

The novelty of this work lies in the duality usage of the 38 and 60 GHz bands. This is unprecedented
in previous work.

The remaining part of the paper is organized as follows. Section 2 describes the evolutionary
design (stages) and an explanation of the principles of operation of the dual-band microstrip patch
antenna proposed for 5G mobile handsets. Section 3 displays and discusses the obtained numerical
results and the experimental measurements concerning the performance assessment of the proposed
patch. Some comparisons with the results of other published work are presented for comparative
assessment. Finally, Section 4 is devoted to the main conclusions of this work.

2. The Proposed Dual-Band Microstrip Patch Antenna

The proposed dual-band microstrip patch antenna is shown in Figure 1. The proposed antenna is
based on the design of two patches operating at different bands. The first patch is excited directly by a
microstrip line through an inset feed, whereas the second patch is fed indirectly through a capacitive
(edge) coupling with the first patch. The dimensions of the first patch are set so that the patch operates
at 38 GHz, whereas the dimensions of the second patch are designed to operate at 60 GHz.
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At 38 GHz the radiation pattern is produced by the first patch, which is omnidirectional in the
azimuth plane (xy) and has a balloon-like shape in the (elevation) E- and H-planes. The second patch
does not contribute to the radiation at 38 GHz due to its small dimensions.

At 60 GHz, the radiation pattern is obtained by the second patch. On the other hand, the first
patch contributes to the radiation through a higher-order mode, which results in a radiation pattern
with undesirable nulls and side lobes. The cuts made in the first patch at the corners on the sides of the
microstrip feed line are made to diminish the surface currents and slot fields near these regions and,
thereby, prevent the formation of such higher-order modes in the cavity below the radiating patch.
Thus, the radiation pattern at 60 GHz has a shape that is suitable for a diversity scheme that enhances
the performance of a MIMO antenna system constructed from a number of properly allocated elements
of such an antenna.

The geometry of the proposed dual-band microstrip patch antenna is illustrated in Figure 1, where
LP1, WP1 are the length and width of the first patch, respectively. Similarly, LP2, WP2 are the length
and width of the second patch, respectively, added to the length of the inset feed (Lins), the gap width of
the inset feed (Wins), and the depth of the gap (GP) cut in the first patch. The dimensions are stated in
Table 1. The proposed microstrip patch antenna is printed on Rogers RO3003TM substrate of dielectric
constant εr = 3.0; dimensions of the substrate are 15 × 25 mm, height h = 0.25 mm, and loss tangent
δ = 0.001. The conducting surface is made of copper with conductivity σ = 5.6× 107 S/m.
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Table 1. Dimensions of the dual-patch microstrip patch antenna.

Dimension LP1 LP2 WP1 WP2 GP Lins Wins

Value (mm) 2.165 1.22 2.57 1.36 0.66 0.76 0.18

3. Simulations and Results

In this section, the performance of the dual-band patch antenna is investigated and the
corresponding numerical results are presented and discussed. The presented results are concerned
with investigating the return loss and radiation patterns of the single element antenna using the
commercially available CST Studio Suite® software package.

3.1. Development of the Dual-Band Microstrip Patch antenna Design

It may be interesting to demonstrate the stages of the proposed antenna design to combine multiple
radiation mechanisms to construct a single antenna operating in the dual-frequency band. Preliminarily,
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the simple idea of producing dual-band radiation can be implemented using two rectangular patches
as shown in Figure 2.

The mutual coupling between the two patches results in the frequency response of the return loss
|S11| presented in Figure 2. The resonance frequencies of the two patches are shifted (particularly the
resonance frequency of the upper band) due to the capacitive load caused by the other patch resulting in
resonance frequencies of about 37.76 GHz and 57.26 GHz for the first and second patches, respectively.
For further explanation of the radiation mechanisms at each frequency, the surface current distributions
are presented in Figure 3a,c at 37.76 GHz and 57.26 GHz, respectively. The corresponding radiation
patterns in the orthogonal elevation planes (φ = 0◦ and φ = 90◦) are presented in Figure 3b,d. These
radiation patterns have similar balloon-like shapes, which means that the radiation is omnidirectional
in the azimuth planes.

Both resonance frequencies of the first patch (at 37.76 GHz and 57.26 GHz) are first-order, as the
active region of the patch (the area over which the surface current has significant magnitude) at each of
these frequencies is concentrated in the close vicinity of the junction between the feed line and the
patch. Moreover, the area of the active region at each frequency is proportional to the square of the
effective wavelength (λ0/√εr e f f ). As a consequence, the radiation pattern at each of these frequencies
has the conventional balloon-like shape of a rectangular patch radiating in its first-order resonance.
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Figure 2. Simulated dependence of the return loss, |S11|, on the frequency over a wide band of the
frequency for the indicated dual-patch antenna (initial design).
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This design is modified by introducing an inductance to reduce the capacitive load caused by
edge coupling between the two patches. This is achieved by subtending the second patch between
two arms which are made as side extensions of the first patch as shown in Figure 4. The resulting
“C” shape of the first patch can have the effect of a semi-turn producing the required compensating
inductance which, in turn, reduces the reactive impedance caused by the capacitive edge coupling.
For more inductive effect, the conducting part indicated as the green colored surface shown in Figure 4
is adhered to the second patch to complete the semi-turn made by the first patch and its extended arms.
This modification results in the frequency response of the return loss, |S11|, depicted in Figure 4. It is
apparent that the resonance frequency at the center of the upper band is significantly corrected to be
59.56 GHz.
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Figure 4. Simulated dependence of the return loss, |S11|, on the frequency over a wide band of the
frequency for the indicated dual-patch antenna (intermediate stage for the final design).

At 38.24 GHz, the dual-band antenna presented in Figure 4 has the surface current distribution
presented in Figure 5a and the corresponding radiation patterns presented in Figure 5b. As shown in
Figure 5b, the radiation pattern at 38.24 GHz has an acceptable balloon-like shape. This is attributed to
the current distribution, which is still concentrated in a continuous region around the inset feed as
shown in Figure 5a. On the other hand, the surface current, the tangential magnetic field distribution
at 59.56 GHz, and the corresponding radiation patterns are presented in Figure 5c–e, respectively. Due
to increasing the coupling between the first and second patches, the current flowing on the second
patch is considerably increased in comparison to that presented in Figure 3c at the upper-frequency
band. However, the radiation pattern of this patch at 59.56 GHz, shown in Figure 5e, is not acceptable.
The difference between the maximum and minimum radiation in the elevation plane φ = 90◦ is greater
than 11 dB. In addition, the level of radiation in the plane φ = 90◦ is globally much greater than the
corresponding level in the plane φ = 0◦. This indicates that the radiation pattern is not omnidirectional
in the azimuth planes, which can be made clear by mentioning that the surface current, which is
distributed over a wide area, extends on both the first and second patches. Moreover, Figure 5d shows
that the tangential magnetic field is mainly concentrated in two regions (surrounded by blue dashed
oval shapes) where the tangential field has opposite horizontal directions leading to a considerable
reduction of the radiated field in the direction normal to the patch surface (θ = 0◦). Hence, the antenna
design presented in Figure 4 needs some modifications to increase the concentration of the surface
current on the second patch (responsible for radiation in the upper-frequency band).
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The dimensions of the dual-band patch antennas introduced in the initial and intermediate design
stages are shown in Figure 6.

Further improvements to the geometry of the dual-band microstrip patch antenna can be made
to achieve a radiation pattern shape at 60 GHz that is suitable for MIMO applications. As shown in
Figure 7, some cuts in the first patch can be made at the corners on the sides of the microstrip feed line
(shown in green color) to weaken the surface currents and slot fields near these regions. This prevents
the formation of higher-order modes in the cavity below the radiating patch. Additionally, undesired
grating lobes or nulls in the radiation pattern at 60 GHz resulting from possibly flowing currents on
the large surface area of the second patch can be canceled by making other cuts in this patch. A central
square gap and two corner-shaped slots can be cut as shown in Figure 7 to reduce the area of the active
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region of this patch by disturbing the paths of possible higher-order currents flowing near the corners.
The geometrical parameters of the dual-patch antenna according to the final design are presented in
Section 3.3 (after demonstrating a procedural parametric scan for selecting their optimal values).
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These modifications of the antenna geometry result in the frequency response of the return loss,
|S11|, presented in Figure 7. As shown in this figure, the antenna impedance is perfectly matched at
the two frequencies 38 and 60 GHz with return loss −42 dB and −47 dB, respectively. At 38 GHz, the
bandwidth is about 1.2 GHz (37.34–38.54 GHz ), while, at 60 GHz, the bandwidth is about 2.52 GHz
and can operate with matched impedance over the frequency range (58.01–60.53 GHz). The wide
bandwidth at 60 GHz can be explained due to the second patch (responsible for radiation at this
frequency) being excited through indirect feeding, where both capacitive and inductive coupling
mechanisms are implemented. This leads to stabilizing the patch impedance over a much wider
frequency band than that of the first patch, which is directly fed through a conventional microstrip line.
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Figure 7. Simulated dependence of the return loss, |S11|, on the frequency over a wide band of the
frequency for the proposed dual-patch antenna (final design).

The surface current distributions and the corresponding radiation patterns at 38 and 60 GHz are
presented in Figure 8. The radiation patterns for the proposed dual-band antenna at 38 GHz and
60 GHz are presented in Figure 8b,e, respectively, in the E-plane (φ = 0◦) and H-plane (φ = 90◦).
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It is obvious that the radiation patterns are almost balloon-like in the elevation planes and exhibit
omnidirectional radiation in the azimuth planes. It should be noted that the geometrical modifications
of the patch design shown in Figure 4 result in the tangential magnetic field being mainly concentrated
in the central region (surrounded by blue dashed oval shape), as shown in Figure 8d where the magnetic
field has unified vertical directions. When compared with the tangential magnetic field directions
presented in Figure 5d, it becomes clear that the geometrical modifications of the patch have led to an
increase in the radiated field in the direction normal to the patch surface (θ = 0◦), resulting in a more
appropriate shape of the radiation pattern as shown in Figure 8e. The maximum gain is about 6.5 dBi
at 38 GHz and 5.5 dBi at 60 GHz. Such radiation patterns (in both the lower- and upper-frequency
bands) have suitable shapes for efficient diversity schemes when utilized to construct a 5G mobile
handset MIMO system of properly allocated elements of such an antenna.
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3.2. Parametric Study for the Selection of the Optimal Parameters of the Dual-Band Patch Antenna

The proposed dual-band microstrip patch antenna should satisfy the required operational and
performance measures to be suitable as a 5G mobile handset antenna. The proposed patch antenna
operates at 38 and 60 GHz with satisfactory performance, including impedance matching (low return
loss), wide bandwidth, and proper shape of the radiation patterns in both the lower and upper bands of
operation. This may be achieved using parametric study, including of the most important dimensional
parameters of the patch antenna shown in Figure 1, such as the length and width of each radiating
patch (LP1, WP1 for the first patch, LP2, WP2 for the second patch), length of the inset feed (Lins), gap
width for the inset feed (Wins), and the depth of the gap (GP) cut in the first patch.

3.2.1. Effect of the Parasitic Patch Width

The center frequency of the upper band (around 60 GHz) of the proposed patch antenna is very
sensitive to any change in the second patch width, WP2. This is clear in Figure 9, which presents the
frequency response of the return loss, |S11|, for different values of WP2. The center frequency of the
upper band changes from fU = 58.6 GHz for WP2 = 1.0 mm to fU = 61.6 GHz for WP2 = 1.57 mm.
Moreover, the center frequency of the lower band fL has a weak dependence on WP2 such that it
changes from fL = 37.7 GHz for WP2 = 1.0 mm to fL = 38.5 GHz for WP2 = 1.57 mm. Thus, changing
this parameter enables the tuning of the center frequencies of the lower and upper bands. As shown
in Figure 9, setting WP2 = 1.36 mm results in satisfying the required frequencies fL = 38 GHz and
fU = 60 GHz at the same time.
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Figure 9. Changing the width of the second patch, WP2, leads to coarse tuning of the center frequency
of the upper band (60 GHz) and fine tuning of the center frequency of the lower band.

3.2.2. Effect of the Inset Length

One of the antenna design parameters that has a great effect on the input impedance of the patch
antenna is the feeding inset length, Lins; see Figure 1. The effect of changing Lins on the frequency
response of the return loss, |S11|, at the antenna input port relative to 50 Ω characteristic impedance of
the microwave source is presented in Figure 10. As shown in this figure, |S11| is strongly dependent on
Lins at 60 GHz for the indicated range of lengths. The optimum value of |S11| is −47 dB and is obtained
for Lins = 0.757 mm. On the other hand, the value of |S11| at 38 GHz seems to be independent of Lins
(through the indicated range of lengths).
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Figure 10. Effect of changing Lins on the frequency response of the return loss |S11| at the antenna input
port relative to 50 Ω characteristic impedance of the microwave source.

3.3. Optimal Design of the Dual-Band Microstrip Patch Antenna

According to the parametric study performed in Section 3.2, the dimensional design parameters
to achieve the best performance of the proposed dual-band patch antenna are indicated in Figure 11.
The following subsections are concerned with the theoretical and experimental investigations of the
return loss and the radiation patterns of the dual-band antenna with its optimal design parameters.
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Figure 11. Optimum dimensional parameters of the dual-band microstrip patch antenna for operation.

The azimuth radiation patterns for the proposed dual-band antenna at 38 GHz and 60 GHz are
presented in Figure 12a,b, respectively, in the planes θ = 30◦ and θ = 60◦. As shown in the figures,
the radiation patterns are almost omnidirectional in the azimuth planes.
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Figure 12. Simulated radiation patterns in the azimuth planes for the dual-band microstrip patch
antenna whose dimensions are shown in Figure 11.

The proposed dual-band antenna with the optimized design has the radiation and total efficiencies
listed in Table 2 at the center frequencies of the lower and upper bands of operation. The antenna
efficiency at the lower frequency is better than that at the higher frequency as the losses in the dielectric
substrate increase with the frequency.

Table 2. Radiation and total efficiencies of the dual-band microstrip patch antenna whose dimensions
are shown in Figure 11 (The listed values have been obtained through electromagnetic simulation using
CST®).

Frequency

38 GHz 60 GHz

Total Efficiency 89.53% 79.42%

Radiation Efficiency 89.57% 79.87%

3.4. Dual-Band Patch Antenna Fabrication and Experimental Assessment

This section is concerned with the presentation of the experimental measurements of the dual-band
microstrip patch antenna. To confirm the accuracy of the assessed performance for the proposed
antenna, the measurement results are compared to those obtained by electromagnetic simulation using
the CSTTM software package.

3.4.1. Fabrication of the Antenna Prototype

The prototype shown in Figure 13a was fabricated for the purpose of experimental assessment
of the performance of the proposed dual-band microstrip patch antenna. The circuit was fabricated
by photolithography. A photomask of the circuit layout was prepared and the top layer of the
copper-coated substrate was covered with photoresist by spin coating. The photomask was placed
next to the top layer of the substrate and exposed to an intense UV light to remove the photoresistant
layer from the unwanted copper areas. In etching, a liquid chemical agent removed the uppermost
layer of the substrate in the areas that were not protected by the photoresistant layer.

3.4.2. Measurements of the Return Loss

A vector network analyzer (VNA; Rhode and Schwartz model ZVA67) was used for measuring the
frequency response of the return loss S11 and the corresponding voltage standing wave ratio (VSWR).
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A 1.85 mm end-launch connector from Southwest Microwave Inc. was used for connecting the antenna
to the VNA as shown in Figure 13b.
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Figure 13. Measurement of the scattering parameter |S11| of the proposed dual-band patch antenna
using the vector network analyzer (VNA; Rhode and Schwartz model ZVA67).

The frequency response of the return loss |S11| as measured by the VNA is presented in Figure 14.
Comparisons between the simulation and measurement results for the frequency dependencies of
|S11| and the corresponding VSWR are presented in Figure 15, and show excellent agreement. The
impedance matching bandwidths (for |S11| < −10dB) obtained through measurements are shown to
be better than those obtained by simulation. At 38 GHz, the measured bandwidth is about 2.0 GHz,
whereas the simulated bandwidth is about 1.2 GHz. In addition, at 60 GHz, the measured bandwidth
is about 3.2 GHz, whereas the simulated is about 2.52 GHz. Moreover, the upper-frequency bandwidth
obtained by measurements is shown to be centered at about 60 GHz, whereas the upper band obtained
by simulation is shown to be shifted and centered at about 59.5 GHz.
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Figure 15. Measured frequency responses of the return loss, |S11|, and the corresponding VSWR of
the proposed dual-band microstrip patch antenna (relative to 50 Ω characteristic impedance of the
microwave source) compared with the simulation results.

3.4.3. Measurement of the Radiation Patterns and Maximum Gain

The experimental setup for measuring the radiation patterns and the maximum gain of the
proposed antenna is presented in Figure 16. The VNA operating in two-port measurement mode was
used for this purpose by measuring the transmission coefficient |S21| through the antenna under test
and the reference-gain linearly-polarized horn antennas, models LB-018400 (for 38 GHz band) and
LB-12-10-A (for 60 GHz band).
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Figure 16. Experimental setup for measuring the radiation pattern and gain of the dual-band antenna.

The measured radiation patterns in the elevation planes φ = 0◦ and φ = 90◦ corresponding to the
E-plane and H-plane, respectively, of the proposed patch antenna, are presented in Figures 17 and 18
at the frequencies 38 GHz and 60 GHz, respectively. It is shown that the measured and simulated
radiation patterns are close to each other and show good agreement. The measured maximum gain
values are 6.2 dBi and 4.9 dBi at 38 GHz and 60 GHz, respectively, which are close to the measured
values (6.5 dBi and 5.5 dBi at 38 GHz and 60 GHz, respectively).
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Figure 17. Measured radiation patterns of the proposed dual-band microstrip patch antenna at 38 GHz
compared with the simulation results.
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Figure 18. Measured radiation patterns of the proposed dual-band microstrip patch antenna at 60 GHz
compared with the simulation results.

3.5. Performance Comparison with Published Work

The performance of the proposed dual-band microstrip regarding the impedance matching and
the corresponding bandwidth can be compared to other published results for comparative assessment.
For example, the frequency response of the measured |S11| for the antenna proposed in the present work
is compared to that obtained in [23] and [32] as shown in Figure 19a. The corresponding frequency
responses of the VSWR are compared to each other as shown in Figure 19b. The minimum value of the
return loss achieved in the present work is about −35 dB (VSWR ≈ 1) whereas that achieved in [32] is
about −17 dB (VSWR ≈ 1.3) and that achieved in [23] is about −21 dB (VSWR ≈ 1.2). Moreover, for the
antenna proposed in the present work, the bandwidth (BW) of operation for |S11| < −10 dB is about
2 GHz and is centered exactly at 38 GHz, whereas that obtained in [32] is centered at about 38.3 GHz
(a shift of about 300 MHz) with nearly the same bandwidth. The impedance matching bandwidth
obtained in [23] is about 1 GHz and centered at 37 GHz (with about 1 GHz frequency shift from the
desired frequency).
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Figure 19. Comparisons between the frequency responses of the |S11| and VSWR obtained in the present
work for the proposed dual-band antenna and those obtained in [23] and [32] at 38 GHz.

In the upper band centered at 60 GHz, the frequency response of |S11| measured for the
antenna proposed in the present work is compared to those presented in [35] and [36] as shown
in Figure 20. The minimum value of the return loss achieved in the present work is about −21 dB,
whereas those achieved in [35] and [36] are about −19 dB and −20 dB, respectively. The impedance
matching bandwidth achieved in the present work is about 3.3 GHz (for VSWR≤ 2.0 or, equivalently,
|S11| ≤ −10 dB), whereas those achieved in [35] and [36] are 0.9 GHz and 0.35 GHz, respectively.
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Figure 20. Comparisons between the frequency response of the |S11| obtained in the present work for
the proposed dual-band antenna and those obtained in [35] and [36] at 60 GHz.

A comparative summary with the antenna performance achieved in [23,32,35,36] is listed in
Table 3. It is shown that the dual band microstrip patch antenna proposed in the present work has
superior performance regarding the impedance matching bandwidth in all the cases, and particularly
for stringent matching conditions (VSWR ≤ 1.5 and VSWR ≤ 1.25).
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Table 3. Comparison between the bandwidth achieved in the present work to that achieved in other
published work.

Performance Measure Performance at 38 GHz Performance at 60 GHz

Present Work Work of [32] Work of [23] Present Work Work of [35] Work of [36]

Center Frequency 38.0 38.3 37.0 60.5 60.3 60.1

BW
VSWR ≤ 1.25 2.0 2.0 1.0 3.3 0.9 0.35

VSWR ≤ 2.0 1.0 0.75 0.45 1.85 0.5 0.2

VSWR ≤ 1.5 0.5 0 0.07 0.8 0 0.02

Patch area (mm2) 2.0× 3.0 1.0× 1.0 3.55× 3.55 2.0× 3.0 1.4× 1.4 Array only

Patch Gain (dBi) 6.5 7.4 7.7 5.5 6.2 NA

4. Conclusions

The present work introduces a microstrip patch antenna with a novel design to operate in the
38/60 GHz dual-band. The single antenna is constructed as first and second rectangular patches with
some geometrical modifications to achieve perfect impedance matching and balloon-like radiation
patterns over the lower- and upper-frequency bands of operation. A microstrip line is the main feeder
for the first patch, which is responsible for the lower band (38 GHz) radiation, and capacitive and
inductive feeding are responsible for the upper band (60GHz) radiation. The performance of the
single-element antenna is assessed through numerical and experimental investigations. It is shown that
the simulation results agree with the experimental measurements and both show the good performance
of the proposed dual-band patch antenna. The bandwidths achieved around 38 GHz and 60 GHz are
about 2.0 GHz and 3.2 GHz, respectively. The return loss has minimum values of −42 dB and −47 dB
at 38 GHz and 60 GHz, respectively. The maximum gain is 6.5 dBi and 5.5 dBi at 38 GHz and 60 GHz,
respectively. The experimentally assessed frequency band of the proposed antenna is shown to be
better than that obtained by other published work for operation at 38 GHz.
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