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Objectives: This study was conducted in order to develop and validate an ultrasonic-
based radiomics nomogram for diagnosing solid renal masses.

Methods: Six hundred renal solid masses with benign renal lesions (n = 204) and
malignant renal tumors (n = 396) were divided into a training set (n = 480) and a validation
set (n = 120). Radiomics features were extracted from ultrasound (US) images
preoperatively and then a radiomics score (RadScore) was calculated. By integrating
the RadScore and independent clinical factors, a radiomics nomogram was constructed.
The diagnostic performance of junior physician, senior physician, RadScore, and
radiomics nomogram in identifying benign from malignant solid renal masses was
evaluated based on the area under the receiver operating characteristic curve (ROC) in
both the training and validation sets. The clinical usefulness of the nomogram was
assessed using decision curve analysis (DCA).

Results: The radiomics signature model showed satisfactory discrimination in the training
set [area under the ROC (AUC), 0.887; 95% confidence interval (CI), 0.860–0.915] and the
validation set (AUC, 0.874; 95% CI, 0.816–0.932). The radiomics nomogram also
demonstrated good calibration and discrimination in the training set (AUC, 0.911; 95%
CI, 0.886–0.936) and the validation set (AUC, 0.861; 95% CI, 0.802–0.921). In addition,
the radiomics nomogram model showed higher accuracy in discriminating benign and
malignant renal masses compared with the evaluations by junior physician (DeLong p =
0.004), and the model also showed significantly higher specificity than the senior and
junior physicians (0.93 vs. 0.57 vs. 0.46).

Conclusions: The ultrasonic-based radiomics nomogram shows favorable predictive
efficacy in differentiating solid renal masses.
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INTRODUCTION

Although the majority of renal masses are malignant, about 16%
to 19% of renal tumors are reported to be benign (1–3).
Clinically, renal cancers need to be surgically resected, whereas
for benign renal neoplasms, especially for small renal masses,
conservative management is performed. Unlike other cancers,
there are currently no serum biomarkers available to confirm the
identity of renal masses. Accurate preoperative identification of
benign from malignant solid renal masses is challenging for a
radiologist (4).

Percutaneous renal biopsy is an important pretreatment
diagnostic procedure in the evaluation of indeterminate renal
masses. However, the diagnostic accuracy of percutaneous
biopsy ranges from 70% to 90%, and its role in clinical
management remains unclear because of the negative
predictive value and the possible complications, including
bleeding, perirenal hematoma, hematuria, arteriovenous fistula
formation, and pneumothorax (5–7). Thus, it is of vital
importance to search for an accurate as well as safe and non-
invasive diagnostic tool to distinguish benign from malignant
solid renal masses in the preoperative clinical decision-
making process.

Conventional B-mode ultrasound (US) is an easy, safe, and
non-invasive procedure. It is currently the first-line imaging
modality for detecting renal lesions and discriminating benign
from malignant renal tumors. However, the visual interpretation
of US images is generally based on the sonographers’ experience.
Radiomics features can be computed from grayscale images to
reflect the texture and morphology of tumors (8–11). Based on
US images, radiomics has been applied to evaluate various
tumors, including hepatocellular carcinomas, breast cancer,
and thyroid carcinomas (12–15). However, to the best of our
knowledge, no published study has applied ultrasonic-based
radiomics to renal tumors. The purpose of this study was to
develop and validate an ultrasonic-based radiomics nomogram
for the differentiation between benign and malignant solid
renal masses.
MATERIAL AND METHODS

Study Cohort and Imaging Dataset
We queried our institution’s electronic medical records to derive
all surgically confirmed cases of renal masses between January
2013 and January 2018. A total of 1,998 confirmed renal masses
were screened in this query: 1,777 malignant renal lesions and
221 benign renal lesions. In order to balance the proportion of
malignant and benign renal masses, we randomly selected 442
malignant renal masses according to the hospitalization
numbers. The inclusion criteria were as follows: 1) patients
who had undergone US examination before treatment and the
image quality of US was satisfactory for analysis and 2) patients
with complete clinicopathological data. The exclusion criteria
were as follows: 1) the pathological result of the surgical
specimen was unclear, 2) the patient had undergone
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preoperative therapy (ablation therapy), and 3) the renal mass
was not completely visible in the image. Finally, 597 patients with
600 renal masses were included in this study (Figure 1A). A
summary of the patient characteristics is presented in
Supplementary Material 1. The enrolled renal masses in this
study were divided randomly into a training set (n = 480) and a
validation set (n = 120). The distribution of tumors is detailed in
Table 1. This study was approved by the Ethics Committee of
Tianjin Medical University Cancer Institute and Hospital and
informed consent was waived.

US Image Acquisition
US examination was performed using the Philips iU22 system
(Philips Ultrasound, Bothell, WA, USA) and Aplio 500 (Toshiba
Medical Systems, Tokyo, Japan). The C5-1 probe was used for
conventional ultrasound with a central frequency of 3–5 MHz.
The gray image of the renal masses was available.

Workflow
The workflow of the radiomics analysis included tumor
segmentation, feature extraction, feature selection, and
radiomics signature construction and evaluation (Figure 1B).

Image Segmentation, Preprocessing, and
Radiomics Feature Extraction
All US images were retrieved from the picture archiving and
communication systems (PACS) for image segmentation and
analysis in our institution. Lesions were segmented using ImageJ
(https://imagej.nih.gov/ij/). A sonographer with more than 8
years of experience in US imaging of kidney neoplasms
semiautomatically corrected the boundary of the lesion in each
image of each individual patient. When the boundary is not
determined, another experienced sonographer (with 20 years of
experience in abdominal diagnosis) was consulted for a
final opinion.

From each of the segmented objects, we applied existing
automated computer programs to extract a set of 855 radiomic
features for each patient with renal mass. These features were
divided into four groups: 1) morphological features, such as area,
largest diameter, length to width ratio, and roundness; 2)
grayscale statistic (GSS) features calculated from the histogram
of tumor voxel intensities, such as variance, skewness, and
kurtosis; 3) texture feature, including gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM), gray-
level size zone matrix (GLSZM), and neighborhood gray-tone
difference matrix (NGTDM); and 4) wavelet feature. Details of
the procedures for extraction of radiomic features are described
in Supplementary Material 2. Z-score normalization was
performed as preprocessing steps for data to guarantee the
repeatability of the results.

Development of the Radiomics
Signature Model
Dimension reduction of the features was conducted to
minimize overfitting and reduce the bias from radiomics
features in the modeling. Firstly, the Mann–Whitney U was
March 2022 | Volume 12 | Article 847805
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A

B

FIGURE 1 | (A) Flowchart of the inclusion, exclusion, and grouping criteria for patients with renal masses. One patient had three clear cell RCCs. One patient had
two clear cell RCCs. RCC, renal cell carcinoma. (B) Flowchart of the radiomics analysis of renal masses.
TABLE 1 | Clinical characteristics of patients in the training and validation sets.

Characteristics Training set (N = 480) Validation set (N = 120)

Benign Malignant Univariate analysis Multivariate analysis Benign Malignant Univariate analysis

(n = 161) (n = 319) p OR (95% CI) p (n = 43) (n = 77) p

Sex <0.001 <0.001 <0.001
Male 31 (19.3) 206 (64.6) 0.848 (0.804–0.894) 10 (23.3) 59 (76.6)
Female 130 (80.8) 113 (35.4) 33 (76.7) 18 (23.4)

Age <0.001 0.0544 0.603
<53 102 (63.4) 136 (42.6) 20 (46.5) 32 (41.6)
≥53 59 (36.7) 183 (57.4) 23 (53.5) 45 (58.4)

Symptoms 0.577 0.667
No 136 (84.5) 263 (82.5) 36 (83.7) 62 (80.5)
Yes 25 (15.5) 56 (17.6) 7 (16.3) 15 (19.5)

Location 0.289 0.746
Right 75 (46.6) 165 (51.7) 21 (48.8) 40 (52.0)
Left 86 (53.4) 154 (48.3) 22 (51.2) 37 (48.1)

Size (cm) 0.871 0.363
≤4 90 (55.9) 171 (53.6) 23 (53.5) 36 (46.8)
>4, ≤7 53 (33.9) 112 (35.1) 17 (39.5) 32 (41.6)
>7 18 (11.2) 36 (11.3) 3 (7.0) 9 (11.7)

RadScore 0.330 ± 0.201 0.834 ± 0.174 <0.001 3.158 (2.89–3.45) <0.001 0.347 ± 0.198 0.824 ± 0.204 <0.001
Frontiers in Oncolo
gy | www.frontiersin.org 3
 Marc
h 2022 | Volume
RadScore, radiomics score; OR, odds ratio; CI, confidence interval.
12 | Article 847805

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Ultrasonic-Based Radiomics for Renal Masses
used to select features that were highly related to the
biomarkers. A significance level of 0.05 (p < 0.05) was set as
the threshold. Secondly, an interfeature coefficient (R) between
all possible pairs of features was subsequently used to eliminate
high-dimensional feature redundancy. R >0.8 was the cutoff for
strong relationships, in which one of two features with a lower
p-value was excluded. Next, the least absolute shrinkage
selection operator (LASSO) method was used to select the
most important features with non-zero coefficients, and a
RadScore was calculated for each patient. The process of
radiomics feature extraction and analysis was performed in
MATLAB 2018a (The MathWorks Inc., Natick, MA, USA) and R
software (version 6.1, R Foundation for Statistical Computing,
Vienna, Austria), respectively.

Development of a Radiomics
Nomogram Model and the
Performance of Different Models
The significant variables of the clinical factors and RadScore were
integrated to build the radiomics nomogram model. We
performed a calibration curve to graphically investigate the
performance characterist ics of the nomogram. The
performance of each model for differentiating benign from
malignant solid renal masses was evaluated based on the area
under the ROC, accuracy, specificity, and sensitivity in both the
training and validation sets. The difference in the AUC between
the training and validation datasets was tested by the p-value of
Delong’s test. The clinical usefulness of the nomogram was
assessed using DCA which included two decision curves based
on the radiomics signature and radiomics nomogram and could
be demonstrated by calculating the net benefits for a range of
threshold probabilities.

Image Analysis
The US findings were independently analyzed by two
sonographers (XW and CL, with 20 and 5 years of experience,
respectively), including size, location, shape, margin,
and echogenicity.
Frontiers in Oncology | www.frontiersin.org 4
Statistical Methods
The continuous variables were described as the mean ± standard
deviation (x̅ ± s). The categorical data were presented as
percentage or ratio. The logistic regression method was used
for univariate and multivariate analysis in the training set.
Statistical significance was set at p <0.05.
RESULTS

Differences in the Clinical Features
Between Benign and Malignant Patients
Detailed information on the clinical characteristics is shown in
Table 1. There was a significant difference in sex (p < 0.001) and
age (p < 0.001) between benign and malignant patients in the
training set. Multiple logistic regression analysis showed that sex
(p < 0.001, OR: 0.848; 95% CI: 0.804–0.894) remained as an
independent predictor.

Radiomics Feature Selection and
Radiomics Signature Model Building
Of the radiomics features, 855 features were reduced to 30
potential predictors on the basis of 480 renal masses in the
training set (Figure 2), and these features were presented in the
RadScore calculation formula (Supplementary Material 3). We
compared the RadScores from the training and validation sets,
respectively (Figure 3). The cutoff value was 0.633. There was a
significant difference in the distributions of the RadScore of the
benign and malignant groups in these two sets.

Development of a Radiomics
Nomogram Model
Table 1 shows the results of the univariate andmultivariate logistic
regression analyses in the training set. Sex and RadScore were
identified as independent factors for predicting the properties of
solid renal masses (p < 0.001). Thus, the radiomics nomogram was
developed using sex and radiomics score (Figure 4A). The
calibration plots of this radiomics nomogram showed good
A B

FIGURE 2 | Feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) Tuning parameter (lambda)
selection in the LASSO model used 10-fold cross-validation via minimum criteria. (B) The gray line in the figure is the partial likelihood estimate corresponding to the
optimal value of lambda. The optimal lambda value of 0.061 was chosen.
March 2022 | Volume 12 | Article 847805

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Ultrasonic-Based Radiomics for Renal Masses
calibration in the training and validation sets (Figures 4B, C). The
performance of the radiomics signature model and the radiomics
nomogram model for both the training and validation sets
is presented in Table 2. Although the AUC of the radiomics
signature model was slightly higher than that of the radiomics
nomogrammodel, the discriminating ability of the radiomics model
was comparable to that of the radiomics nomogram model
Frontiers in Oncology | www.frontiersin.org 5
(Figure 5, DeLong test: p = 0.221 for the training set, p = 0.760
for the validation set).

The DCAs based on the twomodels are presented in Figure 6.
For the differentiation of benign from malignant renal masses,
the nomogram model had a higher overall net benefit than the
radiomics signature model across the majority of the range of
reasonable threshold probabilities.
A B

FIGURE 3 | The boxplot of RadScore from the training set (A). The boxplot of RadScore from the validation set (B).
A

B C

FIGURE 4 | The radiomics nomogram and calibration curves for the radiomics nomogram. The radiomics nomogram, combining sex and RadScore, developed in
the training set (A). Calibration curves for the radiomics nomogram in the training (B) and validation (C) sets.
March 2022 | Volume 12 | Article 847805
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The Diagnostic Performance
of the Radiomics Signature,
Radiomics Nomogram, and Senior
and Junior Physicians
Table 2 and Figure 5 show the diagnostic performance of the
radiomics signature, radiomics nomogram, and senior and
junior physicians in the validation set. There was a significant
difference between the junior physician and the radiomics
nomogram (DeLong p = 0.004), but there was no significant
difference between the senior physician and the radiomics
nomogram (DeLong p = 0.089). However, the specificity of the
radiomics nomogram was significantly higher than that of the
senior and junior physicians (0.93 vs. 0.57 vs. 0.46).
DISCUSSION

Clinically, for the renal masses that are radiographically suspicious
for renal cell carcinoma (RCC) without a pathology diagnosis,
nephrectomy or nephron-sparing surgery is a standard
Frontiers in Oncology | www.frontiersin.org 6
management (16, 17). However, approximately 20%–30% of
surgically removed renal masses are reported to be benign (1, 4,
18–21), and this may lead to overtreatment of benign renal
tumors. Percutaneous needle biopsy is not used in all patients
because of the uncertain effect and safety. Thus, there is a great and
increasing need for accurate and non-invasive methods to
distinguish benign from malignant renal masses before surgery.
In this study, by combining US image radiomics and clinical
characteristics, we developed a nomogram model that
demonstrated good accuracy in differentiating benign from
malignant renal masses.

In clinical practice, many imaging methods are used to
distinguish between benign and malignant renal masses. US is
currently the first-line imaging modality for renal tumor
screening. Contrast-enhanced CT is the most commonly used
imaging equipment for the evaluation of a renal tumor that
requires further observation. With a superior soft-tissue contrast,
MRI is particularly helpful to distinguish solid from cystic
lesions. Contrast-enhanced US (CEUS) could be used to show
the real-time tumor vascularization. Compared with US, these
imaging procedures are more expensive, time-consuming, and
less safe due to the use of nephrotoxic iodine contrast agents and
TABLE 2 | Diagnostic performance of radiomics signature, radiomics nomogram, senior physician, and junior physician in the validation set.

Method AUC (95% CI) Accuracy (95% CI) Sensitivity Specificity PPV NPV

Training set Radiomics 0.887 (0.860–0.915) 0.873 (0.840, 0.901) 0.843 0.932 0.960 0.750
Nomogram 0.911 (0.886–0.936) 0.898 (0.867, 0.924) 0.872 0.950 0.972 0.789

Validation set Radiomics 0.874 (0.816–0.932) 0.858 (0.783, 0.915) 0.818 0.930 0.955 0.741
Nomogram 0.861 (0.802–0.921) 0.842 (0.764, 0.902) 0.792 0.932 0.953 0.714
Senior physician 0.786 (0.703–0.869) 0.875 (0.802, 0.928) 1.0 0.571 0.850 1.0
Junior physician 0.723 (0.638–0.807) 0.833 (0.754, 0.895) 0.988 0.457 0.815 0.941
M
arch 2022 | Volume
 12 | Article 8
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
FIGURE 5 | The ROC curves of the radiomics signature, radiomics nomogram,
senior physician, and junior physician in the validation set, respectively.
FIGURE 6 | Decision curve analysis for two models. The y-axis indicates the
net benefit; the x-axis indicates threshold probability. The red line and green
line represent net benefit of the radiomics signature and the radiomics
nomogram, respectively.
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ionizing radiation. Some reports have indicated the significance
of CT- or MRI-based radiomics model in discriminating benign
renal tumor from malignancies (22–29). However, there are no
US-based radiomic studies used to identify renal tumors to date.
Here, based on US images radiomics and combined with clinical
characters, we developed a nomogram model that demonstrated
good accuracy in differentiating benign from malignant
renal masses.

In the present study, among the 855 extracted radiomics
features, 30 features including texture and wavelet features were
selected as the significant features to build the radiomics
signature. The images in the benign group were more
homogeneous in texture than the ones in the RCC group,
Frontiers in Oncology | www.frontiersin.org 7
which was consistent with previous reports and the diagnostic
experience of the sonographer (22, 23).

Recently, radiomics showed excellent performance in
differentiating benign and malignant renal masses (22–29).
Hodgdon et al. developed a model incorporating CT texture
features from 100 patients to differentiate angiomyolipomas
(AMLs) from RCCs, which resulted in an AUC of 0.89 (22).
Said et al. assessed the diagnostic value of MRI-based radiomics
features using machine learning (ML) from 104 RCCs and
21 benign lesions, with the best diagnostic performance in the
validation sets showing AUC of 0.73 (28). The radiomics model
from our study achieved an AUC of 0.87 in the validation set,
which was comparable to CT- or MRI-based radiomics.
A

B

C

D

FIGURE 7 | (A) A 42-year-old female patient with a strong hyperechoic tumor in the upper pole of the right kidney; the pathology report showed angiomyolipoma (AML).
Representative ultrasound image (left). The echogenicity corresponds with a composition of fat. The pathological H&E staining image (middle, ×50) showed that the tumor
was mainly composed of fat. S-100 immunohistochemical staining image (right, ×50) was used to label the lipid composition. (B) A 65-year-old male patient with a
hypoechoic tumor located in the lower middle of the right kidney; the pathology report showed clear cell RCC. Representative ultrasound image (left). The pathological
H&E staining image (middle, ×50). CA-IX immunohistochemical staining image (right, ×50) was used to label the clear cell RCC. (C) A 51-year-old female patient with a
hypoechoic tumor located in the upper middle of the right kidney; the pathology report showed AML without visible fat. It was misdiagnosed as RCC by a sonographer.
Representative ultrasound image (left). The pathological H&E staining image (middle, ×50) showed that the tumor was mainly composed of smooth muscle. SMA
immunohistochemical staining image (right, ×50) was used to label the smooth muscle composition. (D) A 47-year-old female patient with a hypoechoic tumor located in
the middle of the right kidney; the pathology report showed oncocytoma. It was misdiagnosed as RCC by a sonographer. Representative ultrasound image (left). The
pathological H&E staining image (middle, ×50). CD117 immunohistochemical staining image (right, ×50) was used to label the oncocytoma.
March 2022 | Volume 12 | Article 847805
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Moreover, the radiomics signature and nomogram model
showed excellent diagnostic performance comparable to senior
physician, indicating the potential significance of the model in
clinical application in the hope that it will advance precision
diagnostics, even for the junior physician without a wealth of
experience in imaging diagnosis.

We further analyzed the false diagnosed cases. In general, classic
AMLs consist of aberrant blood vessels, smooth muscle, and
mature adipose tissue (30). They are markedly hyperechoic due
to the presence of macroscopic fat (31, 32) (Figure 7A) and easy to
distinguish from RCCs, which are more isoechoic or hypoechoic
(Figure 7B). However, approximately 5% of AML cases lack
macroscopic fat (Figure 7C), demonstrating sonographic
appearances similar to those of RCC (33–35). In addition, most
oncocytomas (Figure 7D) are isoechoic or hypoechoic to the renal
parenchyma. It is difficult for the naked eye to identify
oncocytomas. In this study, some cases of AMLs and
oncocytomas were incorrectly described by sonographers as
malignant masses. Thus, the overall diagnostic accuracy was
lower in the sonographers than in the radiomics model.
However, the sensitivity of the radiomics model was lower than
that of the senior and junior physicians. In the validation set, 10
renal malignancies were mistaken as benign masses by the
radiomics model. Six of the 10 cases were chromophobe RCC.
Both chromophobe RCC and renal oncocytoma originate from
intercalated cells of the collecting duct system and shared some
overlapping morphologic, histochemical, immunohistochemical,
and ultrastructural features (36, 37). This may be the reason for
the incorrect diagnosis.

Unexpectedly, in this study, the radiomics nomogram model
in combination with the clinical factor did not show better
performance compared with the radiomics model alone as
shown in the study of Nie et al. (24). Their nomogram
incorporating the CT-based radiomics and clinical factors
outperformed the radiomics signature alone for differentiating
AML from clear cell RCC. We propose that the discrepancies
may be due to the sample size and pathological subtypes. In this
study, a large cohort of 600 patients was analyzed and more
pathological subtypes were included, except for AML and clear
cell RCC. Sex was the only clinical signature in the nomogram of
this study, suggesting that clinical factors in renal masses may
contribute minimally to the differentiation of benign from
malignant renal masses as reported in other cancers including
ovarian, breast, and lung cancers (38–40). This observation
merits further investigation.

It is noteworthy to point out the limitations of this study.
First, its retrospective nature poses a potential selection bias. The
US images used in this study were derived from two different US
machines. This may lead to heterogeneity of the US images and
further impact the performance of the radiomics score. Second,
the samples were derived from a single institute, and the training
and validation cohorts were split using a random split method.
External validation using a prospectively recruited patient cohort
and multicenter studies with a larger sample size to prove the
robustness of our results are required. Third, manual region of
Frontiers in Oncology | www.frontiersin.org 8
interest (ROI) segmentation is time-consuming and complicated,
especially for tumors without a well-defined boundary. Future
studies should focus on the development of an automatic
segmentation method for renal tumors with favorable
reliability and reproducibility.
CONCLUSION

In conclusion, this study developed an ultrasonic–radiomic
nomogram model that showed favorable predictive efficacy in
preoperatively distinguishing benign renal masses from
malignant tumors. As a non-invasive and quantitative method,
the radiomics nomogram model may serve as an effective tool to
supplement conventional imaging modalities for the clinical
decision-making process.
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