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The turbulent pulsatile blood flow through stenosed arteries considering the elastic property of the wall is investigated numerically.
During the numerical model validation both standard 𝑘-𝜀 model and RNG 𝐾-𝜀 model are used. Compared with the RNG 𝐾-𝜀
model, the standard 𝐾-𝜀 model shows better agreement with previous experimental results and is better able to show the reverse
flow region. Also, compared with experimental data, the results show that, up to 70% stenosis, the flow is laminar and for 80%
stenosis the flow becomes turbulent. Assuming laminar or turbulent flow and also rigid or elastic walls, the results are compared
with each other.The investigation of time-averaged shear stress and the oscillatory shear index for 80% stenosis show that assuming
laminar flow will cause more error than assuming a rigid wall. The results also show that, in turbulent flow compared with laminar
flow, the importance of assuming a flexible artery wall is more than assuming a rigid artery wall.

1. Introduction

Atherosclerosis is a disease that is characterized by the
formation of plaques that narrow the arterial lumen. The
narrowing of the coronary arteries can stop the perfusion of
blood to the lower parts of the myocardium and possibly lead
to myocardial ischemia, myocardial infarction, and sudden
cardiac death [1].

In the study of the causes and progression of this disease,
in addition to conventionalmethods in themedicine for fore-
casting and evaluating the disease progress, computational
fluid dynamics are used to examine the role of hemody-
namics on the localization, development, and progression
of atherosclerosis disease. Simultaneous with hemodynamic
studies, some researchers have focused on modeling the
arterial wall and have examined the relationship between
arterial wall stress and vessel wall diseases [2–4].

Recently, researchers have paid great attention to the
effect of fluid-solid interaction in biological systems, espe-
cially cardiovascular ones.They believe that the simultaneous

solution of fluid-solid will greatly help in better understand-
ing the pattern of arterial disease [5, 6].

For example, Bathe and Kamm [7] simulated the laminar
pulsatile flow passing through a flexible artery with stenosis
using ADINA Software.They considered stenoses of 51% and
96% area reduction and evaluated and compared the pressure
drop and circumferential stress across the artery at different
times.They also studied the effect of Reynolds number on the
pressure drop.

Tang et al. [8] numerically examined laminar flow in
flexible carotid artery with symmetric stenosis using ADINA
software. Their results showed that severe stenosis causes
critical flow conditions such as negative pressure and high
and low shear stress which may lead to artery compression,
plaque rupture, platelet activation, and arterial thrombosis.

Although in such studies the flexibility of the artery wall
has been considered, they have ignored the turbulence caused
by stenosis. In fact, blood flow in arteries is usually laminar.
However, a moderate or severe stenosis can cause turbulent
flow in the vasculature [9]. A better understanding of the flow
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and flow turbulence in the poststenotic region can lead to
more accurate diagnostic methods [10]. Turbulent blood flow
due to arterial stenosis has long been investigated [11].

Many experimental studies have been conducted for
studying a steady turbulent flow [12–14]. Deshpande and
Giddens [13] studied the steady turbulent flow through
a 75% stenosed tube at Reynolds numbers ranging from
5000 to 15000 by laser Doppler anemometer (LDA). Ahmed
and Giddens [14] measured the steady velocity field in the
presence of a symmetric stenosis with a rigid wall by the
LDA. The range of the Reynolds number was 500–2000 in
the upstream of the stenosis and stenoses of 25, 50, and 75%
area reduction were studied.

Due to difficulties in performing experimental tests, there
are only a few experimental studies for unsteady turbulent
flow in the presence of stenosis.

Ahmed and Giddens [15] measured pulsating flow field
in the presence of a symmetric stenosis by the LDA. They
considered sinusoidal velocity profile, a Womersley number
of 7.5, stenoses of 25, 50, and 75% area reduction, and the
average Reynolds number of 600 for testing.

These experimental studies showed that, even with a
low percentage of stenosis, transient or turbulent flow may
occur.The above experimental data were used for assessment
of numerical methods for modeling of turbulent flow in
internal flows. On the other hand since the turbulent flow
calculations are difficult and time-consuming, there are very
few computational studies on the turbulent pulsatile flow
in the artery with a stenosis. For example, using the finite
element software FIDAP, Ghalichi et al. [16] investigated
transient and turbulent flow through 50%, 75%, and 85%
stenosed models over a Reynolds number range of 500 to
2000. Their results showed that the laminar flow model
overestimates the vortex length when the flow becomes
transitional or turbulent.

Banks and Bressloff [17] modeled pulsatile turbulent
flow in the carotid bifurcation with a stenosis by a three-
dimensional model. FLUENT software was used for solving
the set of governing equations. Three types of stenosis
(mild, moderate, and severe) were considered, and the effect
of turbulence intensity and turbulent viscosity on velocity
profiles was studied.

Since wall elastic property and physiological pulses are
not considered as boundary conditions in these studies, in
the present study the turbulent blood flow through a stenotic
artery model is numerically simulated considering fluid-
structure interaction (FSI) usingADINA8.8. At first the effect
of turbulent blood flow on the variations of time-averaged
shear stress and the oscillatory shear index for 80% stenosis is
investigated.Then the obtained results are compared with the
results of assuming laminar flow and rigid wall of coronary
artery.

2. Governing Equations

2.1. Reynolds-Averaged Navier–Stokes Equations (RANS) [18].
In unsteady turbulent flows, if we consider each parameter
as the sum of an average component and an oscillating

component in the Navier–Stokes equation, then the RANS
equations are obtained as follows:
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2.2. Turbulence Models [18]. To calculate 𝜇
𝑇
, this paper uses

the two-equation turbulence 𝐾-𝜀 standard and 𝐾-𝜀 RNG
models. In the turbulence flow, viscosity is defined as follows,
where 𝜇

0
is laminar viscosity and 𝜇

𝑇
is turbulence viscosity:

𝜇 = 𝜇
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+ 𝜇
0
. (2)

In𝐾-𝜀 standard turbulencemodel, 𝜇
𝑇
is calculated as follows:

𝜇
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𝜇
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𝜀
, (3)

where 𝑘 is turbulence kinetic energy and 𝜀 is turbulence
dissipation rate.

3. Numerical Validation

To check the accuracy of our numerical solution, the numer-
ical results of the present work are compared with the
experimental results presented by Ahmed and Giddens [15]
and the numerical results provided by the Banks and Bressloff
[17] and Varghese and Frankel [19].

If we consider the origin of coordinates at the center
of stenosis, the numerical results of the present work were
compared with the experimental results presented by Ahmed
and Giddens [15] and the numerical results provided by
Banks and Bressloff [17] and Varghese and Frankel [19] at two
different distances of stenosis downstream and in the time
of maximum speed. The results of Figures 1 and 2 indicate a
better agreement of numerical data of the present work with
the results of Ahmed and Giddens [15] than the numerical
results of Banks and Bressloff [17] and the numerical work of
Varghese and Frankel [19].

The results indicate a higher consistency between the𝐾-𝜀
standardmodel and experimental results. As a result, the𝐾-𝜀
standard model was used in this study.

4. Present Work and Numerical Methods Used

In this study a model of coronary artery with a simple,
symmetrical stenosis with flexible wall is considered. The
computational domain and its dimensions are shown in
Figure 3.

The geometry of stenosis is defined as follows [21]:
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where 𝑅
0
is the radius of the healthy artery, 𝑅(𝑧) is the

artery radius in the stenosis region, 𝑅
0,𝑡

is artery radius at the
stenosis throat, 𝑧

𝑚
is the location of the center of the stenosis,
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Figure 1: Velocity profile at distance 𝑧 = 𝐷 from throat of stenosis.
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Figure 2: Velocity profile at distance 𝑧 = 1.5𝐷 from throat of
stenosis.

and 𝐿 st is the length of stenosis. The characteristics of blood
as a Newtonian, incompressible fluid and the characteristics
of artery wall are given in Table 1 [21].

The pulsatile velocity profile of the right coronary artery
was used as the inlet boundary condition [20]. Figure 4 shows
the pulsatile velocity profile which is dimensionless by the
period of pulsatile cycle, 𝑡

𝑝
, which is 0.8 s.

The fluid-structure interaction (FSI) conditions were
used in the common boundary of fluid and solid. The
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Figure 3: Computational domain.
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Figure 4: Inlet pulsatile velocity profile [20].

Table 1: Properties of fluid and artery wall.

Thickness of artery wall (m) 0.0005
Elasticity modulus of the artery wall (kPa) 910
Density of artery wall (Kg/m3) 1300
Poisson ratio of artery wall 0.49
Blood density (Kg/m3) 1050
Blood viscosity (Pa⋅s) 0.0033

governing equations for the solid-fluid coupled problem are
as follows [21]:

𝑑
𝑓
= 𝑑
𝑠
: Displacement,
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𝑓
= 𝑛 ⋅ 𝜎
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(5)

where 𝑑, 𝜎, and 𝑛 are displacement, stress tensor, and normal
vectors. The governing equations of the solid domain are as
follows [21]:
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where 𝜌
𝑠
is the wall density, 𝜎

𝑠
is the Cauchy stress tensor,𝑓

𝑠
is

the body force vector, and 𝑑
𝑠
is the wall displacement vector.

When studying the solid-fluid coupled problem, we
should apply blood pressure pulse to the problem as the out-
put condition. These pulses are obtained from experimental
conditions and were shown in Figure 5 [21].

The axial velocity profiles at a distance of 1D from the
stenosis throat in three types of meshing are shown in
Figure 6. The results indicated that the results of 10200 com-
putational cells and 15300 computational cells are consistent
with each other. Thus, for reducing the computational time,
10200 computational cells will be used for calculations.
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Figure 5: Outlet pressure pulse.
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Figure 6: Results independency from grid of solution domain.

5. Results

Comparisons between the mean inlet pressure (𝑃
1
) for

stenosis percentages of 30%, 50%, 70%, and 80% are given
in Figure 7. As can be seen, up to 70% stenosis, there is
a very good consistency between experimental results [21]
and the laminar flow assumption which suggests that, up
to 70% stenosis, the flow is laminar. Shifting from 70% to
80%, the difference between experimental results and the
laminar flow assumption increases, and there is a much
higher consistency between experimental results and the
turbulence flow assumption which suggests that, for 80%
stenosis and higher, the flow is turbulent and the laminar flow
assumption is not appropriate anymore. Mean inlet pressure
for 80% stenosis in the case of laminar flow assumption is
102.4mmHg, in the turbulent flow case is 105mmHg, and in
the experimental case is 104.8mmHg. Given above, we select
80% stenosis and perform next calculations on it.

Figures 8 to 15 show the timed-averaged changes of
shear stress and the oscillatory shear index in the axial
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Figure 7: Comparisons between the inlet pressure.

direction for 80% stenosis for the laminar or turbulent flow
assumption and the rigid or flexible wall assumption. The
time-averaged shear stress and the oscillatory shear index are
among hemodynamic parameters used for identifying areas
prone to arteriosclerosis.

The oscillatory shear index (OSI) is a mechanical param-
eter for flow oscillation showing the deviation of the wall
shear stress from the dominant direction of blood flowduring
the cardiac cycle. The OSI value ranges from zero (for no
change in the direction of wall shear stress) to 0.5 (for a 180-
degree change in the direction of wall shear stress) [22]. To
determine the OSI value, the following equation is used:

OSI = 0.5 × (1 −


∫
𝑇

0
𝜏
𝑤
𝑑𝑡


∫
𝑇

0

𝜏𝑤
 𝑑𝑡

) . (7)

Time-averaged shear rate is defined as follows:

Mean WSS = 1
𝑇
∫

𝑇

0

𝜏
𝑤
𝑑𝑡. (8)

In the above equations,𝑇 is the periodicity of the cardiac cycle
and 𝜏
𝑤
is the shear stress vector.

As is clear from Figures 8 to 11, by changing from
the flexible-wall mode to the rigid-wall mode as well as
from the laminar flow assumption to the turbulent flow
assumption, the time-averaged shear stress slightly increases
in the prestenotic area. At the proximal shoulder region,
the time-averaged shear stress significantly increases and,
at the distal shoulder and poststenotic region, the time-
averaged shear stress decreases further. This decrease in
shear stress increases the production of reactive oxygen
species and essentially increases the oxidation of LDLs in
the intima. Oxidized LDLs stimulate endothelial cells to
express leukocyte adhesion molecules such as vascular cell
adhesion molecule-1 (VCAM-1) and intercellular adhesion
molecule-1 (ICAM-1). Consequently, platelet adhesion to the
endothelium and activation is possible, in an area where
shear stress is low. Activated platelets release growth factors
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Figure 9: Mean WSS, turbulence, flexible mode.
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Figure 10: Mean WSS, laminar, and solid mode.

such as TGF-𝛽. TGF-𝛽 significantly enhances proliferation
of smooth muscle cells [23]. Studies have also shown that
activated platelets release MMP-2, which mediates further
platelet aggregation [24]. Thus poststenotic area not only is
prone to develop plaque andnewplaque formation, but also is
more prone to the development of thrombosis. Angiographic
studies have shown that plaque development occurs more in
the poststenotic area [25] and the number of smooth muscle
cells in the distal shoulder is far more than the proximal [26].
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Figure 11: Mean WSS, turbulence, and solid mode.
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It can be seen from Figures 12 to 15 that there are
two peaks for simple stenoses. In the simple stenosis, the
first peak shows flow separation point and the second peak
represents the reattachment point. Small values of time-
averaged shear stress and high values of the oscillatory
shear index both influence the cell secretion resulting in
increased cell displacement and increased dissociation of
intercellular junctions thereby increasing permeability of
the LDL particles to the wall [27–29]. The experimental
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results of Deng et al. [30] also show high absorption of
cholesterol in the flow reattachment point. Another thing
that can be seen in Figures 12 to 15 is that for both the
rigid artery wall mode and the flexible artery wall mode, by
changing the laminar flow assumption to the turbulent flow
assumption, the length of oscillatory zone highly decreases.
This shows that, in high percentages of stenosis when using
any of hemodynamic parameters, average shear stress, and
oscillatory shear index for describing how the disease is
developed, failure to consider the turbulent flow behavior can
cause a large numerical error.

Fry [31] stated that a shear stress over 40 Pa causes
damage to endothelial cells. Ramstack et al. [32] stated
that a shear stress greater than 100 Pa causes detachment
of endothelial cells and clot formation. According to the
contents of references [31, 32] and Figures 8–11 it can be
seen that, in 80% stenosis with the laminar flow assumption,
the endothelial cell operation is damaged. However, in 80%
stenosis assuming turbulent flow, given that the maximum
stress is greater than 100 Pa, the clot will form. Thus ignor-
ing turbulence can make a different change in predicting
damages. As can be seen in Figures 8 up to 15, the effect of
turbulent flow on the maximum time-averaged shear stress
of the wall on stenosis and the mean reverse flow area is more
important than assuming flexible wall. The result that can
be derived from Figure 16 is that the wall displacement with
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Figure 17: Changes in arterial pressure in the axial direction, 𝑇
2
.

the turbulent flow assumption is more than the laminar flow
assumption. Moreover, due to hypotension, the artery wall
displacement in front of stenosis is more than the artery wall
displacement at the back of stenoses.

Figure 17 shows changes in arterial pressure in the axial
direction for simple stenosis with 80% stenosis at the maxi-
mum flow rate time. As can be seen from Figure 17, changing
from flexible to rigid wall will increase the pressure in the
proximal of stenosis. Moreover, changing from laminar to
turbulent flow will increase the pressure in the proximal of
stenosis. The hypotension in the turbulent mode is higher
than the laminar mode and in the rigid wall artery mode
higher than the flexible wall artery because of higher shear
stress along the artery and consequently increased hypoten-
sion across the artery. Another result from Figure 17 is that,
in front of the stenosis, the pressure difference at rigid and
flexiblemodes is lower than at the back of stenosis.The reason
is that, with decreasing pressure, the displacement of artery
wall decreases and the artery wall becomes closer to the rigid
mode.

Figures 18 to 20 compare changes in circumferential
stresses in time at different points for 80% stenosis. As
can be seen, compared to the turbulent flow assumption,
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the laminar flow assumption shows lower circumferential
stresses for the artery wall. The maximum circumferential
stress is related to prestenotic zone because, according to
Figure 17, the pressure exerted on the wall before the stenosis
is higher. The minimum circumferential stresses are related
to the stenosis peak because according to Figure 17, there is a
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sudden pressure drop due to serious tweaking. Another result
from Figures 18 to 20 is that the laminar flow assumption at
the stenosis peak shows circumferential stress lower than the
turbulent flow assumption.

Figures 21 to 24 show axial velocity profiles at the time
of maximum flow rate (0.24 s), at a distance equal to the
diameter before the stenosis, at the beginning of the stenosis,
the throat, and the poststenotic of a simple 80% stenosis.
Due to axial velocity profiles and also as expected the profile
of turbulent flow assumption was obtained flatter than the
laminar flow assumption, and the rigid wall mode fur-
ther demonstrates maximum axial velocity. Figure 23 shows
velocity profiles at the throat of the simple stenosis. It shows
that the maximum velocity reaches a value much higher than
1m/s.This value is beyond a normal biologicalmode andmay
cause disturbances in the blood circulatory system. Also, as
can be seen in Figure 24, at the end of stenosis compared with
the throat of the stenoses, the maximum velocity is reduced
and both the laminar flow assumption and the turbulent
flow assumption at near of the wall predict the reverse flow.
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However, the laminar flow overestimates the reverse flow and
shows the reverse flow zone larger which is obvious because
the fluid has a lower energy and is soon detached from the
surface. In other words, using the laminar flow assumption a
wider zone at the back of stenosis is exposed to the disease
and using the turbulent flow assumption the growth speed of
plaques is higher.

In Figures 25–28 distribution of pressure, shear stress
at 𝑇
2
and 𝑇

4
and axial velocity along the artery are shown,

respectively. As seen, minimum pressure and maximum
axial velocity occurred in the throat of stenosis. In distal of
stenosis by reducing the velocity, the pressure is increased
and Figure 17 also showed this. By away from stenosis region
and reducing the effects of narrowing and opening of the
flow cross section, pressure is reduced linearly. Blood shear
stresses that exerted from the artery wall are shown in Figures
26 and 27. Because of high similarity between turbulent and
FSI case study contour by other case studies, contours of other
cases have been ignored. At the narrowest of cross section
it can be seen from Figure 26 that shear stress increased
suddenly and immediately after stenosis throat reduced
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severely and even negative values are seen. Then shear stress
in the reverse flow region increased by mild slope and again
gives positive value and remains constant until the end of the
artery. As can be seen from Figures 26 and 27 the difference
between the shear stress on the artery wall at maximum and
minimum flow rate is very high and almost 11.6 times and, at
other times of the cardiac cycle, shear stress on the artery wall
has continuous changes.These frequent changes on the inner
surface of the artery can lead to plaque rupture that can cause
severe cramping and formation and the development of blood
clot in the arteries. According to Figure 28, minimum axial
velocity is −0.1261m/s and occurred at the end of stenosis
and maximum axial velocity is 2.503m/s and occurred at the
throat of stenosis.
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6. Conclusion

Using ADINA software and taking into account the elastic
wall and physiological pulses as a boundary condition, this
paper assesses blood flow passing through the right coronary
artery with a local stenosis. Compared with other numerical
works, the𝐾-𝜀 standard model had a better consistency with
the experimental work andwas better able to show the reverse
flow region. We therefore used the 𝐾-𝜀 standard turbulence
model to resolve the turbulent flow in the present numerical
work. In the present work, the average inlet pressure for
80% stenosis in the laminar flow assumption was obtained
102.4 and at the turbulent flow assumption was obtained
105 compared with the other experimental works which
was 104.8. This indicates that, for 80% stenosis, the flow is
turbulent. As a result, 80% stenosis was selected as the sample
stenosis. The effects of turbulent blood flow were examined
on pressure drop and velocity profiles. The obtained results
were compared with those of the laminar flow assumption
and the rigid coronary artery wall. For both the rigid artery
wall and the flexible artery wall, by changing from the
laminar flow assumption to the turbulent flow assumption,
the length of oscillatory region becomes much lower. This
shows that in high percentages of stenosis when using any
of the hemodynamic parameters of the average shear stress
and the oscillatory shear index for describing how the disease
is spread, failure to consider the turbulent flow behavior can
cause a large numerical error. Another result of the present
work is that, in 80% stenosis, the rigid artery wall assumption
makes a smaller error compared to the laminar blood flow
assumption.
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