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1. Introduction
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Research in last few years on neurophysiology focused on several areas across the cortex during cognitive processing to determine
the dominant direction of electrical activity. However, information about the frequency and direction of episodic synchronization
related to higher cognitive functions remain unclear. Our aim was to determine whether neural oscillations carry perceptual
information as spatial patterns across the cortex, which could be found in the scalp EEG of human subjects while being engaged in
visual sensory stimulation. Magnitude squared coherence of neural activity during task states that “finger movement with Eyes Open
(EO) or Eyes Wandering (EW)” among all electrode combinations has the smallest standard deviation and variations. Additionally,
the highest coherence among the electrode pairs occurred between alpha (8-12 Hz) and beta (12-16 Hz) ranges. Our results indicate
that alpha rhythms seem to be regulated during activities when an individual is focused on a given task. Beta activity, which has also
been implicated in cognitive processing to neural oscillations, is seen in our work as a manner to integrate external stimuli to higher
cognitive activation. We have found spatial network organization which served to classify the EEG epochs in time with respect to
the stimuli class. Our findings suggest that cortical neural signaling utilizes alpha-beta phase coupling during cognitive processing
states, where beta activity has been implicated in shifting cognitive states. Significance. Our approach has found frontoparietal
attentional mechanisms in shifting brain states which could provide new insights into understanding the global cerebral dynamics
of intentional activity and reflect how the brain allocates resources during tasking and cognitive processing states.

Cortical processing after visual stimulus entails the partici-
pation of multiple and widespread brain areas, such as the

Electroneurological studies have focused on the loosely cou-
pled neural networks that dynamically incorporate and bind
several areas across the cortex during cognitive processing [1].
Synchronization between cortical neighborhoods has been
identified as areas involved in perceptual activity. Recent
studies report transient synchronization between parietal and
frontal cortices where low frequency oscillations (7-14 Hz)
have been proposed to coordinate activity between disperse
cortical areas during visual processing [2]. Simultaneously,
while beta oscillatory activity (13-30 Hz) seems to be slightly
reduced in parietal neural sources, a strong and long-lasting
enhancement of beta is present within frontal-parietal areas.

parietal cortex [3] and frontal cortices [4, 5].

When an individual is engaged in a current task that
demands a degree of attentiveness, the frontal and posterior
parietal cortical areas of the brain have been implicated
using various neuroimaging techniques. These cortical areas
are referred to collectively as the frontoparietal attentional
control. Cortical networking has been analyzed during these
states in order to better understand how higher orders of cog-
nitive processing after stimuli induced cortical communica-
tion between neural populations.

In a study featuring meditative activities, cortical net-
works were analyzed during the following states: mind
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wandering, or loss of focus, awareness of mind wandering,
and attentional focus. The dorsolateral frontal cortex has been
specifically implicated in active rehearsal, which consists
of, “the repetitive selection of relevant representations or
recurrent direction of attention to those items” [6]. The
attentional focus phase consists of repetitive activities such
as motor control movement. The lack of activation in parietal
elements of the executive network during this phase may be
related to the role of the parietal cortex in disengagement
of attention rather than in focusing attention [7]. During
the mind wandering phase, neural activity was detected in
posterior cingulate cortex, medial frontal cortex, posterior
parietal/temporal cortex, and parahippocampal gyrus. There-
fore, a higher degree of neural activity is seen in the basal state
of cortical activity versus the focused state, which involves
repetitive activity.

It has long been known that cortical waveforms (coor-
dinated oscillations among mesoscopic neural populations)
vary their frequency with cognitive focus. Synchronized
neural spiking activities are observed during focal attention
because some stimulus representations must be enhanced at
the expense of others. Consistent with a thalamic generator,
low-frequency oscillations are stronger in the deeper layers
of cortex that project to the thalamus [8]. However, previous
work has shown a decrease in low-frequency synchrony
within visual cortex during sustained attention [9], neces-
sitating future work to better understand the role of these
oscillations. During a search of a visual display, shifts of
covert attention and its correlate primary visual area neurons
synchronize to lower-frequency, beta (~25Hz) oscillations
across the frontal cortex. This suggests a lockstep between
neural activity and periodic sampling of the external world
via an attentional spotlight [10]. The network interactions for
attention networks seem to originate in the frontal cortex, the
brain region most associated with “executive” brain functions.
Frontal cortical neurons during the attentive states reflect a
shorter latency phase of signal than parietal area [11, 12].

When attention is focused, the visual cortex goes into
rhythmic synchrony with a phase offset that suggests the
frontal cortex is driving the parietal area [13]. Frontoparietal
neural activity is consistent with facilitated stimulus process-
ing of the repeated stimuli rather active recollection of the
stimuli, or the creation of new memory representations for
unfamiliar stimuli (Henson et al. 2007).

Thalamic connections to the cerebral cortex may be the
governing force regarding modulated cortical activity. The
thalamus is responsible for the relaying of sensory and motor
signals to the cerebral cortex, and the regulation of higher
order cognitive processing. According to Baars [14], direct
brain recording suggests that task-specific activity involves
cross-frequency coupling at multiple spatial scales, linking,
and unlinking multiple sites in the cortical network and it
satellites. Signaling between subcortical populations may in-
volve gamma and alpha-range synchrony in the cognitive
processing of ambiguous stimuli. Our work reinforces the
idea that alpha and beta activity in large populations of cells
has been observed in motor activities as well. Preliminary
results of our interpersonal coordination studies using scalp
EEG arrays have been reported in [15]. Alpha (10 Hz) oscil-
lations may serve to group faster rhythms such as beta and
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gamma. Altogether, neural signaling utilizes alpha-beta phase
coupling during cognitive processing states.

Neural information processing has been investigated in
terms of the amplitude and phase modulations of neural
oscillatory behavior [16]. As the cortex processes incoming
stimulus, action potentials convey the stimuli into “informa-
tion” pulse trains. These pulse trains transition from back-
ground cortical activity to a higher order state of cortical
activity that is measured as phase transitions. Previous ex-
periments on the rabbit model have shown that phase transi-
tions occur in the neural signaling rates of the theta and alpha
ranges [17-19]. Synchronized oscillatory activity between
neural networks across the cortex has shown that the phase
of the signal between the networks remains constant during
this intermittent time period.

Palva & Palva [20] and Lobier et al. [21] discussed poten-
tial issues with volume conduction in EEG connectivity anal-
yses that have critical implications for any interpretations of
scalp data. Brunner & Makeig [22] performed both analytical
and numerical simulation and showed that the Directed
Transfer Function (DTF) is influenced by volume conduc-
tion, whereas Kaminski and Blinowska [23] introduce the
popular connectivity measures derived from VAR models
that include the DTF and argue that DTF is not affected by
volume conduction. Study from Brunner & Makeig [22] also
argues that source activities can be obtained by separating
each data channel signal into a sum of physically and phys-
iologically distinct source processes whose interrelationships
can also be modeled in terms of causal connectivity. This
study focuses on the cortical neural networks of human
cohorts and examines the neural information transmission
behavior after visual stimulation.

2. Methods

2.1. Data Collection Methodology. The experiments for this
project were held in the Computational Neurodynamics Lab
at the FedEx Institute of Technology at the University of
Memphis. This study has been approved by the University of
Memphis Institutional Review Board (IRB-071411-790). Ten
participants (4 females, 6 males, mean age 29) undergo ten
recordings on the experimental protocol listed in Table 1. All
participants had normal or corrected-to-normal vision and
had no known psychological or neurological deficits. Partici-
pants were paid ten dollars for taking part in the experiment.

In the protocol we follow [24]. A participant is facing a
monitor with an EEG cap and bend sensor wrapped around
their finger. The monitor provided directions for the partici-
pant to perform as shown in Figure 1. Participants are sitting
upright and receiving instructions from a monitor during the
entire session, even during rest periods. During the “Eyes
Wandering” activity, the participants were instructed to focus
their eyes away from the monitor. Data was collected from
Biolnfinity’s system for EEG cortical measurements and EMG
movement via a bend sensor around the individual’s finger.
An EEG amplifier was provided using the Flax/Pro-comp
InfinityTM amplifiers with the standard 10-20 electrode cap
using 19 Ag/AgCl electrodes. The sampling rate was 2048 Hz.
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FIGURE 1: Event-related potentials (ERP) were captured via an EEG cap using nine electrodes. Additional sensors were utilized to capture
finger movement via a bend sensor. Grounding and negative connections were facilitated via ear lobe connections. Positive, negative, and
grounding connections were inserted into an impedance sensor, which connected to the Flex/Pro-comp Infinity™ amplifier. EEG data capture
was accomplished through BioInfinity™ where data was exported in order to enable EEG analysis of cognitive states.

TABLE 1: Experimental protocol.

State Time(s) Activity

1 1-40 Rest period

2 40-50 Eyes Open + finger movement

3 50-60 Rest period

4 60-70 Eyes Wandering + finger movement
5 70-80 Rest period

6 80-90 Eyes Closed + finger movement

2.2. Locating Phase Patterns. Table 2 illustrates the method-
ology to determine phase directionality. After the record-
ings are captured, magnitude squared coherence is initially
performed on each reference to working electrode combi-
nation (F3-Fz, F3-F4, F3-C3.. ., Fz-F3, Fz-F4, Fz-C3... etc.)
from 1-40 Hz, for dominant delta, theta, alpha, beta, and
gamma frequencies. For each state of the protocol, magnitude
squared coherence is averaged on the multiple recordings
for each participant, and standard deviation and variation
are calculated from the data collected. For each frequency
bandwidth, electrode pairs with a coherence > 0.6 will be
considered significant. The calculation of coherence is as
follows.

Consider two signals x(t) and y(t), which are transformed
to discrete sequences consisting of N uniformly spaced points
xj:x(tj) and yj:y(tj), where N = 2" with an integer, and t; =
jat where j = 0 to N-1. The cross-correlation function CCF of
x(t) and y(t) is defined as follows:

CCny (T) =E (yn+‘r‘xn*) (1)
where —co < n < 00, E(-) is the expected value of the
random variable, and x* stands for complex conjugate. Next
we use the Fast Fourier Transform (FFT), which breaks down
a signal into constituent sinusoids of different frequencies.
FFT is useful in signal processing for converting data from

the time domain into the frequency domain. FFT is calculated
using Discrete Fourier Transform (DFT) as follows:

2)

N-1 .
X (w) = Z X;exp (—me'it)
j=0 N

where X(w) is the Fourier representation in frequency
domain. EEG frequency data is typically found using power

autospectral density function PSDy(w), defined as |X ().
The power spectral density CPSDyy(w) is defined as the
Fourier Transform of CCF,, (1) defined in (1). The squared
coherence is given as follows:

,  CPSDyy (o)
Y= PSDy (w) PSDy (@)

3)

Given the real and imaginary parts of each electrode signal
from the FFT, we unwrap the phase of the signal in order to
return the phase angle in radians. For all the channels, the
mean and the standard deviation were calculated. Slope of the
mean values is plotted in reference to each channel.

3. Results

The calculations that produce the smallest standard deviation
and variation will have demonstrated which set of signal
pairs have similar cross-spectral density across multiple
recordings. Of all the signal pairings among frontal and
parietal electrodes, F3 and Fz to P3, Pz, and P4 had the
least amount of deviation between multiple recordings. Our
results show that the highest coherence (> 0.6) among the
electrode pairs occurred between 8 and 12 Hz (alpha) and 12
and 16 Hz (beta) ranges. Figure 2(a) displays electrode pairs
with high coherence values (red arrows) during states 2 and
4, i.e., Eyes Wandering + finger movement and Eyes Open +
finger movement, respectively. Synchronous neural activity as
it pertains to cognitive task activity is found in the unwrapped
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12-16 Hz
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FIGURE 2: Magnitude squared coherence ((a) red arrows) has high coherence values (> 0.6) for the pairs marked by red arrows for the
activity states, “Eyes Open + finger movement (EO)”, and “Eyes Wandering + finger movement (EW)”. Among all electrode combinations,
the electrode pairs displayed above have the highest coherence values, while having small standard deviation. The highest coherence among
the electrode pairs occurred between 8 and 12 Hz (alpha) and 12 and 16 Hz (beta) ranges. (b) Red arrows represent phase leads of the calculated
mean of the unwrapped phases between channels.
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FIGURE 3: Overlapping directionality shared between magnitudes squared coherence values and unwrapped phase differences between chan-

nels.

TABLE 2: Signal processing procedure.

Steps

Description

(1) Data Preprocessing

Low-pass filter — Focus on frequencies below 40Hz.

(2) Signal Decomposition

Fast Fourier Transform - Extract real and imaginary parts of the signal.

(3) Electrode Pair Selection

Magnitude squared coherence is initially performed on electrode pairs considered
to have significant coherence (> 0.6) for selection

(4) Unwrap Phase Function radians

The “unwrap” phase function is applied in order to return the phase angles in

(5) Mean and standard deviation
calculation

For all the channels, the mean and the standard deviation were calculated.

Directionality is determined by the slope of mean of the unwrapped phases, which
is either positive or negative, thereby constituting phase lead or phase lag. Phase

(6) Directionality property analysis

directionality is designated as phase leads of the unwrapped phases between

channels. Slope values are plotted to determine phase directionality in reference to

each channel.

phase differences in Figure 2(b). The unwrapped phases in
Figure 2(b) correspond to the results in Figure 3 as a subset
of coherence in Figure 2(a) found between reference and
working channels.

As the individual moves the bend sensor, their EEG signal
transitions from nonlinear neural activity to synchronous
activity. Of all the signal pairings among frontal, central, and
parietal areas, reference electrodes F3 and Fz to neighboring
electrodes P3, Pz, and P4 had the highest coherence between
multiple recordings.

Overlapping directionality between magnitudes squared
coherence values and unwrapped phase differences between
channels are shown in Figure 3. The states, “Eyes Open”
and “Eyes Wandering”, demonstrated low standard deviation

and variance between recordings and low coherence between
electrode pairs.

The distribution of the unwrapped phase values displays
the similarity between EEG recordings per activity state. In
Figure 4, during the “Eyes Open” state, the “Fz-P3” group
has the smallest standard deviation grouping compared to
the other clusters, followed by “F3-P3” and finally “Fz-P4”. In
Figure 5, during the “Eyes Wandering” state, the “Fz-P3” and
“F3-P4” group has the smallest standard deviation grouping
compared to the other clusters, followed by “F3-Pz” for 8-
12Hz and 12-16 Hz, and finally “Fz-P3”. For each electrode
pair, the slope was calculated to demonstrate the closeness of
the distribution of each recording per state, seen in Table 3.
Slope fitting was accomplished on those electrode groupings
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TABLE 3: Slope values of each recorded electrode pair, per state.

F3-P3 F3-Pz F3-Pz F3-P4
(12-16Hz)  (8-12Hz)  (12-16Hz)  (8-12Hz)

F3-P4 Fz-P3 Fz-P3 Fz-P4
(12-16Hz)  (8-12Hz)  (12-16Hz)  (8-12Hz)

All

m=0.017 m=0.040 m=0.036
EW 2 2 2
r'=0.262 r'=0.121 r’=0.003
m=0.035

?=0.143

m=0.029 m=0.116 m=0.022 m=0.038
’=0.150 r*=0.005 ’=0.235 ?=0.158

m=0.054 m=0.089 m=0.053
r’=0.138 ’=0.229 ?=0.006
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FIGURE 4: Cluster distributions of max-unwrapped phase values
across 8-12 Hz and 12-16 Hz with respect to reference electrodes F3

and Fz for the “Eyes Open” state. Larger icons represent average of
max values within a cluster, with standard deviation bars.
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FiGure 5: Cluster distributions of max-unwrapped phase values
across 8-12Hz and 12-16 Hz with respect to reference electrodes
F3 and Fz for the “Eyes Wandering” state. Larger icons represent
average of max values within a cluster, with standard deviation bars.

with the lowest standard deviation and variation as seen in
Figures 4 and 5. The size of the distribution demonstrates the
similarity of each neural response within a given state. The
tight distribution between electrode pairs also demonstrates
the similarity of the phase of the signal between recordings.

4. Discussion and Conclusion

In this work we studied spatial directionality of neural signa-
tures of cognitive processing during task engagement and rest
states using a standard 10-20 EEG system. The experiments
involved a protocol with Eyes Open, Eyes Wandering, and
Eyes Closed states of 10 subjects. Our results indicate that
the calculated phase and coherence of EEG signals provide
quantitative measures to determine the dominant interacting

regions and the direction of electrical activity in the brain.
Phase directionality is less pronounced during the resting
state of the cortex. However, phase directionality of the
electrical activity of the cortex appears to align in a domi-
nant direction during cognitive activities, specifically during
Eyes Open and Eyes Wandering + Finger Movement states.
During these states, neural activity is diminished except for
frontoparietal networks. These finding reflects how the brain
allocates its resources during tasks that demand an individ-
ual’s attention. Our main findings are summarized as follows:

(i) In our work, visual stimulus was used to engage areas
of the brain in order to measure cortical alignment
through task engagement. Our results indicate that
alpha rhythms seem to be regulated during activities
when an individual is focused on a given task. Beta
activity, which has also been implicated in cognitive
processing to neural oscillations, is seen in our work
as a manner to integrate external stimuli to higher
cognitive activation. Our results are in line with work
of Dumenko [25], as well as [26], in which subjects
were exposed to either a single stimulus in order to
familiarize them to that stimulus or two stimuli in
order to perform a discrimination task. The experi-
ment [24] was designed to investigate perceptual or
cognitive differences that might emerge when sub-
jects experienced task engagement.

(ii) Our additional remarkable result is that all electrodes
contributed to the spatial network organization,
which served to classify the EEG epochs in time with
respect to the stimuli class, regardless of amplitude
or variance. These findings are supported among
forty recordings between the participants where fron-
toparietal networks exhibited the lowest standard
deviation and highest degree of synchrony. Our find-
ing is consistent with the evidence from widespread
intermittent synchronization of ECoG patterns in
rabbits and cats (Freeman and Burke 2003; Freeman
and Rogers 2003) and intermittent synchronization of
EEG patterns from a 1D array extending over 189 mm
of the scalp [17, 27]. The primary method used is
the Fast Fourier Transform to calculate the phase for
spatial alignment found during cognitive tasking.

(iii) Dominant neural network activity found during shift-
ing cognitive states, specifically the averages and
standard deviation of the dominant F3-P3 and Fz-
P3 coherence, and phase directionality shown in
Figure 3. Our results support Baars’ [14] Global Work-
space Dynamics, where task-specific activity involves
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cross-frequency coupling at multiple spatial scales,
linking, and unlinking multiple sites in the cortical
network and it satellites. Our findings suggest cortical
neural signaling utilizes alpha-beta phase coupling
during cognitive processing states, where beta activity
has been implicated in shifting cognitive states [17, 18,
27, 28].

Our results support recent findings on frontoparietal
attentional control networks. Specifically, Szczepanski and
colleagues have found that frontoparietal networks are
engaged in attentional allocation in both humans and non-
human primates [29]. Their work supports Buschman’s idea
(2009) that while the participant was engaged in a visual
stimulus directing them to move their finger, a shifting
of attention and its correlate primary visual area neurons
synchronize to lower-frequency, beta oscillations across the
frontal cortex, suggesting a lockstep between neural activity
and periodic sampling of the external world via an attentional
cognitive states. Additional work has found that while a par-
ticipant is focusing on a task, such as our “Eyes Open + Finger
Movement” task, a cluster in the dorsolateral frontal region
of the executive network remained active [30, 31]. This may
represent persistent neural activity, i.e., keeping the goal in
mind, to maintain sustained attention on the focal object [32,
33]. During the Eyes Wandering + Finger Movement state,
Hasenkamp et al. [30] detected activity in posterior cingulate
cortex, medial frontal cortex, posterior parietal/temporal
cortex and parahippocampal gyrus, supporting our findings
of frontoparietal activated networks. The frontoparietal exec-
utive network becomes active as participants disengage from
focused attention to mind wandering where this pattern of
shifting activity is consistent with an alternation between
default mode and task-positive networks. The frontoparietal
attentional network is observed in our study when we see
two individuals engage their attention during the “Eyes Open
+ Finger Movement” task, where alpha activity is dominant.
The individuals disengage their attention to the executive
network where beta activity occurs during “Eyes Wandering
+ Finger Movement”.

The approach introduced in this paper provides new
insights into understanding the global cerebral dynamics of
intentional activity. Our analysis supports the idea that the
sequence formation of frames begins with the abrupt reset-
ting of phase values on every channel, followed by resynchro-
nization and spatial pattern stabilization within the frame
[16, 34]. Some results suggest [35] that scalp EMG can be
attenuated by low-pass spatial filtering, using presently avail-
able arrays of 256 electrodes [36] and foreseeable arrays with
exceptionally high density of recording and high sampling
rates.
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