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Abstract

The serine/threonine kinase Pim-1 directs selected signaling events that promote cell growth and survival and is
overexpressed in diverse human cancers. Pim-1 expression is tightly controlled through multiple mechanisms, including
regulation of mRNA turnover. In several cultured cell models, mitogenic stimulation rapidly induced and stabilized PIM1
mMRNA, however, vigorous destabilization 4-6 hours later helped restore basal expression levels. Acceleration of PIMT mRNA
turnover coincided with accumulation of tristetraprolin (TTP), an mRNA-destabilizing protein that targets transcripts
containing AU-rich elements. TTP binds PIMT mRNA in cells, and suppresses its expression by accelerating mRNA decay.
Reporter mRNA decay assays localized the TTP-regulated mRNA decay element to a discrete AU-rich sequence in the distal
3’-untranslated region that binds TTP. These data suggest that coordinated stimulation of TTP and PIM1 expression limits
the magnitude and duration of PIMT mRNA accumulation by accelerating its degradation as TTP protein levels increase.
Consistent with this model, PIMT and TTP mRNA levels were well correlated across selected human tissue panels, and PIM1
mRNA was induced to significantly higher levels in mitogen-stimulated fibroblasts from TTP-deficient mice. Together, these
data support a model whereby induction of TTP mediates a negative feedback circuit to limit expression of selected
mitogen-activated genes.
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Introduction

The PIMI gene encodes a serine/threonine kinase that can
regulate cell proliferation and survival at multiple levels [1,2]. For
example, Pim-l-mediated phosphorylation of the tyrosine
phosphatase Cdc25A increases its activity [3], which includes
activation of Cdk2/cyclin E to promote progression from G1 into
S phase [4]. In response to genotoxic stress, the cyclin-dependent
kinasc inhibitor p21**”“P! blocks DNA replication by binding to
proliferating cell nuclear antigen (PCNA) [5]; however, phos-
phorylation of p21 by Pim-1 disrupts the p21-PCNA complex,
thus stimulating resumption of S phase [6]. Pim-1 activity can
also promote progression through the G2/M transition. While
phosphorylation of Cdc25C by its associated kinase C-TAKI
blocks the ability of Cdc25C to activate the G2/M switch,
phosphorylation of C-TAKI1 by Pim-1 abrogates this checkpoint
activity [7]. Furthermore, Pim-1 phosphorylation events promote
recruitment of nuclear mitotic factors to spindle poles, an
essential event in cell division [8]. Beyond enhancing cell
proliferation, Pim-1 can also suppress programmed cell death
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by inactivating the pro-apoptotic proteins Bad [9] and ASKI
[10].

Additional cellular consequences of Pim-1 activity result from its
effects on transcriptional control of gene expression. For instance,
Pim-1-directed suppression of p27*'P" expression includes inhibi-
tion of p27 gene transcription, mediated by phosphorylation and
mactivation of the forkhead transcription factors FoxOla and
FoxO3a [11]. Pim-1 also attenuates cytokine-induced transcrip-
tional programs mediated by the JAK-STAT pathways by
interacting with the suppressor of cytokine signaling proteins
Socs-1 and Socs-3 [12]. Phosphorylation by Pim-1 increases
cellular levels of Socs-1 by stabilizing the protein [13], thus
enhancing its ability to limit JAK-dependent activation of
downstream targets, particularly the transcription factor STATS
[12]. In a third example, phosphorylation by Pim-1 was shown to
activate p100, a transcriptional coactivator that interacts with the
transcription factor c-Myb, leading to enhanced transcriptional
activation [14]. Finally, Pim-1 can also co-activate MYC-targeted
genes, which may involve phosphorylation of proximal histone
proteins or even MYC itself [15,16].
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Together, these observations indicate that Pim-1 can profound-
ly impact cell proliferation and survival, involving direct effects on
the cell cycle and apoptotic machinery, as well as indirect effects
via re-programming transcriptional regulatory networks. Consis-
tent with this model, overexpressing Pim-1 from an immunoglob-
ulin enhancer induces lymphomas in transgenic mice [17], and
elevated Pim-1 levels have been associated with development of
hematopoietic cancers as well as aggressive tumors of the stomach
and prostate [16,18-21]. Although the consequences of Pim-1
overexpression on cellular growth and survival are severe, cells can
normally regulate Pim-1 levels through multiple mechanisms. In
hematopoietic cell models, transcription from the PIMI gene is
dramatically enhanced by a variety of mitogenic stimuli, however,
induction 1s generally transient [22-25]. Furthermore, sequences
in the 5'-untranslated region (5'UTR) of PIMI mRNA can
attenuate its translation [26], while turnover of Pim-1 protein is
regulated through interactions with heat shock protein 90 and
protein phosphatase 2A [27,28]. An early report characterizing
the kinetics of Pim-1 induction indicated that mitogens could also
modulate the decay kinetics of PIMI mRNA. In primary
lymphocytes, treatment with concanavalin A and the phorbol
ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) transiently
elevated PIM1 mRNA levels [25]. However, while PIM1 mRNA
was moderately stable when maximally induced, it was destabi-
lized 17 hours following mitogenic stimulation.

Although investigations into the regulation of Pim-1 expression
have largely focused on leukocyte models, recent findings that Pim-1
is overexpressed in some non-hematopoietic cancers (above) suggest
that mechanisms limiting its induction may be relevant to many
different cell types. In this study, we determined that PIM7 mRNA
is rapidly but transiently induced by mitogenic stimulation in
cultured human cell models representing three distinct tumorigenic
tissues, and in all cases involves rapid but reversible stabilization of
PIMI mRNA. Destabilization of PIM1 mRNA several hours after
treatment with mitogens was accompanied by dramatically
enhanced expression of tristetraprolin (I'TP), a tandem CCCH
zinc finger protein that targets mRNA substrates for rapid
degradation. TTP functions by interacting with several important
components of the cytoplasmic mRNA decay machinery, including
components of the 5’-decapping complex, 3'-deadenylating com-
plexes, and the 5'—3" and 3'—5" exonuclease activities required to
degrade the mRNA body [29,30]. In this work, we also show that
TTP binds PIM1 mRNA in cells and accelerates its decay, and that
this post-transcriptional regulatory circuit functions through AU-
rich elements (AREs) located near the 3'-end of the transcript.
Correlation analyses suggest that expression of TTP and PIMI
mRNAs are coordinated in diverse cell types. Given recent evidence
that a diverse array of mRNAs may associate with and/or be
regulated by T'TP [31-33], we propose that mitogenic induction of
TTP serves to attenuate and temporally limit the activation of a
subset of mitogen-stimulated genes, including PIM1.

Materials and Methods

Ethics Statement

All mouse experiments were conducted according to the US Public
Health Service policy on the humane care and use of laboratory
animals. All animal procedures used in this study were approved by
the National Institute of Environmental Health Sciences Institutional
Animal Care and Use Committee (protocol number 97-06).

Cell Culture and Mitogenic Stimulation

MBA-MB-231, HeLa, and HepG2 cells were obtained from the
American Type Culture Collection. MDA-MB-231 and Hela
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lines were maintained in DMEM+10% fetal bovine serum (FBS) at
37°C and 5% COy while HepG2 cells were grown in MEM+10%
FBS under the same conditions. Primary murine embryonic
fibroblasts (MEFs) were isolated from E14.5 embryos of TTP
knockout mice (24367 7) and wild-type littermates (Zp36™) as
described previously [33] and were maintained in DMEM
containing 10% FBS, 100 U/ml penicillin, 100 pg/ml streptomy-
cin, and 2 mM L-glutamine. Experiments employing MEF
cultures were performed on cells prior to passage 12. Where
indicated, mitogenic stimulation of all cell models was performed
by serum starvation in medium containing 0.5% FBS for 16—
20 hours, followed by administration of fresh medium containing
10% FBS and 100 nM TPA. HeLa/Tet-Off cell clones stably
transfected with expression vectors encoding FLAG-tagged wild
type TTP (FLAG-TTPwt) or the TTP C147R mutant (FLAG-
C147R) were generated previously [34], and were maintained in
DMEM containing 10% FBS, 100 pg/ml G418, 100 pg/ml
hygromycin B, and 2 pg/ml doxycycline (Dox). As required,
FLAG-TTPwt or FLAG-C147R expression was induced by
removal of Dox from growth media for 24 hours.

Measurements of PIM7 mRNA Levels and Decay Kinetics

Total RNA was purified from cultured cell lines using TRIzol
reagent (Invitrogen) according to the manufacturer’s instructions.
RNA samples were analyzed for PIM1 mRNA by qRT-PCR using
the iScript One-Step RT-PCR Kit with SYBR Green (Bio-Rad) in
parallel reactions programmed with human PV and GAPDH
amplification primers (for MBA-MB-231, HelLa, and HepG2
RNA samples; all qRT-PCR primers are listed in Table SI).
Corresponding murine PIMI and GAPDH PCR primers were
used for RNA samples from MEF cultures. Relative levels of PIM/
mRNA were calculated from threshold cycle numbers (C?) after
normalization to endogenous GAPDH mRNA abundance using
the 2*4“ method. Fach data point was taken as the mean *
standard deviation from quadruplicate qRT-PCR reactions for
each RNA sample. The decay kinetics of PIMI mRNA was
measured by actinomycin D (actD) time course assay. Briefly, total
RNA samples were purified from cultured cells at various times
following treatment with actD (5 pg/ml), which inhibits global
transcription. Time courses were limited to 4 h to avoid
complicating cellular mRNA decay pathways by actD-enhanced
apoptosis [35]. Relative PIMI mRNA levels remaining at each
time point were quantified by qRT-PCR (described above),
normalized to GAPDH mRNA, and plotted as a function of time
following actD treatment. From these plots, first-order mRNA
decay constants (k) were resolved by nonlinear regression (PRISM
v3.03, GraphPad), from which PIMI mRNA half-lives were
calculated using t,,9=In2/k Tabulated PIMI mRNA half-life
values are based on the mean = standard deviation of n
independent time-course experiments to permit pair-wise statisti-
cal comparisons (described below).

B-globin Reporter mRNA Decay Assays

The effects of PIM1 mRNA 3'UTR sequences on TTP-directed
mRNA decay were analyzed using B-globin (BG)-chimeric
transcripts essentially as described [36]. Briefly, selected sequences
were amplified by PCR from a PIMI cDNA clone (GenBank
accession NM_002648; GeneCopocia) using Pfu DNA polymerase.
A PIM1 cDNA fragment encoding a mutated ARE domain was
synthesized by GenScript. These fragments were subcloned
downstream of the BG translational termination codon in vector
pTRER, which expresses the rabbit BG gene under the control of
a tetracycline-responsive promoter [37]. The fidelity of all
recombinant plasmids was verified by restriction mapping and
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automated DNA sequencing. Reporter plasmids (50 ng) were
transfected into HeLa/Tet-Off cells (Clontech) in 6-well plates
along with the control plasmid pEGFP-C1 (200 ng; Clontech),
encoding the enhanced green fluorescent protein (EGFP), using
Superfect reagent (Qiagen). Where indicated, cells were cotrans-
fected with vectors (100 ng) expressing FLAG-TTPwt or FLAG-
TTP C147R from constitutive promoters, or with an empty vector
(pcDNA) as a negative control. After 24 h, transcription from the
BG reporter plasmids was arrested by adding doxycycline (Dox;
2 pg/ml). At selected time points thereafter, DNA-free RNA was
harvested using the SV RNA Purification Kit (Promega) and
analyzed for PpG-reporter and EGFP mRNA levels by multiplex
gRT-PCR wusing the gScript One-Step qRT-PCR Kit (Quanta
Biosciences) with BG and EGFP Tagman primer/probe sets
(Table S1) as described previously [36], with each data point taken
as the mean * standard deviation of five qRT-PCR reactions.
After normalization to EGFP mRNA concentrations, the levels of
individual BG-reporter mRNAs were plotted as a function of time
following administration of Dox to resolve mRNA decay constants
as described above.

Western Blots

Rabbit anti-TTP was from Abcam. Rabbit anti-Pim-1, mouse
anti-FLAG M2 monoclonal, horseradish peroxidase-conjugated
anti-GAPDH, and all secondary antibodies were from Sigma.
Whole cell lysates were collected by washing cell monolayers with
phosphate-buffered saline and then scraping in 2x SDS-PAGE
buffer (250 mM Tris [pH 6.8] containing 2% SDS, 10 mM DTT,
10% glycerol, and 0.05% bromophenol blue). Cell lysates were
heated to 100°C for 5 min, then clarified by centrifugation at
16,000 x g for 10 min to precipitate cell debris. Clarified lysates
were fractionated through 10% SDS polyacrylamide gels and
transferred to a nitrocellulose membrane which was then blocked
with 10% nonfat milk and incubated overnight with primary
antibody at 4°C. After washing, blots were then incubated with
peroxidase-conjugated secondary antibodies for an hour and
developed using the Western Lightning Plus-ECL kit (PerkinEl-

mer).

Immunoprecipitation and RT-PCR of Ribonucleoprotein
Complexes

HeLa cells were lysed in PLB buffer (10 mM HEPES [pH 7.5]
containing 100 mM KCI, 5 mM MgCl,, 0.5% IGEPAL CA630,
and 1 mM dithiolthreitol) containing 250 U/ml RNaseOUT
(Invitrogen) and 1Xx complete protease inhibitor cocktail (Roche)
on ice for 10 minutes. Ribonucleoprotein (RNP) complexes
containing FLAG-TTPwt or FLAG-TTP C147R were fraction-
ated from these lysates by incubation with 100 pl of a 50% (v/v)
suspension of Protein-A Sepharose beads (Sigma) pre-coated with
30 pug M2 anti-Flag monoclonal antibody (Sigma) for 2 h at 4°C
with mixing. Parallel fractionations programmed with mouse
IgG1- (BD Pharmingen) loaded beads served as negative controls.
After incubation beads were washed 5 times with NT2 buffer
(50 mM Tris [pH 7.4] containing 150 mM NaCl, 1 mM MgCl,,
0.05% Triton X-100), and then incubated with 100 pl NT?2 buffer
containing RNase-free DNase I (20 U) for 15 min at 30°C to
eliminate DNA from samples. Subsequently, beads were washed
twice with 1 ml NT?2 buffer, and then incubated in 100 ul NT2
buffer containing 0.1% SDS and 0.5 mg/ml proteinase K for
15 min at 55°C to digest proteins bound to the beads. After
extraction with phenol:chloroform (1:1), the RNA from each
ribonucleoprotein immunoprecipitation (RNP-IP) was then re-
verse-transcribed and specific transcripts quantified using the
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iScript One-step RT-PCR SYBR Green kit (Bio-Rad) with primer
sets listed in Table S1.

Biotin-RNA Pull-down Assay

Interactions between FLAG-TTP proteins expressed in HeLa
cells and RNA substrates were evaluated @ witro using a
modification of the biotin-RNA pull-down assay described by
Wang et al. [38]. Briefly, i witro transcription templates encoding
the PIM1 ARE, a mutated ARE fragment, or a coding region
sequence from PIMI mRNA downstream of the T7 promoter
were generated by PCR using Pfu DNA polymerase (Stratagene)
from appropriate primers. Biotin-labeled riboprobes were then
generated using the MegaShortScript 'T'7 i vitro transcription kit
(Ambion) incorporating UTP and biotin-16-UTP (Roche) at a 9:1
ratio. Crude cytoplasmic extracts were prepared from HelLa/Tet-
Off cells or clonal lines expressing FLAG-TTPwt or FLAG-TTP
C147R by scraping into lysis/wash buffer (10 mM TrisHCI
[pH 7.5] containing 100 mM KCI, 2.5 mM MgCl,, 2 mM
dithiolthreitol, and 1% IGEPAL-CA630) supplemented with a
protease inhibitor cocktail (I pg/ml leupeptin, 1 ug/ml pepstatin
A, and 0.1 mM phenylmethylsulfonyl fluoride). Cells were broken
using a Dounce homogenizer and nuclei pelleted by centrifugation
at 1000x g for 10 minutes. Protein concentrations were measured
using the Bio-Rad Protein Assay reagent. Biotin-RNA pull-down
reactions were assembled with 50 pg protein extract and 20 pmol
biotin-RNA. After incubation for 30 minutes at room tempera-
ture, biotin-RNA:protein complexes were isolated using strepta-
vidin-agarose beads (Fluka), washed twice in lysis/wash buffer,
then dissociated by re-suspension in 2x SDS-PAGE buffer at
100°C for 5 minutes. Co-purification of FLAG-tagged TTP
proteins was determined using Western blots.

Statistics

Comparisons of mRNA levels and decay kinetics were done
using the unpaired ¢ test, while correlation analyses used the
Spearman nonparametric test. In all cases, differences yielding
$<<0.05 were considered significant.

Results

Transient Mitogenic Stimulation of PIM1 Expression
Includes Reversible mRNA Stabilization in Diverse Human
Cultured Cell Models

Previous studies showed that mitogens can transiently induce
PIM]I gene transcription in a variety of hematopoietic cell models
(described under Introduction), however, few details are available
regarding the regulatory mechanisms responsible for temporal
control of PIM1 expression. Furthermore, little is known about the
regulation of PIMI expression in non-hematopoietic cells, even
though it is overexpressed in some solid tumors. The report by
Wingett et al. [25] raised the interesting possibility that the
diminution of PIMI mRNA that followed its induction by
mitogens in primary lymphocytes was accompanied by destabili-
zation of the transcript. In order to characterize molecular events
contributing to transient accumulation of PIMI mRNA, and to
ascertain whether these mechanisms also applied to non-
hematopoicetic cell types, it was first necessary to determine
whether PIM1 mRNA was regulated by mitogenic stimulation in
tractable cultured cell systems. To this end, we monitored PIM1
mRNA levels in serum-starved Hela (human cervical adenocar-
cinoma), HepG2 (human hepatoblastoma), and MDA-MB-231
(human breast adenocarcinoma) cells, then measured changes in
PIM1 mRNA expression as a function of time following mitogenic
stimulation using serum+TPA. In all three cell models, PIMI
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mRNA was significantly induced 2 hours following stimulation,
but returned to near basal levels shortly thereafter (Figure 1).

To determine whether mitogen-induced changes in PIM]
mRNA levels included modulation of mRNA turnover kinetics,
actD time course assays were used to measure PIM 1 mRNA decay
rates in cells prior to or at selected times following mitogenic
stimulation. In HeLa cells, PIM1 mRNA decay was well described
by a first-order kinetic model, which in uninduced cells yielded an
mRNA half-life of approximately 2.4 hours (Figure 2 and Table 1).
One hour following application of serum+1TPA, PIM] mRNA was
stabilized greater than 2-fold. However, this mitogen-induced
mnhibition of PIM1 mRNA decay was reversed 4 hours following
stimulation of HeLa cells (Table 1), concomitant with decreasing
levels of the PIM1 transcript (Figure 1). In HepG2 and MDA-MB-
231 cells, similar trends in PIMI mRNA decay kinetics were
observed, although the stabilization phase was even more
pronounced, with PIM1 mRINA exhibiting a half-life of >10 hours
following 1 hour serum+TPA treatment (Table 1). These data
indicate that mitogenic stimulation quickly stabilizes PIM7 mRNA
in concert with the previously described activation of PIM1 gene
transcription  [22-24,39]. However, following this transient
accumulation phase PIMI mRNA is destabilized, which likely
accelerates the rate at which PIAM7 mRNA returns to basal levels
in the cell. Finally, these data show that this reversible mRNA
stabilization event occurs in a wide range of cell types.

Post-mitogen Suppression of PIMT mRNA Coincides with
Induction of TTP, which Binds and Destabilizes the PIM1
Transcript

Regulated mRNA decay is generally directed by discrete cus-
acting sequences within affected transcripts. The best character-
ized sequence determinants of mRNA stability are AREs, which
are located within the 3'UTRs of many mRNAs that encode
oncoproteins and inflammatory mediators [40]. AREs function by
associating with cellular ARE-binding proteins, which may
positively or negatively influence mRINA decay rates or transla-
tional efficiency [41,42]. Towards the 3'-end of the PIM1 mRNA
3'UTR is a U-rich domain containing several overlapping copies
of the AUUUA motif common among ARE sequences (Figure 3A).
A further indication that this domain might contribute to the
regulated decay of PIMI mRNA was previously reported, as a
germ-specific PIM1 transcript found in rat testes which lacks the
distal 3'UTR is significantly more stable than the somatic PIM1
mRNA [25]. Although many different factors can influence
mRNA decay kinetics through AREs, two observations suggested
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that the ARE-binding, mRNA-destabilizing factor TTP might
contribute to the regulated decay of PIMI mRNA following
mitogenic stimulation. First, PIMI mRNA levels were suppressed
24 hours following stimulation with serum+TPA in several
cultured cell models (Figure 1) involving destabilization of PIM1
mRNA (Figure 2), while T'TP expression is induced by mitogenic
stimuli in some cell types [43,44]. Second, the ARE-like domain
within the PIMI mRNA 3’'UTR contains several sequences of the
type UUAUUUAUU (Figure 3A), which were previously
identified as high affinity T'TP binding sites [45]. Together, these
observations raise the possibility that mitogen-stimulated produc-
tion of TTP might be responsible for limiting expression of PIMI
mRNA once TTP protein has accumulated in the cell.

To test this model, we first used Western blots to assess TTP
protein levels in each cell model as a function of time following
mitogenic stimulation. Previously, we and others have shown that
TTP is very weakly expressed in a variety of exponentially growing
cultured cancer cell lines including HelLa and MDA-MB-231
[34,46]. Similarly, we observed that TTP protein was barely
detectable in serum-starved HeLa, HepG2, or MDA-MB-231 cells
(Figure 3B). However, TTP expression was dramatically enhanced
in each of these cell models following addition of serum+TPA.
TTP protein reached peak levels within 24 hours following
mitogenic stimulation depending on cell type. In HeLL.a and MDA-
MB-231 cells, TTP protein levels then decreased as a function of
time, while in HepG2 cells high TTP expression was maintained
for at least 12 hours. At later time points slower mobility bands
appeared on TTP immunoblots consistent with post-translation-
ally modified proteins. These modifications are likely phosphor-
ylation events; TTP phosphorylation by the p38™*"™ . activated
kinase MK2 has been shown to regulate both the stability and
subcellular distribution of the protein [29]. However, since post-
mitogen destabilization of PIMI mRNA (4 h post-induction;
Table 1) was observed concomitant with dramatically elevated
TTP expression, we next tested whether T'TP could interact with
endogenous PIMI transcripts. For these experiments, we utilized
previously described HeLa/Tet-Off cell models that express
FLAG-tagged versions of wild type TTP (FLAG-TTPwt) or the
TTP C147R mutant protein under the control of a tetracycline-
regulated promoter [34]. The C147R mutant protein serves as a
negative control, since disruption of this Zn2+—coordinating residue
within the C-terminal zinc finger domain abrogates RNA-binding
activity [47]. In RNP-IP assays programmed with anti-FLAG
antibodies, PIMI mRNA was readily detected in immunoprecip-
itates from cells expressing wild type TTP but not from
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Figure 1. Transient induction of endogenous P/M7 mRNA by mitogenic stimuli in cancer cell lines. Total RNA was isolated from Hela,
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SD of quadruplicate gRT-PCR reactions).
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untransfected cells or those expressing the C147R mutant
(Figure 4A), indicating that PIM7 mRNA selectively associates
with the wild type FLAG-TTP protein.

Given that TTP can interact with PIMI mRNA, the next
objective was to determine whether TTP influences the expression
of this transcript in cells. Real-time qRT-PCR assays showed that
PIM1 mRNA levels were suppressed by over 80% in HelLa/Tet-
Off cells expressing FLAG-TTPwt relative to untransfected cells
and 70% relative to C147R-expressing cells (Figure 4B), indicating
that maximal suppression of PIMI mRNA occurs only in the
presence of functional TTP. Since TTP normally enhances
degradation of substrate mRINAs [48], we then used actD time
course assays to determine whether FLAG-TTPwt suppresses
PIMI mRNA levels by accelerating its decay kinetics (Figure 4C).
In untransfected HeLa/Tet-Off cells, PIMI mRNA decayed with
a half-life of 3.04%0.36 h (n=3). In cells expressing FLAG-TTP
Cl147R, PIMI mRNA was slightly more stable (¢,0=
4.59%0.85 h; n=4), a small but statistically significant (p=0.033)
effect that may reflect a dominant negative activity by the C147R
protein on cellular mRNA decay kinetics. Other RNA binding-

Table 1. PIM7T mRNA decay kinetics during mitogenic
stimulation of cancer cell lines.

cell line serum+TPA? ti2 (h)? n
Hela unstimulated 2.38+0.16 3
1h 5.27+0.15 3
4 h 2.33+0.09 3
HepG2 unstimulated 1.63+0.12 3
1h >10 3
4 h 2.68+0.21 3
MDA-MB-231 unstimulated 3.05+0.20 3
1h >10 3
4 h 3.36%0.58 3

Cultures were incubated for 16-20 h in medium containing 0.5% serum prior
to each experiment. Where indicated, cells were stimulated by adding medium
containing serum (10%) and TPA (100 nM) for indicated periods prior to
inhibition of transcription with actD.

PFirst-order mRNA decay constants (k) were resolved for each cell population by
actD time course assay as described under “Materials and Methods”. mRNA
half-lives were then calculated using t;,, =In2/k. Quoted values represent the
mean = SD across n independent time course experiments.
doi:10.1371/journal.pone.0033194.t001
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defective TTP mutants are known to behave similarly [32,47],
possibly as a result of sequestering ancillary mRNA-degrading
activities that bind flanking TTP protein domains [49,50].
Curiously, PIMI mRNA levels were modestly decreased in
C147R-expressing relative to untransfected cells (Figure 4B),
despite being slightly more stable in the C147R line. One
possibility is that C147R-induced perturbations in the cellular
mRNA decay machinery indirectly contribute to a slight decrease
in the transcription of PIMI (and likely many other) genes,
although through an unknown mechanism. However, in cells
expressing FLAG-TTPwt, PIM1 mRNA decayed with a half-life of
1.73*£0.18 h (n=4), which was significantly faster than the
turnover rate of this transcript in either untransfected
(»p=0.0013) or Cl47R-expressing cells (p=0.0006). Together,
these data show that wild type TTP can associate with the PIM1
transcript in cells, and that this interaction decreases PIM7 mRNA
levels by accelerating its decay. Finally, accelerated decay of PIM1
mRNA by TTP also impacts levels of the encoded protein, since
Western blots show a dramatic decrease in Pim-1 protein in
HeLa/Tet-Off cells expressing FLAG-TTPwt relative to untrans-
fected cells (Figure 4D). Consistent with comparisons of PIMI
mRNA (Figure 4B), expression of the TTP C147R mutant also
decreased Pim-1 protein levels modestly, however, they remained
substantially higher than in cells expressing comparable amounts
of wild type TTP.

TTP Binds and Destabilizes PIMT mRNA via AU-rich
Sequences in its Distal 3'UTR

TTP is known to target a variety of ARE-containing mRNAs,
particularly those that encode cytokines and lymphokines [31].
Furthermore, i vitro binding studies identified UUAUUUAUU as a
high affinity TTP-binding motif [45], several copies of which are
localized to the distal 3'UTR of PIMI mRNA (Figure 3A). To
determine whether this ARE-like domain within the PIM7 3'UTR
was involved in TTP-directed control of mRINA decay, a series of
PIM1 3'UTR-derived fragments were inserted into the 3"UTR of a
B-globin (BG) reporter gene downstream of a Tet-responsive
promoter (Figure 5A). These vectors were co-transfected along with
plasmids expressing wild type or C147R mutant forms of FLAG-
TTP into HeLa/Tet-Off cells, permitting measurement of reporter
mRNA decay rates using Dox time course assays. A BG reporter
mRNA containing the entire PIM1 3'UTR decayed with a half-life
of approximately 1.6 hours in HeLa/Tet-Off cells when co-
transfected with an empty control vector (Figure 5B). In cells
expressing wild type FLAG-TTP, this reporter transcript decayed
with a half-life of 56 minutes, significantly faster than in cells co-
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Figure 4. Functional association of TTP with P/M7 mRNA in
HelLa cells. (A) RNP-IP experiments were performed using control IgG
or anti-FLAG antibodies and lysates from untransfected Hela/Tet-Off
cells (ut) or stable clonal lines expressing FLAG-TTPwt or FLAG-TTP
C147R as described in “Materials and Methods”. Immunoprecipitated
material was then screened for PIM7 mRNA by quantitative real-time RT-
PCR and normalized to GAPDH mRNA (mean =+ SD of three reactions).
Independent replicate experiments yielded similar results. (B) Relative
levels of PIMT mRNA were measured in untransfected versus FLAG-
TTPwt- or FLAG-TTP C147R-expressing Hela cells. Bars represent the
mean * SD of quadruplicate qRT-PCR reactions normalized to GAPDH
mRNA. (C) The decay kinetics of PIM1T mRNA was measured in Hela cell
models using actD time course assays as described in Figure 2. mRNA
half-lives calculated from independent replicate experiments are
provided in the text. (D) Western blot analyses using antibodies
targeting specified proteins in HelLa/Tet-Off cell models, with positions
of molecular weight markers (in kDa) shown at left.
doi:10.1371/journal.pone.0033194.g004
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transfected with either control (p=0.0006) or C147R-expressing
(»p=0.0003) plasmids (Table 2). By contrast, a reporter mRNA
lacking the PIMI ARE (AARE) exhibited similar decay kinetics in
the presence or absence of functional T'TP, indicating that the ARE
domain is required for TTP-directed control of mRNA turnover.
This was further supported by decay of a BG reporter mRNA
containing the PIM1 ARE alone, which was significantly destabilized
in cells expressing wild type TTP relative to cells co-transfected with
the C147R mutant (p = 0.0087) or empty vector control (p=0.0094).
Finally, we tested whether the UUAUUUAUU sequences located at
the 3’-end of the ARE domain specifically contributed to TTP-
dependent mRINA destabilization by measuring the decay kinetics of
a modified BG-PIM1 ARE reporter transcript (BG-PIM! AREmut)
containing a series of U—C substitutions within these motifs
(Figure 5A). Similar to the PIM1 AARE reporter, turnover of the
BG-PIMI AREmut mRNA was completely unresponsive to TTP
expression (Table 2), indicating that the UUAUUUAUU motifs
located within the distal portion of the ARE domain are essential for
targeted mRINA decay through TTP.

To determine whether T'TP could physically interact with the
ARE from PIMI1 mRNA, biotin-labeled riboprobes were synthe-
sized that encoded a 171-nucleotide region spanning the PIM1 ARE
or a comparably sized fragment from the 3'-end of the PIM] coding
sequence (Figure 5A). When incubated with crude cytoplasmic
extracts from untransfected HeLa/Tet-Off cells or cultures
expressing FLAG-TTPwt or FLAG-TTP C147R, the wild type
protein co-purified with the biotin-labeled ARE fragment over a
streptavidin resin, while the mutant protein did not (Figure 5C).
Neither FLAG-TTP protein co-purified with the PIM7 mRNA
coding sequence fragment. Similarly, neither protein was recovered
in complexes with the biotin-labeled PIMI AREmut probe.
Together, these data demonstrate that the UUAUUUAUU-
enriched sequences at the 3’-end of the ARE-like domain within
the PIM1 3'UTR bind TTP, and are required for acceleration of
mRNA decay in the presence of this factor.

Expression of PIM1 and TTP mRNAs are Coordinately

Regulated in Various Tissues
Our working model is that mitogenic stimulation concomitantly
induces expression of both PIMI (Figure 1) and TTP (Figure 3B),
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of the BG gene for reporter mMRNA decay assays. At the bottom is the sequence at the extreme 3’-end of the ARE domain that contains known high
affinity TTP-binding motifs. In the BG-PIM1 AREmut reporter mRNA and biotin-labeled AREmut RNA probe, these motifs were disrupted by mutating
underlined uridylate residues to cytidines. (B) Decay rates of BG-PIM1 chimeric reporter mRNAs were resolved by Dox time course assays in HeLa/Tet-
Off cells co-transfected with an empty vector (pcDNA; solid circles, solid lines) or vectors expressing FLAG-TTPwt (open circles, dashed lines) or FLAG-
TTP C147R (triangles, dotted lines) as described under “Materials and Methods”. mRNA half-lives resolved from multiple independent experiments are
summarized in Table 2. (C) Western blots probed with indicated antibodies (Ab) show levels of FLAG-TTP wt and C147R mutant proteins (top panel)
and GAPDH (second panel) in crude cytoplasmic extracts prepared from untransfected HelLa/Tet-Off cells (ut) or stable clonal lines expressing each
FLAG-TTP variant. Samples of each lysate were fractionated using biotin-RNA pull-down assays programmed with riboprobes encoding a PIM1 coding
sequence fragment (CDS), the PIM1 ARE or the ARE mutant containing the U—C substitutions specified above (AREmut). FLAG-TTP proteins co-
purifying with each riboprobe were detected by Western blot (bottom panels). The positions of molecular weight markers (in kDa) are shown to the

left of each Western blot panel.
doi:10.1371/journal.pone.0033194.g005

and that the resulting enhancement of TTP protein serves to limit
the amplitude and duration of PIMI mRNA accumulation by
targeting this transcript for degradation. While this relationship was
consistent among the cultured cell models surveyed in this work, we
next tested whether PIMI and TTP expression might be
coordinately regulated i vivo by comparing PIM1 and TTP mRNA
levels among gene array datasets derived from cohorts of human
tissues (Figure 6). The datasets tested represented: (i) a collection of
171 prostate samples, which included normal and transformed
tissues [51], (ii) 94 breast tumors [52], and (iii) CD 138+ cells purified
from the bone marrow of 50 multiple myeloma (MM) patients [53].
In all cases, statistically significant positive correlations were
observed between PIMI and TTP mRNA levels. If both PIMI
and TTP were constitutively expressed, one would expect a negative
correlation between these mRINAs, since the steady-state level of
PIMT mRNA would be suppressed by T'TP-directed destabilization.
However, since both are inducible genes, these data are most
consistent with a model whereby PIMI and TTP expression are
concomitantly induced by common stimuli, and that this relation-
ship is conserved across diverse tissue types.

Coordinated Induction of PIM1 and TTP Limits the
Magnitude and Duration of PIM7 mRNA Accumulation
Following Mitogenic Stimulation

Finally, to test whether mitogenic induction of T'TP is required
to attenuate PIMI expression in mitogen-stimulated cells, PIM/

Table 2. Decay kinetics of BG-PIM1 chimeric mRNAs in
transfected Hela cells.

mRNA Co-transfection ty2 (h)? n
BG-PIM1 3'UTR pcDNA 1.64+0.09 3
TTPwt 0.93+0.09 3
TTP C147R 1.66*0.11 4
BG-PIM1 AARE pcDNA 3.88+0.71 3
TTPwt 3.67£0.22 3
TTP C147R 4.52+0.49 4
BG-PIM1 ARE pcDNA 1.42+0.07 3
TTPwt 0.89+0.18 3
TTP C147R 1.45+0.09 3
BG-PIM1 AREmut pcDNA 2.58+0.56 4
TTPwt 2.96+0.54 4
TTP C147R 293*+0.17 3

“First-order constants (k) describing the decay kinetics of indicated BG-chimeric
mRNAs were measured in HelLa/Tet-Off cells co-transfected with indicated
expression plasmids by Dox time course assays as described under “Materials
and Methods” and in Figure 5. mRNA half-lives were calculated using t;,,=In2/
k. Quoted values represent the mean * SD for n independent experiments.
doi:10.1371/journal.pone.0033194.t002

@ PLoS ONE | www.plosone.org

mRNA levels were compared in MEF cultures derived from TTP
knockout mice (TTP™" ™) zersus wild type littermates (TTP**) as a
function of time following treatment with serum+TPA. Similar to
the cultured human cell lines (Figure 3B), mitogenic stimulation
rapidly and potently increased TTP protein levels in TTP**
MEFs (Figure 7A), while no TTP protein was detected in the
TTP ™/~ line. In TTP™" cells, PIM/ mRNA was rapidly but
transiently induced following addition of serum+TPA, increasing
approximately 3.5-fold within 2 hours (Figure 7B). By contrast,
mitogenic stimulation of TTP™/~ MEFs increased PIMI mRNA
to levels 1.8-fold higher than those observed in the corresponding
TTP™* line. Furthermore, enhanced PIM1 levels were observed
for a longer period following stimulation of TTP™’ ™~ versus TTP**
MEFs. Four hours post-stimulation, PIMI mRNA was still
clevated 3-fold above uninduced levels in TTP™” " cells, while in
cells expressing T'TP, PIMI mRNA had returned to near basal
levels at this point. Finally, ActD time course assays performed
after 2 h induction showed that PIM1 mRNA decayed over 3.5-
fold faster in TTP™™* versus TTP~/~ MEFs (Figure 7C). Together,
these data show that concomitant induction of TTP limits the
accumulation of PIM1 mRNA following mitogenic stimulation by
accelerating decay of this transcript.

Discussion

Mitogens rapidly induce expression from the PIMI gene in
many different cell backgrounds (Figure 1) [23-25]. The resulting
enrichment of Pim-1 protein levels activates several nuclear and
cytoplasmic signaling programs that promote cell proliferation and
suppress apoptosis (described under “Introduction”). However,
prolonged or constitutive elevation of Pim-1 levels can contribute
to hyperproliferative or neoplastic syndromes [16,17,20,21],
indicating that it is essential to restrict PIMI expression. In this
study, we show that induction of PIM mRNA following mitogenic
stimulation with serum+TPA is temporally limited in several cell
models (Figure 1), and that rapid restoration to basal expression
levels involves acceleration of mRINA decay in each case (Table 1).
This post-induction enhancement of PIMI mRNA turnover
coincides with accumulation of the ARE-binding protein TTP
(Figure 3), which binds and destabilizes PIM7 mRNA (Figure 4) via
a series of UUAUUUAUU motifs located within an ARE-like
domain in the PIMI 3'UTR (Figure 5). Finally, we provide
evidence that expression of TTP and PIMI are correlated in many
human tissues (Figure 6), and that mitogenic stimulation can
induce PIMI mRNA to a greater degree in TTP-deficient cells
(Figure 7). Together, these data indicate that concomitant
induction of TTP likely contributes to limiting the amplitude
and duration of PIMI mRNA accumulation following mitogenic
stimulation.

Recent ribonome-wide surveys of TTP-regulated mRNAs by
large-scale RNP-IP [31], or differential mRNA levels [32] or
stability [33] in cells expressing or lacking functional T'TP have
identified several hundred transcripts that may bind and/or be
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regulated by this protein. This putative TTP substrate population
includes many mRNAs that encode regulators of cell proliferation
and survival including cyclin G2, interleukins -10 and -15, and the
polo-like kinases Plk2 and Plk3. Other known mRNA substrates of
TTP encode factors that promote angiogenesis and tumor
metastasis like vascular endothelial growth factor [34,54] and
urokinase plasminogen activator [32], as well as a diverse
collection of inflammatory mediators including TNFo and
cyclooxygenase 2 [55,56]. As such, the mRNA-destabilizing
activity of TTP likely serves as a general mechanism to limit
levels of many transcripts whose uncontrolled expression can elicit
severe pathological consequences. However, the ordered activa-
tion of positive (transcriptional induction, mRNA stabilization)
and negative (IT'TP expression) regulatory mechanisms influencing
PIM1 mRNA following mitogenic stimulation characterized in this
work highlights an expanded role for TTP in controlling
expression of its mRNA targets. By coordinating the induction
of TTP along with TTP substrate mRNAs in response to specific
stimuli, cells may buffer perturbations in gene regulatory networks
by limiting the extent and duration of target mRNA accumulation.
The utility of regulated mRNA decay in limiting acute mRNA
induction following inflammatory stress was recently highlighted in
a survey of transcript levels and stability in lipopolysaccharide-
stimulated bone marrow-derived macrophages [57]. Here, brief
(30 min) lipopolysaccharide exposure stabilized a diverse array of
ARE-containing transcripts; however, a subset of these mRNAs
including those encoding endothelin 1, TNFa, the chemokine
CXCLI, and even TTP itself were again rapidly degraded 6 h
post-stimulation. This study suggests that post-transcriptional
mechanisms targeting AREs may exert a limiting influence on
the expression of many genes.

Although TTP expression is induced by selected mitogenic
and inflammatory stimuli concomitant with activated transcrip-
tion of some TTP substrate mRNAs including PIM1 (discussed
above), few details are available regarding the mechanisms
responsible for coordinated transcription from these genes. For
example, increased TTP expression in lipopolysaccharide-
stimulated cultured macrophages requires p38™“"™ [58], while
serum induction of TTP in fibroblast models was strongly but
not completely dependent on an intronic sequence element that
bound the transcription factor Spl [59]. By contrast, neither of
these mechanisms has yet been implicated in the regulation of
the PIMI gene, although prolactin activates its transcription in a
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lymphoma model through several proximal upstream promoter
elements [22], and also requires activation of the Akt kinase
[60]. However, a recent ribonome-scale survey of epidermal
growth factor-stimulated genes in HelLa cells showed that
induction of TTP mRNA coincided with expression of several
transcription factors including junB and ATF3, suggesting that
an AP-1-based transcription circuit could be responsible for
coordinating these events [61]. Elucidating the molecular
mechanisms responsible for coordinating transcription of TTP
and its target mRNAs thus remains an intriguing topic for future
study.

Data presented in this work show that TTP destabilizes PIM I
mRNA through interactions with an ARE sequence in the PIM/
mRNA 3'UTR, and that this regulatory mechanism suppresses
PIMI expression 4 hours following mitogenic stimulation
(Figure 1 and Table 1). However, in quiescent cells PIM7 mRNA
also decayed rapidly but was dramatically stabilized shortly
following exposure to serum+TPA, all in the absence of
detectable TTP protein (Figure 3). These observations prompt
another interesting question, in that the mechanism(s) responsible
for initial stabilization of PIMI mRNA following mitogen
exposure remain unknown. Some results from this study suggest
that constitutive decay of PIMI mRNA may also be mediated by
its ARE domain, since the BG reporter mRNA lacking the PIM1
ARE (AARE) was stabilized >2-fold wversus reporter transcripts
containing the complete PIMI 3'UTR (p=0.0056) or the ARE
alone (p=0.0039), even in the absence of TTP (Table 2).
Accordingly, a likely model is that an alternative ARE-binding
activity is responsible for the rapid decay of PIMI mRNA in
unstimulated cells, which may be inactivated or displaced shortly
following mitogenic simulation. Over 20 different factors have
been shown to bind AREs, although the functional significance of
these interactions has not been resolved in most cases [41,42].
However, recent studies on the regulation of selected ARE-
binding proteins suggest some potential candidates. AUF1 is a
family of four related proteins generated by alternative splicing
from a common pre-mRNA [62]. Each isoform is capable of
binding ARE sequences with varying degrees of affinity [63], but
the major cytoplasmic isoforms, termed p37°Y"" and p40*V"!,
are most closely associated with destabilization of mRNA
substrates [64,65]. In unstimulated THP-1 monocytes, poly-
some-associated p40AUFl is phosphorylated on Ser83 and Ser87.
However, stimulation of THP-1 cells with TPA induces rapid
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Figure 7. Regulation of PIM7 mRNA induction by TTP following
mitogenic stimulation in MEF models. (A) Whole cell lysates were
prepared from MEFs derived from TTP knockout mice (TTP~/7) and
wild-type littermates (TTP™) following serum-starvation and stimula-
tion with serum+TPA as described in “Materials and Methods".
Expression of TTP and GAPDH were assessed at selected time points
by Western blot, with the positions of molecular weight markers (in
kDa) shown at left. (B) Total RNA was isolated from MEF cultures
stimulated as described in (A). Bars show the relative level of PIMT1
mRNA in TTP™* (solid bars) and TTP™/~ (open bars) MEFs at indicated
times following mitogenic stimulation as determined by gRT-PCR and
normalized to GAPDH mRNA (mean = SD of quadruplicate qRT-PCR
reactions, *p<<0.01 versus TTP™"). Independent replicate experiments
yielded similar results. (C) ActD was added to MEF cultures 2 hours after
stimulation with serum+TPA. PIMT mRNA decay rates were then
measured as described in Figure 2, and yielded half-lives of
0.42+0.11 h (n=4) for TTP™* cells versus 1.56+0.12 h (n=3) for
TTP™/~ (p<0.0001 versus TTP™).
doi:10.1371/journal.pone.0033194.9g007

dephosphorylation of p40*Y*" concomitant with stabilization of
mRNA targets [66]. A second potential trans-regulator of PIM1
mRNA decay is HuR. This ubiquitously expressed protein
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