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The amyloid precursor protein (APP), that plays a critical role in the development of senile plaques in
Alzheimer disease (AD), and the gp41 envelope protein of the human immunodeficiency virus (HIV), the
causative agent of the acquired immunodeficiency syndrome (AIDS), are single-spanning type-1
transmembrane (TM) glycoproteins with the ability to form homo-oligomers. In this review we describe
similarities, both in structural terms and sequence determinants of their TM and juxtamembrane regions.
The TM domains are essential not only for anchoring the proteins in membranes but also have functional
roles. Both TM segments contain GxxxG motifs that drive TM associations within the lipid bilayer. They also
each possess similar sequence motifs, positioned at the membrane interface preceding their TM domains.
These domains are known as cholesterol recognition/interaction amino acid consensus (CRAC) motif in gp41
and CRAC-like motif in APP. Moreover, in the cytoplasmic domain of both proteins other α-helical
membranotropic regions with functional implications have been identified. Recent drug developments
targeting both diseases are reviewed and the potential use of TM interaction modulators as therapeutic
targets is discussed.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Biological membranes are complex mixtures composed primarily
of lipids and proteins. Although membrane proteins represent
approximately one third of all proteins encoded in the human
genome, and are involved in almost every aspect of cell biology and
34 963544635.
).
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physiology, there is still little knowledge about how these proteins act
and interact in biological membranes [1]. This is despite that more
than half of currently marketed pharmaceuticals are targeting
membrane proteins [2].

The vast majority of membrane proteins are anchored to cellular
membranes through transmembrane (TM) domains that predomi-
nantly adopt an α-helical secondary structure [3]. Membrane-
spanning α-helices, rather than serving merely as featureless
hydrophobic stretches required for anchorage and facilitating inser-
tion of proteins inmembranes, have recognized functionswell beyond
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these classical roles (for recent overviews see [4,5]). The organization
and number of TM segments varies between membrane proteins, but
it is generally believed that van der Waals interactions play an
important role in the packing of TM domains. These interactions
compensate for the lack of the hydrophobic effect that drives the
folding of water-soluble proteins. Modulation of TM helix–helix
interactions provides new exciting means to regulate the functions
of membrane proteins. It is well established that homo- or hetero-
dimerization, trimerization and other types of TM associations play
important roles in different biological processes [5]. In the present
review, we will discuss recent results on the structure, packing
determinants and assembly of the TM domains of HIV gp41 and APP.
These are both membrane proteins implicated in human diseases of
paramount importance. The development of exogenous agents that
recognize TM domains can be used for rational drug design [1,6], and
by interfering with TM interactions new targeted therapeutics should
be expected in the near future.

2. HIV envelope (Env) glycoproteins

Human immunodeficiency virus type-1 (HIV-1) is an enveloped
virus that gains entry into target cells by mediating the fusion of viral
and cellular membranes. Entry into cells is directed by the envelope
(Env) glycoproteins, which are present on the surface of HIV-1 virions
as trimers [7]. HIV-1 Env complex is synthesized as a type-1 TM gp160
precursor, which undergoes oligomerization, disulfide bond forma-
tion and extensive glycosylation, and is then post-translationally
cleaved into the surface receptor binding subunit gp120 and the TM
fusion protein gp41 [8], which remain non-covalently associated [9].

The full-length monomeric gp41 TM glycoprotein consists of three
domains (Fig. 1A): an ectodomain (ECD), a TM domain and a large
cytoplasmic domain (CTD). Several regions in the ECD are important
for membrane fusion activity (see refs [10,11] for recent reviews): a
highly conserved (glycine-rich) hydrophobic fusion peptide (FP),
located at the extreme N-terminus; N- and C-terminal heptad repeat
(HR) regions (NHR and CHR), connected by a glycosylated 30–40
residue disulfide-bonded loop; and a tryptophan-rich membrane-
proximal ectodomain region (MPER). Binding of gp120 to the CD4
cellular receptor on the surface of target cells triggers a series of
conformational changes in gp120 subunit that facilitate gp120 binding
Fig. 1. Schematic representation of HIV-1 gp41 (A) and APP (B). TM domain and membranotr
enlarged and for APP the sequence involved in processing is shown with the major sit
intramembrane cleavage sites. The CRACmotifs are underlined. TM glycines and alanine resid
and Aβ 40/42 peptides are depicted with dark lines. Numbering refers to HIV gp160 precur
to a co-receptor, CXCR4 or CCR5, and the exposure of the hydrophobic
gp41 fusion peptide. The dynamics of gp41 conformational changes
triggering membrane fusion have been reviewed extensively [11–13].
Briefly, three gp41 NHR regions can adopt a parallel triple-stranded
coiled-coil configuration that enables penetration of the gp41 fusion
peptide into the membrane of the target cell. Subsequent refolding of
gp41 heptad repeat (HR) regions into a six-helix bundle structure
(trimer-of-hairpins) forces the juxtaposition of the viral and cell
membranes, promoting their fusion [14]. Recently, the C-terminal
boundary of this six-helix bundle fusion conformation in an ongoing
dynamic fusion process has been demonstrated [15]. At present, it is
thought that the structural rearrangements in the gp41 TM glycopro-
tein are crucial for the membrane fusion process and viral entry [16].

3. gp41 membranotropic sequences

Although gp41 six-helix bundle formation is themain driving force
for the fusion process, other gp41 regions in the ECD may regulate
fusion activity in numerous ways. The role of the N-terminal fusion
peptide region and its implication in membrane destabilization and
fusogenic activity has been analyzed in recent reviews [10,11]. The
membrane conformation of the fusion peptide (α-helical/β-strand/
disordered) deduced from chemically synthesized FPs in model
membranes is controversial [17–19], probably due to an effect of
microenvironment composition dictating the adopted conformation
[20]. In this context, gp41 FP, which is unstructured in solution, adopts
an α-helical structure in micelles [21,22], inserting its N-terminal
residues in an α-helical conformation and presenting a flexible hinge
reminiscent of the kinked structure proposed for several N-terminal
fusion peptides [23–26]. Structural plasticity of gp41 FP has been also
observed depending on peptide concentration. When bound to lipid
bilayers at low concentration gp41 FP is largely α-helical, however, at
higher protein/lipid ratios the domain is partially converted to form
β-structures [19]. A 13C FTIR study have demonstrated that this
peptide adopts an intermolecular parallel β-sheet structure in
membranes when stabilized by the adjacent N-terminal heptad
repeat [27]. Recent 2D correlation spectra and distancemeasurements
from solid-state NMR-spectroscopy in cholesterol-containing host-
cell-like membranes indicated that the fusion region had predomi-
nantly a β-strand conformation [28], with 50–60% population of
opic sequences in each protein are depicted darker. TM and juxtamembrane regions are
es of cleavage by α-, β-, and γ-secretases highlighted. Dashed arrows indicate APP
ues involved in GxxxG/Amotifs are shown in bold. Locations of gp41 inhibitor peptides
sor, BH10 isolate (A) and human APP770 isoform (B). See text for details.



Fig. 2. Simplified membrane topology models for TM and membranotropic regions. (A)
Monomeric HIV-1 gp41. (B) Monomeric APP. (C) TM segment oligomeric schemes:
gp41 trimer (left) and APP dimer (right). The predicted location of gp41 TM segment,
α-helical MPER region and LLP helices are shown. The two surface-membrane-
associated helices of APP are depicted according to [107].
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antiparallel strand orientation [29], that allows close proximity of the
A525–G527 region with the lipid headgroups, which would likely
perturb the cell membrane [30]. Perhaps both α-helical and β-sheet
structures are relevant at different stages of HIV fusion process. Given
its α-helix to β-sheet interconversion, elevated alanine and glycine
levels, fusogenicity and plaque formation, gp41 FP has been proposed
as an ‘amyloid homolog’ (or ‘amylog’) [31,32], and more recent results
suggest that bound to membranes, FP may contribute to cytopathicity
of HIV through an amyloid-type mechanism [33].

The gp41 ECD region preceding the TM domain is designated as
MPER (membrane-proximal ECD region), or pre-transmembrane,
preTM region (reviewed in [34]). This region, which is predicted to
form an α-helical conformation on membrane contact (Fig. 2A),
contains highly conserved hydrophobic residues and is unusually rich
in tryptophan residues (see Fig. 1A). The basis for the invariant nature
of the tryptophans appears to be at the level of glycoprotein
incorporation into virions, since mutants in this region reduce
glycoprotein incorporation and drop the efficiency of virus entry
while having no significant effect on syncytium formation [35]. The
MPER region actively participates in the clustering of gp41 within the
HIV-1 envelope, and in destabilization of the bilayer architecture at
the loci of fusion. Interestingly, the MPER carboxy-terminus has a
LWYIK sequence immediately preceding the TM segment (see Fig. 1A)
that can be identified as a ‘cholesterol recognition/interaction amino
acid consensus’ (CRAC) motif [36–39]. A number of studies have
shown that cholesterol-enriched microdomains (lipid rafts) play
important roles in both early and late phases of the HIV lifecycle
(reviewed in [40,41]). MPER–cholesterol complex might form at the
interface of the external viral membrane monolayer, with the
potential of inducing membrane perturbations upon self-assembly
[35,42]. Monolayer intrinsic curvatures could hypothetically change
their sign from positive to negative curvature upon MPER desorption,
thus facilitating fusion pore opening [34]. Recent mutational studies
suggest that both structural (for gp41 stability and incorporation) and
functional (membrane disruption) constraints may contribute to the
highly conserved nature of the membrane-proximal ECD region [43].
More recently, it has been shown that the highly conserved LWYIK
motif acts as a structural determinant inmodulatingmembrane fusion
and post-fusion events [44], and that intact plasma membrane
cholesterol and lipid raft microdomains are essential for HIV entry
in macrophages, a critical target cell type for HIV-1 [45].

The MPER may act in conjunction with other regions in the gp41
ECD to maintain the native and fusion states. The FP and MPER
sequences can assemble restricting FP-mediated fusion [46,47].
Extensive studies with synthetic peptides have recently pointed out
that the MPER W666–N677 segment interacts with a fusion peptide
proximal region S528–Q540 (FP-PR, Fig. 1A), and that this interaction
contributes to stabilize gp41 six-helix bundle formation [48]. FP-PR
and MPER can act synergistically in forming a fusion-competent
gp120/gp41 complex and in stabilizing themembrane-interactive end
of the trimer-of-hairpins [49]. In fact, hydrophobicity-at-interface
analysis of gp41 MPER mutants [34] predicts the existence of a gp41
region anchored to the viral membrane through an interfacial
sequence, amphipathic at its N-terminus, which is followed by the
hydrophobic TM domain (Fig. 2A).

Other membranotropic regions have been located in the gp41
cytoplasmic domain (Fig. 2A). Thus, the lentiviral lytic peptide (LLP)
sequences [50–52], three amphipathic helical segments, might
function in modulating fusogenicity during envelope processing and
viral membrane fusion or budding [11,53]. Also, progressive trunca-
tions and point mutations in the gp41 cytoplasmic tail have
demonstrated that the C-terminal end plays a key role in coupling
HIV-1 fusion competence to virion maturation [54]. Furthermore,
photoinduced chemical reaction studies with a membrane-embedded
probe provide a further demonstration that portions of gp41
cytoplasmic tail are partially inserted into the viral membrane [55].

4. gp41 transmembrane domain

The gp41 TM domain is one of the most conserved regions of the
gp41 sequence among independent isolates of HIV-1, and is primarily
responsible for anchoring the envelope glycoproteins into the viral
membrane (Fig. 2A). In contrast to the membrane-spanning region of
most viral envelope proteins that consist of stretches of hydrophobic
amino acids, the TM region of lentivirus envelope glycoproteins is
generally interrupted by charged residues [56]. In this regard, HIV-1
not only has one lysine (K683) and two arginines (residues 707 and
709) flanking the membrane-spanning region, but also contains one
basic residue (R696) that is predicted to be located within the
hydrophobic TM region (Fig. 1A). In the absence of high-resolution
structural information on the HIV-1 TM domain, the exact length of
this region remains unresolved. At present, two models have been
proposed for the membrane spanning of HIV-1 gp41 protein. In the
first model 25 amino acid residues were suggested to cross the
membrane as an α-helix, with a length similar to the thickness of the
lipid bilayer [57]. In this model R696 is placed in the hydrophobic core
of the bilayer, without any known mechanism to neutralize the basic
groups. In this context, C-terminal truncation studies of simian
immunodeficiency virus (SIV) [58] and HIV-1 [59] indicate that the
entire 25-amino acid region is not required for the biological function
of Env glycoproteins. Therefore, a second model was proposed [58]
based on the capacity of polar residues to ‘snorkel’, i.e. they may bury
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their aliphatic part in the hydrophobic region of the lipid bilayer, while
positioning the charged group in the more polar interface. In this
model, twelve amino acid residues will form the hydrophobic helical
core buried within the membrane [59], with K683 and R696 (BH10
isolate numbering) residues flanking the hydrophobic core region.
Thus, membrane-embedded charged residues can be neutralized by
side-chain interactions with negatively charged lipid polar head
groups. This latter membrane disposition precludes any polar residues
from being placed at the hydrophobic lipid core since the polypeptide
membrane-spanning region is significantly reduced, probably accom-
panied by elastic distortion of the surrounding lipid chains [60].
Interestingly, influenza virus hemagglutinin (HA) studies have
indicated similar TM requirements. The presence of a single arginine
residue allowed a shortened HA TM domain to span the bilayer, most
likely by an interaction between the guanidinium group with
phosphate head groups of the viral membrane [61].

The process of membrane fusion initiated by gp120-CD4 binding
seems to be dependent on the structural integrity of the TM domain
[62], and it was found that a minimum length of the TM segment was
crucial for the membrane fusion function of the protein [63]. Thus, in
addition to membrane anchorage, gp41 TM domain may be directly or
indirectly involved in membrane fusion events. In fact, the replace-
ment of the HIV-1 TM segment with a glycophospholipid anchor
abrogated both cell–cell fusion and virus–cell fusion, though the
chimeric protein could be normally expressed, processed, and
incorporated into virions [64]. Also, the complete substitution of
gp41 TM segment by that of cellular glycophorin A (GpA), vesicular
stomatitis virus G protein (VSV-G), or HA glycoprotein was found to
severely impair the fusion activity of the chimeric molecules [65,66].

According to the consensus sequence of HIV-1 TM segment [59],
the twelve amino acid residues in the core region (L684–L695, Fig. 1A)
are more conserved than those in the flanking residues. Within these
hydrophobic residues, recent studies have focused on the GxxxGmotif
(G, glycine; x, other amino acid residues), since these glycine residues
are the most conserved among all HIV-1 TM sequences [59,65,67].
This motif is often observed in TM α-helices of both cellular and viral
proteins (Fig. 3), and has been proven to stabilize helix–helix
interactions of membrane proteins [3]. In the case of GpA, this motif
is critical for homodimerization [68,69], although surrounding
residues might ‘fine-tune’ the affinity of helix–helix interaction [70–
72]. In fact, the length of the hydrophobic region has also been found
to be critical for in vitro dimerization of the native GpA sequence [73],
as well as in a polyleucine scaffold where the dimerization motif was
grafted [74]. Similarly, the GxxxG motif in the E1 glycoprotein of
hepatitis C virus (HCVE1) is important for the heterodimerization of
Fig. 3. Amino acid sequences of membrane-spanning domains containing GxxxG and/
or GxxxG-like motifs, for GpA and other membrane proteins from viral and neuronal
origin. The amino acid residues of the putative TM domains are shown as upper case
letters and flanking sequences are shown as lower case. Glycine and alanine residues in
GxxxG/A motifs are in bold. HIV-1 consensus TM sequence (according to Shang et al.
[59]); ScoV-S: SARS coronavirus spike protein; APP and ErbB4 are γ-secretase
substrates; presenilin-1 (PS-1) and anterior pharynx defective protein-1 (APH-1) are
components of the γ-secretase complex; p75: neurotrophin receptor protein [149]. For
other abbreviations see text.
its E1 and E2 envelope glycoproteins [75]. On the other hand,
structural and functional studies of a gp41 construct comprising the
complete C-terminal heptad repeat region, the connecting region, and
the TM segment have shown that the TM domain of gp41 is sufficient
to drive trimerization in vitro [57].

While the TM domain of HIV-1 gp41 is highly resistant to amino
acid exchanges, mutations in the GxxxG motif (G690–G694) affected
viral fusion events [65–67]. In particular, HIV-1 gp41 TM segment has
a glycine residue at position 691 that forms a GGxxG sequence.
Replacement of G691 with alanine, phenylalanine or leucine,
decreased the efficiency of membrane fusion, with the major effect
occurring with the leucine substitution [67]. Substitutionwith leucine
residue also decreased the incorporation of gp41 protein into virions,
suggesting that the steric nature of the side chain of the residue at
position 691 is important for gp41 function. In the light of these
results, a model for the association among three TM helices of gp41
has been proposed in which the GxxxG motif is facing inward of the
trimeric structure and G691 locates itself near the helix–helix
interface [67]. This model places the highly conserved arginine
residue (R696) toward the lipid environment, which is in principle a
thermodynamically unfavorable arrangement. However, arginine
residues may be accommodated into a lipid bilayer more easily than
expected [76–78]. In any case, since the atomic structure of the gp41
TM segment in lipid environment has not been yet solved, other
putative arrangements of the trimeric gp41 TMs are also possible.

Recently, the hydrophobic core region of gp41 TM segment was
replaced with 12 leucine residues (L12 mutant) and recovery-of-
function mutants then constructed in which specific amino acid
residues (including a GGxxG motif) were reintroduced [59]. Mutant
L12 was defective in mediating virus infectivity and cell–cell fusion.
The GGxxG motif was found critical for the membrane fusion process
mediated by gp41, since reintroduction of this motif into the leucine
scaffold of the L12 mutant significantly increased the efficiency of
cell–cell fusion and infectivity of HIV-1. Moreover, improvement of
gp41 fusogenicity was achieved by reintroducing additional F685 and
V689 (BH10 isolate numbering). Thus, several of the 12 amino acid
residues in the HIV-1 TM core regionwere implicated in the efficiency
of gp41-mediated membrane fusion, consistent with the high
conservation of this sequence. Probably, gp41 GGxxG motif can
facilitate TM–TM interactions that are necessary for the formation of
higher-order fusion pore [59]. Membrane fusion reactions catalyzed
by viral fusion proteins require the concerted action of multiple fusion
protein trimers [79], and for some HIV-1 isolates between 7 and 14
trimers have been suggested [80]. Lipid mixing precedes Env
recruitment [81], and it has been proposed that the merge of the
outer leaflets of apposing membranes could initiate with one or few
functional trimers at the contact site, with further progress facilitated
by the continuous recruitment of adjacent Env subunits [81].

A wealth of information indicates then that HIV fusion proteins
mediate membrane fusion by forming a trimeric conformer. It is
tempting to speculate that helix–helix interactions between the gp41
TM segments might be initially responsible for the induction of trimer
formation, previous to the trimer-of-hairpins folding that is triggered
by the heptad repeat regions. As a matter of fact, a chimeric version
comprising the gp41 TM domain but lacking the full heptad repeat
regions showed that the TM segment constitutes the trimerization
domain [57]. Hence, interfering gp41 TM interactions may become an
interesting target in AIDS research including development of new and
novel anti-HIV inhibitors.

5. HIV-1 Env-mediated membrane fusion (Entry) inhibitors

HIV enters its target cells by means of a sequence of molecular
events that provides one of the most attractive targets for inhibitor
development. Recent reviews have analyzed CD4-inhibitors and co-
receptor-binding inhibitors [4,10,11,82,83]. On the other hand,
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receptor recruitment, a prerequisite for fusion, has been shown to be
sensitive to lipid modulation, and a number of strategies have been
used to alter lipid content of target cells in order to decrease their
susceptibility to HIV-1 entry (reviewed in [11]). Other peptide-based
inhibitors derived from gp41 NHR and CHR regions such as T21, N36,
T20, C34 (Fig. 1A) and chimeric proteins, or small-molecule inhibitors,
that interfere with intermediate gp41 structural arrangements have
been extensively studied and reviewed elsewhere [10,83–86].

Despite all these entry inhibitor developments, at present UK-
427857 (Maraviroc, Selzentry (Pfizer)), an attachment inhibitor that
blocks the chemokine receptor CCR5, and T20 (Enfuvirtide, Fuzeon
(Roche)) are the only FDA-approved HIV inhibitors used for AIDS
treatment in patients that fail to respond to antiretroviral therapeu-
tics, but can easily induce drug resistance. Relative to Maraviroc,
researchers also question the long-term safety of blocking CCR5, a
receptor whose function in healthy individuals is currently not fully
understood. In the last years, efforts directed to enhance the biological
potency of peptide-based inhibitors, i.e., α-helix-inducible X-EE-XX-
KK motifs have been applied to design a CHR-based enfuvirtide
analogue that exhibits highly potent anti-HIV activity in vitro [87].
Novel peptide fusion inhibitors have also been designed based on the
gp41 fusogenic-core structure involving the upstream region of the
binding domain in the CHR region. These peptides have been found
highly effective against HIV-1 variants resistant to T20 and C34
[88,89]. Another anti-HIV peptide, termed sifuvirtide, which is based
on the three-dimensional structure of the gp41 fusogenic core,
exhibits high potency against infections by a wide range of primary
and laboratory-adapted HIV-1 isolates and T20-resistant strains, and
is currently in Phase II of clinical studies [90]. Finally, concerning gp41
membranotropic regions, using a synthetic combinatorial library
several hexapeptides were identified that inhibited fusion peptide
activity in model membranes [91].

6. Amyloid precursor protein and Alzheimer disease

Alzheimer disease (AD) is characterized by the presence of two
types of lesions in the brain: neurofibrillary tangles and senile
plaques. Amyloid precursor protein (APP) is a ubiquitous-glycosylated
type-1 TM protein that plays a central role in the development of
extracellular senile plaques, through the generation of a peptide called
amyloid-β (Aβ) by proteolysis of the precursor protein (see [92,93]
and references therein).

Full-length APP contains three domains (Fig. 1B): a large ECD that
represents around 85% of the total proteinmass (for themain neuronal
isoform), a single-spanning TM domain, and a small cytoplasmic
domain. The ECD consists of several subdomains with functional
implications: a cysteine-rich region at the N-terminus with two
subdomains, a growth factor-like domain (GFLD),which binds heparin
(named also heparin-binding domain 1, HBD1), responsible for neurite
outgrowth [94], and a copper-binding domain (CuBD) [95]. Cu2+

binding to CuBD reduces Aβ production, probably through some
alterations in signalling mechanisms and/or changes in the APP
oligomerization state [96]. A 21-residue disulfide-bonded loop con-
nects the GFLD with the CuBD domain and seems to be crucial for APP
homodimerization [97,98]. The cysteine-rich region is followed by an
acidic, random coil, Asp- and Glu-rich region (acidic domain or (DE)n
domain), which contains two tyrosine-phosphorylation sites [99], a
Kunitz-type protease inhibitor (KPI) domain and an OX2 domain. The
KPI and OX2 domains can be spliced out, to produce three main
variants: APP770 (770 amino acid residues), APP751 and APP695, with
the later being the principal neuronal isoform of human APP. The KPI
domain can influence adhesion to extracellular matrix constituents,
the activity of secreted APP-degrading proteases, and may act as a
ligand for LPR1, a member of the LDL receptor gene family [100,101].

Following these domains there is a glycosylated domain (referred
to as E2) and a largely unstructured juxtamembrane, random coil (RC)
region that precedes the TM domain. The E2 domain possesses a
RERMS sequence that may be implicated in APP's growth-promoting
properties and binds heparin (named also heparin-binding domain 2,
HBD2). Theα- and β-secretase cleavage sites are locatedwithin the RC
region and it is possible that this sequence acquires a secondary and/
or tertiary structure in the presence of secretases as recently
suggested [92]. The APP intracellular domain (AICD) is the center of
a complex network of protein–protein interactions whose relevance is
highly controversial [102,103].

Two sites in the ECD seem to be critical for full-length APP
homodimerization [97,104], and a third site localized within the TM
sequence of APP determines γ-secretase cleavages [105]. The homo-
philic binding mechanism of APP is actually a subject of debate, with
enormous interest due to putative implications in APP function and
regulatory aspects for APP amyloidogenic processing.

7. APP transmembrane domain and membranotropic regions

The TM segment of APP is highly hydrophobic (Fig. 1B) and
computer algorithms predict an α-helix of 24 amino acids that can
span the plasma membrane. Fifteen point mutations associated with
familial Alzheimer disease (FAD) localize in the TM region at positions
705, 713, 714, 715, 716, 717 and 723 according to the Alzheimer
Disease Mutation Database [106].

In the absence of full-length APP atomic structure, it has been
recently reported the first structural study of the 99-residue
C-terminal region (C99) of APP (residues D672–N770, Fig. 1B) that
includes the TM domain [107]. NMR data in lysomyristoylpho-
sphatidylglycerol (LMPG) micelles reveals three α-helical segments
(Fig. 2B): i) a short surface-associated helix (F690–E693) preceding
the TM segment at the extracellular side that may serve as an small
anchor to organize the connecting loop to the TM domain, ii) a
membrane-spanning region (G700–L723), which is essential for Aβ
production, iii) an amphipathic membranotropic helix at the
C-terminal end of the cytosolic domain (T761–N770) that plays
critical roles in APP trafficking and protein–protein interactions. Three
canonical GxxxG motifs are present (Fig. 1B), one located in the
juxtamembrane ECD (G696SNKG700), with two others in the TM region
(G700AIIG704 and G704LMVG708). It should be noted that a GxxxG-like
motif, G709VVIA713, (a glycine residue is substituted by alanine) is also
present, where the γ-secretase cleavage sites that generate Aβ
peptides are localized (see Fig. 1B). As previously mentioned, GxxxG
motifs are responsible for homodimerization of GpA and many other
membrane proteins [108], sometimes with repeats in tandem (Fig. 3)
[109]. Recent circular dichroism spectroscopy and fluorescence
resonance energy transfer studies indicate that synthetic peptides
corresponding toTM segments of APP adopted similar highlyα-helical
structures in sodium dodecyl sulphate (SDS) micelles and phospha-
tidylglycerol vesicles, and form stable dimers in both systems [110].
Interestingly, C99 was also observed to form dimers in LMPGmicelles.
In fact, the isolated TM peptides dimerize more avidly than full-length
C99, indicating that the native extramembrane domains can influence
dimer association [107].

In recent years, at least three models have been proposed for the
APP TM dimeric structure, all involving GxxxG or GxxxG-like motifs.
In the first model based on site-directed mutagenesis in a neuronal
cell system, it was predicted that the interaction that stabilizes
homodimer helix–helix contacts is primarily mediated by the GxxxG
motif located at the beginning of the TM region [105], i.e. G700AIIG704

in the hAPP770 sequence. Mutations of glycine residues in this motif
gradually attenuate the TM dimerization strength. γ-secretase
cleavages of APP were shown to be intimately linked to the
dimerization strength of the TM substrate and a sequential mechan-
ism for γ-secretase cleavages on dimeric APP TMs (see below) has
been postulated [105]. Using synthetic peptides corresponding to the
APP TM segment (G700 to L723) and FADmutant derivatives, a second
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model for TM dimer formation in SDS micelles has been proposed
[110]. This model displaysmany similarities with the NMR structure of
GpA TM helix dimer [111]. According to this second model, the
putative dimerization interface relies on the G709VVIA713 sequence
(GpA uses G79VMAG83), with similar packing interfaces for both
sequences (APP 705–717 and GpA 75–87). It was hypothesized that
FAD–APP mutations would destabilize the APP-TM dimer, increasing
the population of APP peptide monomers. Thus, it was argued that
these mutations are ideally located to disrupt APP dimerization [110].
In the third model [112], supported by recent solid-state NMR data
[113], all three canonical GxxxG motifs (the juxtamembrane and the
two located in the TM segment) have been proposed to simulta-
neously participate in the helix–helix interactions that are responsible
for homodimerization. In this model, the dimer interface is lined by
glycines at positions 696, 700, 704, and 708 (hAPP770 numbering). It
was demonstrated that pairwise replacement of glycines by leucines
or isoleucines, but not alanines, in the central GxxxGmotif results in a
decrease in total Aβ production (γ-cleavage) without affecting the
yield of AICD (ɛ-cleavage, see below). In this respect, molecular
dynamic simulations predicted that all the Gly residues involved in
the GxxxG motifs are located at the interface of the wild type TM
dimer, and that Gly to Leu or Ile mutations will cause a rotation and
the placement of other small residues in the interface (i.e. Gly709 and
Ala713), which hinders Aβ generation [112]. In the same direction,
replica-exchanged molecular dynamics simulations have predicted
that the changes induced by these mutations might be due to the
adoption of a different dimer conformation with a shift of some
residues relative to the bilayer normal producing a mismatch between
the γ-cleavage site and the active site of γ-secretase, which would
reduce Aβ secretion [114].

8. APP processing and transmembrane cleavage

APP is subject to alternative pathways of proteolytic processing,
leading either to production of the Aβ peptides or to non-amyloido-
genic fragments. α- or β-secretase (Fig. 1B) cleavage release its large
ECD from the cell surface, a process referred to as ‘shedding’. APP770
processing byα-secretase results in cleavage after K687 and release of
an 83-residue C-terminal fragment, C83 [93]. C83 is a TM polypeptide
that is further processed by γ-secretase, and the resulting peptide
products are not amyloidogenic. Alternatively β-secretase (β-site APP
cleaving enzyme 1, BACE1) cleaves after M671 leading to a 99-residue
TM C-terminal domain, C99 [115,116]. The preferential cell surface
partitioning of APP to cholesterol-enriched lipid rafts (which can then
be internalized to endosomes enriched with β-secretase activity) is
believed to be a decisive determinant of the competition between β-
and α-secretase for initial proteolysis of APP [107,117,118]. Subsequent
cleavage of C99 by γ-secretase at membrane-embedded sites leads to
release of both the Aβ peptides and the water-soluble AICD domain
(V721–N770). Aβ peptides have heterogeneous C-termini due to a
somewhat imprecise intramembrane cleavage, and these peptides
displayed different propensity to aggregate and to form amyloid
deposits in neural tissue [119]. Aβ peptides have been the subject of
extensive structural characterization in solution, bound to model
membranes or as part of aggregates (reviewed in [120,121]). It has been
proposed that the sequence represented by Aβmay adopt anα-helical
structure when present in the full-length APP [112]. After BACE
cleavage of APP at the β-position, C99 will likely assume a dimer
conformation with the GxxxG motifs in the interface (see above), and
will be processed to form Aβ peptides and AICD. Once Aβ is generated,
the GxxxG motifs (in other words, the abundance of β-prone residues
like glycine) would then promote a conformational change from α-
helix toβ-strandwith the formationof neurotoxic amyloidfibrils [122].

Similar to other intramembrane cleaving proteases, γ-secretase
cleaves C99-derived polypeptide at several locations (γ-site, ζ-site
and ɛ-site, Fig. 1B) probably through a sequential proteolytic pathway
(processive model, reviewed in [115]). This proteolysis would start at
the C-terminus of TMα-helix, near themembrane–cytosolic interface,
sequentially yielding Aβ49 precursor (ɛ-cleavage), Aβ46 (ζ-cleavage),
and Aβ42/40 (γ-cleavage), respectively. Inhibition of C99 dimeriza-
tion by mutating its first TM GxxxG motif has been shown to reduce
the production of Aβ42/40 forms with an increase of non-pathogenic
Aβ38/35 shorter forms [105]. Thus, it has been also proposed that γ-
secretase removes consecutive fragments from the dimeric helical TM
C-terminus, helix turn by helix turn, until cleavage reaches a certain
distance from the G700AIIG704 dimerization motif, since this motif
sterically hinders γ-secretase proteolysis. Recent structural data
support this progressive cleavage mechanism that requires the
protease access to the protein backbone to depend on a secondary
structure change (here a helix-to-coil transition) at the TM-juxta-
membrane interface [113]. In this process, the final cleavages occur
after residue V711 and/or A713 and produce mainly Aβ40/42
peptides respectively (Fig. 1B). Perturbed dimers (G700/G704 sub-
stituted to alanine) resolve the steric hindrance and allow the γ-
secretase to proceed, yielding Aβ38/35 shorter peptides [105].
Membrane retention studies of Aβ segments in microsomal mem-
branes suggests that shorter segments (Aβ 40–45) are not integrated
into the membrane, while longer ones (Aβ 46–49) are efficiently
retained in the lipid milieu [123]. Since dimer formation seems to be
an important feature for γ-secretase activity and this process is likely
driven by helix–helix packing, modulating TM interactions arise as a
new target for Alzheimer therapeutic intervention.

APP processing is affected by other factors. γ-secretase and its
substrates are compartmentalized into discrete membrane micro-
domains and emerging evidence suggest an intimate relationship
between cholesterol-containing lipid rafts and APP processing
[124,125]. Recent NMR studies indicate that C99 specifically binds
cholesterol, an agent that promotes the amyloidogenic pathway
[118,126], at the loop connecting the short membrane-associated helix
to the TM domain [107]. Interestingly, this loop contains a VGSNK
sequence immediately preceding the TM region (Fig. 1B) that can be
considered as a CRAC-like motif (canonical Tyr in the middle of the
motif [37] is substituted by Ser, both Y/S side chains contain a
hydroxyl group that can satisfy cholesterol interaction as proposed
[36]). Cholesterol binding of this region would be based on H-bond
interactions by wrapping and blocking the interfacial cholesterol OH-
group. This interaction would give APP the capacity to bind
cholesterol-rich domains in biological membranes. On the other
hand, protein–protein interactions probably also contributes to APP's
propensity to partition into cholesterol-rich domains. In this regard, it
has been recently shown that flotillins facilitate clustering of both APP
and cholesterol in raft-like membrane domains [127], and LDL
receptor-related proteins (LRPs) have been also implicated in raft
association, internalization and amyloidogenic processing of APP
[101,107,128]. Moreover, various cytosolic adaptor proteins have been
reported to bind APP and influence its processing [103,115], and novel
insights for APP phosphorylation have been documented [129]. An
interactome map has been derived that confirmed eight previously
reported interactions of APP and revealed the identity of more than 30
additional proteins that reside in spatial proximity to APP in the brain
[130]. The putative role of these proteins in APP processing remains to
be determined. Additionally, it has been reported that protein kinases
that phosphorylate APP are able to phosphorylate the neuronal
protein tau (present in the intraneuronal neurofibrillary tangles). It
has been argued that this may be an important factor linking the two
characteristic lesions of Alzheimer disease [131].

9. Therapies in Alzheimer disease

Therapeutic approaches for AD are guided by four disease
characteristics: amyloid plaques, neurofibrillar tangles, neurodegen-
eration, and dementia (reviewed in [132,133]). Current treatments for
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dementia symptoms are based on the ‘cholinergic deficit hypothesis’
and include FDA-approved, cognition-enhancer, acetylcholinesterase
inhibitors (ChEIs) (reviewed in [134,135]), and an NMDA (N-Methyl-
D-Aspartate) receptor antagonist used as adjuvant to ChEI therapy
[135]. Since ChEIs have modest efficacy, recent drug developments
point towardsM1muscarinic agonists [134] andmulti-target-directed
ligands as potential disease modifiers [136,137].

However, the most used hypothesis explaining the pathophysiol-
ogy of AD is the ‘amyloid hypothesis’ centered in the premise that
accumulation of Aβ in the brain leads to oxidative stress, neuronal
destruction and finally the clinical syndrome of AD [135]. According to
this, a great number of anti-amyloid therapies are currently under
investigation and clinical trials are in progress. Efforts are being
directed to: i) decreasing Aβ production, including inhibition of β-
[138] and γ-secretase, and modulators to produce shorter, non-toxic
Aβ fragments [139], as well as activation of α-secretase pathway
[135]; ii) increasing Aβ clearance including Aβ immunotherapy [140],
active (vaccination) and passive (monoclonal antibodies) immuniza-
tion [141], and Aβ degradation proteases [142]; iii) inhibition of Aβ
aggregation including peptides or peptidomimetics [143], β-sheet
packing peptide inhibitors [122], polyphenols [144], intervention of
Aβ-metal (Zn/Cu) interactions [145] and glycosaminoglycan inhibi-
tors [146]. At present, the γ-secretase modulator Tarenflurbil or
Flurizan [147] and a synthetic glycosaminoglycan (3APS, tramiprosate,
Alzhemed) Aβ-aggregation inhibitor [148], are being tested in phase
III trials.

10. Concluding remarks

APP and gp41 TM proteins shared astounding structural char-
acteristics and sequence motifs with functional significance, espe-
cially in their TM domains and membranotropic regions. The
presence of GxxxG motifs that drives protein oligomerization in
membranes, and the similarity in the location of a specific
cholesterol-binding site (CRAC motif) that can facilitate the cluster-
ing of the proteins in cholesterol-rich domains are clearly remarkable
(Fig. 2). β-amyloid in Alzheimer disease is related with APP
association with cholesterol-enriched microdomains for conversion
from non-pathogenic to pathogenic forms. Accumulating evidence
suggests that many viruses may hijack these dynamic lipid platforms
to be used as an entry portal to the target cell. Even more, similarly to
Aβ peptide, the gp41 FP region has been considered amyloidogenic
(‘amyloid-like’ peptide) [32], and recent results have suggested that
FP bound to membranes as β-sheets may contribute to the
cytopathocity of HIV in vivo through an amyloid-type mechanism
[33]. Finally, it is worth mentioning that, as previously stated, the
gp41 TM domain is essential for HIV fusion activity and APP TM
domain is critical for Aβ production. To the extent that in both cases
oligomerization of the TM domains play a relevant role, it is tempting
to speculate that agents that modulate helix–helix interactions may
also be effective new therapies. In the last years efforts are being
directed to design peptides and small molecules that can interact
with TM helices in a sequence-specific manner [5, 6]. All in all,
interfering TM interactions by searching for drugs that selectively
modulate helix–helix packing may be a promising new target for HIV
inhibitor development and to intervene with APP amyloidogenic
processing.
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