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The mammalian gut and its microbiome form a temporally dynamic and

spatially heterogeneous environment. The inaccessibility of the gut and the

spatially restricted nature of many gut diseases translate into difficulties in

diagnosis and therapy for which novel tools are needed. Engineered

bacterial whole-cell biosensors and therapeutics have shown early promise

at addressing these challenges. Natural and engineered sensing systems can be

repurposed in synthetic genetic circuits to detect spatially specific biomarkers

during health and disease. Heat, light, and magnetic signals can also activate

gene circuit function with externally directed spatial precision. The resulting

engineered bacteria can report on conditions in situ within the complex gut

environment or produce biotherapeutics that specifically target host or

microbiome activity. Here, we review the current approaches to engineering

spatial precision for in vivo bacterial diagnostics and therapeutics using

synthetic circuits, and the challenges and opportunities this technology

presents.
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Introduction

The gastrointestinal tract is a spatially heterogeneous environment, with variable

oxygen, pH, nutrients, host immune and antimicrobial factors, and microbiota

composition (Donaldson et al., 2016; Tropini et al., 2017; Martinez-Guryn et al.,

2019; Kudelka et al., 2020; Miller et al., 2021). Disease-associated changes to host and

microbiome are also spatially heterogeneous, with variation seen both longitudinally and

radially in the gut, for instance those detected during colorectal cancer (Abed et al., 2016;

Saffarian et al., 2019) and Crohn’s disease (Gevers et al., 2014). These variations

complicate disease understanding, diagnosis, and treatment. However, they can also

be seen as an opportunity to develop location-specific diagnostics and therapies (Hua,

2020; Li et al., 2020).

The role of the gut microbiota in therapy is increasingly apparent: microbes

modify and sequester orally delivered drugs, impacting efficacy on a patient-to-
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patient basis (Javdan et al., 2020; Klunemann et al., 2021);

many drugs have unintended antibiotic effects, which can

cause secondary complications as a result of the changed

microbiota (Maier et al., 2018); and drug side-effects and

toxicity can limit usage. Targeted therapies could offer

increased efficacy, while reducing overall dosage, toxicity,

and off-target effects. Disease diagnostics that provide spatial

information could improve specificity and give the potential

for differential diagnosis, thus reducing the need for invasive,

costly procedures such as endoscopies. The development of

spatially precise tools is hindered, however, by the gut’s

inherent inaccessibility. Diagnostic sampling methods are

either invasive (ex. endoscopies) or lack spatial resolution

(ex. stool samples). Limited tools exist for spatially targeting

therapeutic delivery.

A promising strategy to achieve these goals is using the

bacteria residing in the gut for clinical applications. Bacteria

have been used as probiotics to improve human health for over a

century (Schultz, 2008) and, more recently, faecal microbiota

transplants have also shown clinical success (Khoruts et al.,

2021), but both lack definition and functional precision.

Synthetic biology enables the design of engineered bacteria

with specific diagnostic sensors and therapeutic outputs, with

several examples having already entered clinical trials (Brennan,

2022).

This field is poised for rapid growth, with an expanding

toolbox of synthetic biology tools available to engineer an

ever-increasing range of bacteria (Ronda et al., 2019; Jin et al.,

2022; Rubin et al., 2022). Basic synthetic circuits, some of

which are detailed below, have been used to create in situ

biosensors for diagnosis, recording, and therapeutic delivery

(Figure 1).

• Binary memory systems can record the presence or absence

of a stimulus using bistable transcriptional genetic switches

(Gardner et al., 2000; Kotula et al., 2014), recombinases

and/or integrases (Moon et al., 2011; Bonnet et al., 2012;

Yang et al., 2014).

• Read and Write Memory Systems record signals by DNA

editing, with “analogue” accumulation of edits in a

population reflecting the presence, and combined

strength, and/or duration of one or more stimuli.

Examples include CRISPR base editing (CAMERA and

DHARMA) (Tang and Liu, 2018; Tu and Esvelt, 2022 [pre-

print]) and retron-based systems (SCRIBE and HiSCRIBE)

(Farzadfard and Lu, 2014; Farzadfard et al., 2021).

FIGURE 1
Overview of spatially specific engineered whole cell biosensors. (A) Spatially specificmolecular signals such as proximity to pathogens, disease-
associated small molecules or natural molecular gradients in the gut can be sensed by one-component systems (OCS), two-component systems
(TCS) or synthetic engineered sensors. (B)Non-molecular signals such as heat and light can be sensed by temperature sensitive repressors (TSR), or
light inducible systems such as near infrared sensitive one component systems (NIR OCS) or two-component systems (NIR TCS). (C) Synthetic
gene circuits can add additional processing layers and functionality to engineered bacteria. (D) Engineered bacteria can produce useful outputs, such
as therapeutic modules, pathogen targeting toxins, motility genes for spatial localization or reporter genes for biosensing.
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• Stimulus Counters “count” small numbers of independent

induction events using recombinases, riboregulated

transcriptional cascades, or genetic transcriptional

switches (Friedland et al., 2009; Stirling et al., 2020).

• Biocontainment Systems prevent engineered bacteria

from surviving outside a specified environment.

Examples include engineered physical containment

(Tang et al., 2021), auxotrophy (Steidler et al., 2003),

“kill-switches” (Stirling et al., 2017; Stirling et al., 2020;

Rottinghaus et al., 2022) or xenobiotic approaches, in

which genomically recoded organisms are dependent

on synthetic molecules (Marlière et al., 2011; Mandell

et al., 2015; Rovner et al., 2015).

• Logic Gates and Complex Signal Processing can be used

to compute multiple signals, for example using

recombinases or toehold switches (Green et al.,

2014), enabling engineered complex logic, such as

state machines (Ham et al., 2008; Roquet et al.,

2016). They have been applied in the invertebrate gut

(Gao and Sun, 2021).

For further detail we direct readers to recent reviews

giving an overview of engineered bacterial biotherapeutics

(Riglar and Silver, 2018; Cubillos-Ruiz et al., 2021; Brennan,

2022).

Herein, we focus on synthetic gene circuits that enable

spatial precision within the mammalian gut (Figure 2). These

circuits can augment the natural characteristics of a “chassis”

strain, adding sensors for spatial cues, enhancing tropism and

colonisation, or conferring the ability to naturally move

towards specific regions of the gut. We will discuss

spatially specific molecular “input” signals such as disease,

pathogen, or endogenous gradients, externally controlled

physical cues such as light, heat, or magnetic signals, and

the opportunities and challenges in engineering spatially

precise diagnostic and therapeutic bacteria.

FIGURE 2
Strategies for engineering spatial precision in live diagnostic and therapeutic bacteria. (A) The gut is a heterogeneous environment, with natural
gradients of different molecules and compounds. (B) Live bacteria can be engineered with the ability to detect signals associated with disease, such
as nitrate and tetrathionate during inflammation, and produce a therapeutic output. (C) Synthetic approaches for spatially targeting engineered live
bacteria include engineered or enhanced tropism, expression of targeting peptides, and engineering motility pathways. (D) Using quorum
sensing to engineer inter-bacterial communication, or for close-range pathogen detection and eradication are complementary approaches to gain
spatial resolution. (E) Non-invasive externally applied inducers could also allow precise spatial activation or detection of live therapeutics.
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Spatial precision by molecular
sensing

Bacteria have a naturally diverse catalogue of transcriptional,

translational, or post-translational sensing mechanisms. These

include, one-component systems (OCS), two-component

systems (TCS), and extracytoplasmic function (ECF) sigma

factors. Spatially precise and disease-specific gene regulators

are used naturally by bacteria to control their function in the

gut, making them an exciting option to control spatially precise

functions of engineered bacteria. Synthetic signalling systems are

also being developed to further expand this toolbox (Schmidl

et al., 2019).

Sensing physical proximity to pathogens
or disease

Biosensing of infection and disease is a key goal for diagnostics

but can also be used to activate synthetic circuits specifically at disease

sites to create localised therapeutics. Many drugs, in particular broad-

spectrum antibiotics, have off-target effects on the native microbiota,

which can compromise colonisation resistance and promote

opportunistic pathogen growth among other negative

consequences (Maier et al., 2018; Javdan et al., 2020; Klunemann

et al., 2021). The development of targeted therapies, whether by

spatially restricting exposure or by other means, aims to mitigate

these impacts.

Bacteria use quorum sensing (QS) to detect cell-to-cell

proximity and density (Whiteley et al., 2017) over different

spatial scales (van Gestel et al., 2021). QS is often used to

design density- and proximity-dependent response due to its

well-understood molecular mechanisms (Boo et al., 2021). In the

context of the gut, spatial activation at infection sites can be

achieved by repurposing pathogens’ own QS mechanisms (Saeidi

et al., 2011; Gupta et al., 2013; Hwang et al., 2014; Hwang et al.,

2017; Jayaraman et al., 2017). For example, Escherichia coli was

engineered to detect N-acyl homoserine lactone (AHL) from the

pathogen Pseudomonas aeruginosa and respond by lysing to

release a toxin and a biofilm destabilising enzyme (Hwang

et al., 2017). This system reduced P. aeruginosa load in a

murine infection model by 98% when used prophylactically

and 77% when administered therapeutically after infection

(Hwang et al., 2017). While the therapeutic efficacy of this

system was below that of traditional antibiotics, the strong

prophylactic performance promises that further

improvements, such as using more potent bacteriocins (Mills

et al., 2017) or some of the measures below, could further increase

efficacy. A version of the engineered strain lacking spatial

activation failed to reduce faecal pathogen levels,

demonstrating the importance of spatial specificity and the

potential to reduce off-target effects using “sense-and-

respond” approaches.

QS can also be used for density-dependent delivery

mechanism, which are being actively developed in the context

of tumours (Ganai et al., 2009; Din et al., 2016), and could assist

engineered bacteria to spatially co-ordinate within the gut (Wu

and Luo, 2021). Kim et al. (2018) demonstrated specific intra-

and inter-species communication in the mouse gut using a QS-

based circuit. Using QS for bacterial coordination may allow

better control of function in the spatially partitioned gut

environment (Whitaker et al., 2017; Wu et al., 2022).

DNA-responsive biosensors could offer a more specific signal

of proximity to pathogens and other sites of disease. This may be

particularly useful in situations where QS circuits suffer from

crosstalk between strains. Two recent pre-prints have co-opted

the natural competence of some bacterial strains to develop

DNA-responsive biosensors (Cooper et al., 2021; Cheng et al.,

2022). Cheng et al. (2022) developed a Bacillus subtilis-based

system that specifically detects multiplexed environmental DNA

sequences, including human pathogens within a community. An

alternative system using Acinetobacter baylyi detected tumour-

associated host DNA mutations within the mouse gut (Cooper

et al., 2021). It remains to be seen whether these new biosensor

mechanisms can deliver the sensitivity and stability necessary for

more extensive use in the mammalian gut.

Live diagnostics have also been engineered to sense and

respond to molecular disease biomarkers such as nitric oxide,

nitrite and nitrate, thiosulfate, tetrathionate, and haeme (Archer

et al., 2012; Courbet et al., 2015; Daeffler et al., 2017; Riglar et al.,

2017; McKay et al., 2018; Mimee et al., 2018; Naydich et al.,

2019). While the documented spatial resolution of these sensors

is limited, these and other disease sensors could enable spatially

and temporally precise “sense-and-respond” activation in a range

of disease conditions. The localised activation and delivery of

biological therapies in this way could minimise effective dosages,

reducing the side-effects of otherwise toxic drugs.

Sensing natural molecular gradients

Bacterial gene expression changes based on molecular cues

that exist in natural gradients within the gut (Crook et al., 2020;

Schmidt et al., 2022). These cues are often used by pathogens to

spatially regulate function. Attaching and effacing pathogenic

E. coli strains detect regional gut niches through hormones,

oxygen, biotin, acetate, and bicarbonate to avoid activating

metabolically burdensome virulence processes in unfavourable

locations (Woodward et al., 2019). Clostridia modulate gene

expression in response to spatially variable gut bile acids (Shalon

et al., 2022 [pre-print]), and other microbes respond to specific

spatially variable glycans (Ringot-Destrez et al., 2017). Similar

sensing mechanisms could be co-opted to reduce the metabolic

burden of therapeutic circuit expression in off-target regions. For

example, a sensor for location within mucus layers would activate

only in proximity to host cells and remain inactivated in the gut
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lumen. Spatial activation could also provide locational

information in combination with disease diagnosis and

monitoring.

Whilst promoters have been identified that exhibit

consistent expression in E. coli throughout the mouse gut

(Armetta et al., 2021), the catalogue of promoters with known

spatial precision is limited. Chien et al. (2022) recently

demonstrated spatial precision in the context of engineered

growth tropism. Two E. coli strains were engineered to

preferentially grow in specific regions of the mouse gut

based on either hypoxic or low pH (Chien et al., 2022).

The first showed enrichment in the hypoxic large intestine,

whereas the second was depleted. Although promising, the

resolution of this approach is currently limited to large gut

regions. Understanding spatial characteristics of a greater

range of promoters is therefore important for increasing

precision and allowing control in all regions of the gut.

Promoters responding to alternative molecules that vary in

the gut, such as bile acids, short chain fatty acids, glycans or

immune signals or used in concert with higher-order signal

processing and logic gates may be particularly promising

avenues to achieve this goal.

Engineering tissue tropism, targeted
binding, and pseudotaxis

Localised activity can also be achieved by spatially restricting

bacterial growth, which is possible through natural tropisms of a

chosen chassis strain, engineered tropism through expression of

targeted binding proteins, and through non-genetic mechanisms

such as the adherence of antibodies to the bacteria’s surface

(Vargason et al., 2020) or using encapsulation methods to

contain (Liu et al., 2018; Mimee et al., 2018; Tang et al., 2021;

Inda et al., 2022 [pre-print]) and selectively release bacteria

within different regions of the gut (Cui et al., 2021). Some

bacteria express outer-membrane proteins that bind to specific

molecules or subsets of mammalian cells, concentrating them in

the locations in which these cells or molecules are enriched. For

example, Helicobacter species bind specific glycans in the small

intestine and stomach epithelium (Matos et al., 2021), and

Fusobacterium nucleatum bind a host factor overexpressed in

colonic adenomas (Abed et al., 2016), both causing enrichment.

These binding strategies can be repurposed in engineered

biotherapeutics. Examples of targeted binding include a

binding protein from Streptococcus gallolyticus expressed in

E. coli to target cancerous colorectal epithelial cells (Ho et al.,

2018), synthetic adhesins expressed in E. coli allowing specific

adherence and colonisation of solid tumours (Piñero-Lambea

et al., 2015), or recombinant curli fiber fused trefoil factors which

enhanced binding to mucins and mammalian cells in cell culture

(Duraj-Thatte et al., 2018) and in the mouse gut

(Praveschotinunt et al., 2019).

Targeted binding can also simultaneously activate a desired

gene of interest. Chang et al. (2018) created bacterial sensors to

novel ligands by using single-domain antibodies fused to DNA-

binding domains, and used this system to detect bile salts in the

serum of liver transplants patients (Chang et al., 2021). Targeting

proteins designed to be expressed on the surface of bacteria must

be able to be effectively secreted or displayed, which may pose

engineering challenges (Salema et al., 2013).

Another method for spatial targeting involves placing key

motility genes under the control of a sensor module to direct the

biotherapeutic to a target site. Placing the E. coli chemotactic

protein CheZ under the control of hydrogen peroxide, nitric

oxide, or quorum molecule sensitive promoters in a CheZ KO

strain allowed “pseudotaxis” towards the respective signals

(Hwang et al., 2014; McKay et al., 2018; Virgile et al., 2018).

Although an intriguing idea, the effectiveness of motility-based

targeting remains to be demonstrated in the mammalian gut,

where forces such as peristalsis may impact bacterial localisation.

Spatial precision by sensing non-
molecular signals

A powerful complementary approach to control engineered

bacteria is using externally applied physical stimuli, such as light,

temperature, or electromagnetic fields. As with the molecular

sensing approaches described above, these tools aim to create

minimally disruptive, non-invasive methods to activate

diagnostics and therapeutics within specific regions of the gut.

Unlike the molecular approaches, physical stimuli could be

directed externally by a health care professional or an

individual for on-demand activity.

Optogenetics

Optogenetic systems use light-sensitive proteins or protein

domains to regulate downstream cellular processes upon

exposure to specific wavelengths of light (Lindner and

Diepold, 2021). They are reversible, minimally invasive, and

do not require overly specialised equipment, making them

potentially well suited for clinical applications. Bacterial

optogenetic systems have been tested in invertebrates

(Hartsough et al., 2020) and smaller mammalian models, but

not in deep tissue contexts in larger mammals. Systems that

respond to near-infrared II (NIR-II, >1,000 nm) light are best

suited for deep tissue contexts, such as spatial targeting within the

gut, owing to deeper penetration, reduced scattering and lower

phototoxicity of NIR-II light compared to shorter wavelengths,

and their capacity for spectral multiplexing (Shcherbakova et al.,

2018; Chen et al., 2020; Qiao et al., 2021). Several engineered

bacterial TCS that respond to red or NIR light exist (Levskaya

et al., 2005; Tabor et al., 2009; Tabor et al., 2011; Ma et al., 2017;
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Ong et al., 2018; Ong and Tabor, 2018; Hartsough et al., 2020). A

recent OCS based on a NIR-sensitive phytochrome enabled

transcriptional repression in E. coli with a 115-fold dynamic

range (Kaberniuk et al., 2021), and benefits from being smaller

than TCS counterparts.

Technological advances in photonics for medical

applications are accelerating the use of optogenetics towards

clinical contexts. For example, the poor tissue penetration of

visible/UV light can be overcome using upconversion

nanoparticles, which convert an externally applied NIR

stimulus into internal UV or visible light (Chen et al., 2020).

This approach enabled NIR-light inducible expression of anti-

inflammatory molecules in murine ulcerative colitis models

(Yang et al., 2020; Cui et al., 2021). Implanted light-sources

have also been used for optogenetic control of deep-brain and gut

(Hibberd et al., 2018; Gong et al., 2020), and biodegradable

hydrogel-based waveguides have been used to deliver light

across >5 cm of mammalian tissue (Feng et al., 2020). To

confirm the translational potential of bacterial optogenetic

systems, testing in larger mammalian models is required, with

careful consideration being given to the system’s light-sensitive

proteins and their cofactors, spatial and temporal resolution,

kinetics, dynamic range, phototoxicity and potential for

multiplexing. A growing number of optogenetic tool databases

will help facilitate this (Lindner and Diepold, 2021).

Temperature

Temperature-sensitive systems can also provide non-invasive

spatially precise circuit induction. Recently, focussed ultrasound

was used to control release of immune checkpoint inhibitors for

anti-cancer immunotherapy in a murine solid tumour model

(Piraner et al., 2017; Abedi et al., 2022). The mechanism was

based on ultrasound induced local tissue heating which activated

a temperature-sensitive transcriptional repressor, TlpA (Piraner

et al., 2017). Ultrasound has also been used to image bacterial

enzyme activity in the mouse gut using bacteria expressing an

acoustic biosensor (Lakshmanan et al., 2020). Furthermore,

focussed ultrasound is already being successfully used to treat

human patients in other contexts, such as malignant liver,

prostate, kidney, and pancreatic cancer (Izadifar et al., 2020),

demonstrating the possibilities of ultrasound and temperature-

sensitive activation in spatially resolved gut diagnostic and

therapeutic capacities.

Magnetism

Magnetism is an alternative external physical inducer

commonly used in the clinic in the form of MRI. Whilst

magnetic-sensitive genetic circuits have been developed in

eukaryotic cells (Mosabbir and Truong, 2018; Madderson

et al., 2021), they have not to our knowledge been established

in bacterial contexts. Nonetheless, certain bacteria are naturally

magnetosensitive, containing magnetic crystals that enable them

to sense and orient themselves in alignment to magnetic fields

(Faivre and Schüler, 2008) and alter MRI contrast (Liu et al.,

2016). Magnetism can therefore be used to direct magnetotactic

bacteria towards target sites, such as for delivering drugs to a

tumour environment (Felfoul et al., 2016), and may also offer

opportunities for MRI-based spatial diagnostics.

Discussion

Limitations and opportunities

The catalogue of spatial sensors that have been tested and

validated in the mammalian gut is limited. New sensors can be

developed through genome mining, direct targeted design, or

directed evolution of existing sensors to improve or change their

desired specificity or sensitivity (Miller et al., 2022). Bacteria have

multitudes of regulatory sensing mechanisms which have begun

to be catalogued in databases such as RegPrecise (Novichkov

et al., 2013), Prodoric (Dudek and Jahn, 2022), MISTdb

(Gumerov et al., 2020), P2TF (Ortet et al., 2012) and

CollecTF (Kilic et al., 2014). In addition, high quality bacterial

transcriptome analysis databases, such as iModulonDB (Rychel

et al., 2020), are available and can provide additional regulatory

information for biosensor construction. However, we have yet to

take advantage of the huge natural catalogue of sensors in part

due to the limited toolbox available for understanding spatial

variation within the gut. Difficulties in acquiring samples with

spatial information (ex. by biopsy, endoscopy, or dissection

rather than faecal sampling), a lack of healthy human donor

samples, and challenges performing transcriptomics of the gut

microbiota have all hindered our fundamental understanding of

this important area of biology. Developing new tools and

prioritising datasets to understand the microbiota’s functional

biogeography in both animal models and humans is thus

important. Promisingly, recent years have seen a steady

increase in multi-omic and biopsy sampling being undertaken

in human clinical studies, especially those including

transcriptomics and metabolomics, which should provide new

targets of interest for biosensor development and clinical validity.

High throughput screening pipelines also have the potential to

accelerate biosensor discovery (Sheth et al., 2017; Schmidt et al.,

2018; Naydich et al., 2019; Schmidt et al., 2022).

An additional fundamental challenge is that any biosensor

will be inherently limited by the combination of the spatial

precision of the signal, the temporal characteristics of the

synthetic circuits, and movement of bacteria within the gut.

Small molecules that readily diffuse from their target site may

activate distant sensors in a less targeted manner. Studying

engineered probiotic activity in situ with high spatial precision
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techniques when possible, or integrated engineered memory

systems when not (Riglar et al., 2017; Naydich et al., 2019;

Schmidt et al., 2022), will help to assess these factors.

Alternatively, the exogenous, non-molecular signals discussed

above may circumvent some of the issues associated with

endogenous signals. Similarly, tapping into mechanisms like

chemotaxis that bacteria natively use to deal with noisy

molecular gradients may be a useful approach in comparison

to more binary “present-on/absent-off” approaches. These

characteristics will ultimately depend on a set of complex

factors including the molecules in question, the application of

interest and the local microbiota, which can deplete signalling

molecules differentially. Differences in gut anatomy, diet,

motility and retention time which vary between vertebrate

species, individuals, disease states, and even time of day will

also play a role given their known impacts on the microbiota.

Ultimately, the precision required for a given system will depend

on the application, such as the degree of off-target toxicity of the

therapeutic in question. The fact that pathogens have managed to

solve these issues through evolution to tightly control virulence

gene expression within humans despite this level of noise,

however, is heartening.

Engineered biotherapeutics are a promising technological

opportunity for spatially precise investigations of the gut, and

for diagnosis and treatment of gut diseases. While the field is still

in its infancy, particularly with respect to clinical delivery,

spatially precise engineered microbes are already primed to

serve as exciting scientific investigative tools for non-invasive

sampling of the complex gut microenvironment in animal

models (Riglar et al., 2017; Naydich et al., 2019; Schmidt

et al., 2022). There are undoubtably additional barriers for the

use of these tools over traditional approaches in the clinic.

However, we expect that the unique advantages of spatially

precise engineered biotherapeutics, ranging from in situ non-

invasive diagnosis, to complex signal processing power, and

targeting for reduced off-target effects, will offer worthy

rewards for overcoming these in a range of clinical scenarios.

Advances in spatial and functional precision will need to go

hand-in-hand with advances in biosafety, biocontainment and

patient acceptance that are already being tackled more broadly

for the use of engineered bacteria as live biotherapeutic products

(Brennan, 2022). The next decade is likely to include critical

milestones in this space, and regulatory approval of the first

products for clinical use will provide frameworks for addressing

these challenges (Cordaillat-Simmons et al., 2020). Technological

advances in synthetic biology, decreasing DNA synthesis cost,

and an increasing understanding of the gut and gut microbiota

will continue driving discovery in this area and development of

new effective diagnostics and treatments for disease.
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