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Neuropeptide Y (NPY) is a neurotransmitter that has been implicated in the development
of anxiety and mood disorders. Low levels of NPY have been associated with
risk for these disorders, and high levels with resilience. Anxiety and depression are
associated with altered intrinsic functional connectivity of brain networks, but the effect
of NPY on functional connectivity is not known. Here, we test the hypothesis that
individual differences in NPY expression affect resting functional connectivity of the
default mode and salience networks. We evaluated static connectivity using graph
theoretical techniques and dynamic connectivity with Leading Eigenvector Dynamics
Analysis (LEiDA). To increase our power of detecting NPY effects, we genotyped 221
individuals and identified 29 healthy subjects at the extremes of genetically predicted
NPY expression (12 high, 17 low). Static connectivity analysis revealed that lower
levels of NPY were associated with shorter path lengths, higher global efficiency, higher
clustering, higher small-worldness, and average higher node strength within the salience
network, whereas subjects with high NPY expression displayed higher modularity and
node eccentricity within the salience network. Dynamic connectivity analysis showed
that the salience network of low-NPY subjects spent more time in a highly coordinated
state relative to high-NPY subjects, and the salience network of high-NPY subjects
switched between states more frequently. No group differences were found for static
or dynamic connectivity of the default mode network. These findings suggest that
genetically driven individual differences in NPY expression influence risk of mood and
anxiety disorders by altering the intrinsic functional connectivity of the salience network.

Keywords: neuropeptide Y, dynamic connectivity, LEiDA, graph theory, fMRI

INTRODUCTION

Neuropeptide Y (NPY) is among the most abundantly expressed peptides in the brain (Tatemoto
et al., 1982; Adrian et al., 1983; Allen et al., 1983), and is known to affect the neural processing
of emotion, appetite, and stress (Morgan et al., 2002; Van Den Heuvel et al., 2015; Reichmann
and Holzer, 2016). Individuals vary in their expression of NPY, and low levels of NPY have
been associated with the development of anxiety (Reichmann and Holzer, 2016), depression
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(Widdowson et al., 1992; Heilig et al., 2004; Mickey et al., 2011),
and posttraumatic stress disorder (PTSD) (Yehuda et al., 2006).
We recently showed that healthy individuals with genetically
driven low NPY expression exhibit heightened activation of the
nucleus accumbens in response to salient stimuli (Warthen et al.,
2018). There is also evidence that high NPY levels predispose
individuals to attention-deficit hyperactivity disorder (ADHD)
(Oades et al., 1998; Lesch et al., 2011; Pjetri et al., 2012).
While anxiety, depression, PTSD, and ADHD are associated with
changes in the functional connectivity of intrinsic brain networks
(Helm et al., 2018), how NPY affects functional connectivity has
not been studied.

Functional connectivity techniques allow one to study
correlational relationships between brain regions and reveal
information about long distance communication in brain
networks (van den Heuvel and Hulshoff Pol, 2010). Intrinsic
brain networks may be analyzed using graph theory, which
is the study of pairwise relationships or sets of relationships
(Wang et al., 2010). Traditionally, functional connectivity
techniques have assumed that the brain networks are static
(Smith, 2012). More recent techniques have been developed to
reveal dynamic connectivity, giving valuable information about
how correlational relationships between brain regions change
over time (Hutchison et al., 2013; Lurie et al., 2020). In this
paper we investigate how NPY expression effects both the static
and dynamic connectivity of the brain using graph theoretical
methods and Leading Eigenvector Dynamics Analysis (LEiDA)
(Cabral et al., 2017), respectively.

We focus here on connectivity within the salience network
and within the default mode network, both of which have been
implicated in anxiety and depression (Kaiser et al., 2015b), as
well as ADHD (Norman et al., 2017). Depression has been
associated with unstable connectivity (Wise et al., 2017) and
hyperconnectivity (Liston et al., 2014; Kaiser et al., 2015a) in the
default mode network. Anxiety has been associated with both
lower (Geng et al., 2016; Xu et al., 2019) and higher intra-salience
network functional connectivity (Sylvester et al., 2012), and an
increase in salience network connectivity has been reported
in children with greater behavioral inhibition (Taber-Thomas
et al., 2016). ADHD has presented with altered connectivity to
important nodes in the salience and default mode network (Fair
et al., 2013) as well as increased temporal variability in default
mode connectivity (Mowinckel et al., 2017).

Here we investigate differences in resting functional
connectivity between two extreme groups of healthy young
adults who were selected by NPY genotype (Warthen et al.,
2018). Subjects in the high-NPY and low-NPY groups are
genetically predisposed to express high and low levels of NPY,
respectively. We use multiple techniques to evaluate functional
connectivity within the salience network and default mode
network. First, we used graph theory to evaluate static resting
functional connectivity within the salience network and default
mode network. Second, a dynamic connectivity technique
[LEiDA, (Cabral et al., 2017)] was used to determine group
differences in dynamic network patterns within the salience
network and default mode network. Finally, we performed
an exploratory seed-based analysis of connectivity strength of

the nucleus accumbens (NAc) with the whole brain, based on
previously discovered group differences in activation of this
region during a monetary incentive delay task (Warthen et al.,
2018). We hypothesized that low-NPY subjects would have
a more tightly knit salience network due to their previously
reported stronger NAc responses to salient stimuli (Warthen
et al., 2018). Although increased NAc activity has not yet been
tied to a more functionally connected salience network, early
functional connectivity studies have indicated that higher
activity in certain regions has been related to higher functional
connectivity within their primary networks, possibly due to the
plastic nature of the functional networks and their components
(Greicius et al., 2003). We also hypothesized that high-NPY
subjects would display faster switching rates between states,
or defined connectivity patterns, within the salience network
and the default mode network because of evidence that high
levels of NPY predispose to hyperactivity or ADHD (Lesch
et al., 2011; Warthen et al., 2018). Although intra-network
variability in the salience network in hyperactivity or ADHD is
not well characterized, inter-network variability has been shown
to be increased in subjects with ADHD possibly indicating
more volatile functional connectivity overall (Cai et al., 2018;
Wang et al., 2018).

MATERIALS AND METHODS

Participants and Design
Healthy adults (n = 222), aged 18–22 years, were genotyped
and those with pre-specified NPY genotypes participated in an
imaging visit (n = 53). This visit included questionnaires, drug
and pregnancy screens, and task and resting state functional
magnetic resonance imaging (fMRI). The characteristics of the
subject sample and results of the task fMRI have been reported
previously (Warthen et al., 2018).

Subject Selection by Genotyping
Subjects were healthy as determined by the Mini International
Neuropsychiatric Interview, drug screen, and pregnancy screen.
The genotyped groups were the same as we described previously
(Warthen et al., 2018). In brief, 6 polymorphic markers were
determined by PCR followed by Sanger sequencing (Sanger et al.,
1977) to classify subjects with unambiguously low haplotypes,
unambiguously high NPY haplotypes, or intermediate, rare or
ambiguous combinations of haplotypes. Thirty-one low-NPY
and 22 high-NPY subjects underwent MRI.

Image Acquisition and Preprocessing
Blood oxygenation-level-dependent (BOLD) responses were
measured with T2∗ weighted imaging (TR = 2 s, TE = 28 ms,
flip angle = 90◦, 39 transverse slices, slice thickness = 3.5 mm,
slice gap = 0 mm, FOV = 64 × 64 matrix, 3.75 × 3.75 mm
in-plane resolution) on a 3.0-T Philips Ingenia scanner (Best,
Netherlands) with a 15-channel head coil using single-shot
echo-planar imaging. Participants were given a focus point and
asked to relax with eyes open during a resting state acquisition,
during which 300 volumes were collected over 10 min. Resting
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state acquisition for both groups took place after the monetary
incentive delay task described in Warthen et al. (2018). The first
5 volumes of each session were discarded to allow for image
stabilization. Slice-time correction was applied with SPM12
(v7219) using the middle slice as the reference. A rigid-body
least-squares two-pass procedure was used for motion correction
that first registered images to the first image of the first run, and
then to the mean image that was calculated after the first pass.
Images were interpolated with a 4th degree B-spline. A high-
resolution T1-weighted image (turbo-field-echo, TR = 9.8 ms,
TE = 4.6 ms, flip angle = 8◦, 1 × 1 × 1 mm voxel size) was
co-registered to the mean functional image with a rigid-body
transform using a normalized mutual-information cost function.
The registered T1 was segmented with unified segmentation
(Ashburner and Friston, 2005) in SPM12 (v7219). The image
was segmented into gray matter, white matter, and cerebrospinal
fluid. Gray and white matter images were normalized to MNI
space with DARTEL using the provided MNI-space template
in the VBM8 toolbox. The estimated warp was then applied
to the motion-corrected functional images, which were then
resliced to 3 × 3 × 3 mm voxels. Smoothing was performed
with an isotropic kernel (5 mm full width half maximum).
Twenty-four subjects with excessive head motion (mean frame
displacement > 0.20 mm) were excluded from analysis, leaving
29 subjects available for final analyses.

Connectivity Preprocessing
Resting-state time-series data were preprocessed with a custom
toolbox in MATLAB (ConnTool, authored by Dr. Welsh,
available upon request) (Jelsone-Swain et al., 2010; Jacobs
et al., 2014). Time-series data were quadratically detrended,
and regressed against six realignment parameters from motion
correction along with their first derivatives and quadratic terms.
Additionally, physiological artifacts were minimized through
incorporation of COMPCOR by regressing out the signals
from cerebral spinal fluid and white matter (Behzadi et al.,
2007). Bandpass filtering was performed with a fast Fourier
transform filter between 0.01 and 0.10 Hz. Preprocessing steps
followed guidelines put forward by Lindquist et al. (2019).
Pearson correlation coefficients were calculated between the
average BOLD signal in the NAc ROI and all other voxels
in the brain. To account for varying degrees-of-freedom in
resting-state time-series data due to autocorrelative structures,
we incorporated a recently developed technique (Afyouni et al.,
2019) into ConnTool to produce the final z-score images.
This technique corrects for inflated correlation coefficients due
to autocorrelation as well as instantaneous and lagged cross-
correlation (known as “xDF” z-scores). Each individual xDF
corrected z-score image was included in a second-level SPM12
random effects analysis, to test for whole-brain group differences
in connectivity strength in the NAc and dACC maps.

Seed-Based Functional Connectivity
Region of interest “seed-based” connectivity was evaluated for the
nucleus accumbens (NAc) and dorsal anterior cingulate cortex
(dACC) because of previously observed group differences (low-
NPY vs. high-NPY) in the BOLD signal in the NAc during a

monetary incentive delay task (Warthen et al., 2018) and previous
associations of dACC connectivity with risk for depression
(Wagner et al., 2017; Schwartz et al., 2019). The NAc region
of interest was created from a standard atlas [wfu pickatlas,
(Maldjian et al., 2003)] and dilated by 2 voxels to allow for shift
in activation peaks (Sacchet and Knutson, 2013; Warthen et al.,
2018), thresholded at 0.5 and then binarized. The dACC region of
interest was created from the Desikan atlas (Desikan et al., 2006)
and also thresholded at 0.5 and then binarized.

Network Definition
We defined salience network mask similarly to Vinod Menon
(2015), from a publicly available functional connectivity map
based on 1,000 healthy subjects (Yeo et al., 2011), with a 6
mm spherical seed at (36, 18, 4 mm) and its homolog (−36,
18, 4 mm), obtained from neurosynth.org. The salience network
was thresholded to above 0.3 (Pearson’s r) and then binarized.
We parcellated the resting state fMRI data from our subjects
into 268 nodes as defined by Shen et al. (2013). Nodes were
considered part of the salience network if they overlapped the
neurosynth generated mask by at least 20% of their volume. This
resulted in the inclusion of 20 nodes (Table 1). The default mode

TABLE 1 | Shen atlas regions of interest.

Salience
network

Center of
mass

Default mode
network

Center of
mass

9 (29, 51, 19) 3 (5, 35, −18)

11 (38, 35, 31) 5 (8, 46, −2)

15 (7, 21, 31) 6 (15, 65, 4)

16 (54, 25, 1) 10 (9, 53, 24)

19 (48, 36, 15) 12 (15, 37, 49)

20 (37, 21, 6) 48 (48, −62, 35)

21 (55, 10, 22) 53 (53, 11, −22)

28 (6, 14, 49) 64 (56, −8, −14)

34 (42, 5, −8) 85 (5, −39, 27)

35 (41, 4, 7) 86 (12, −57, 18)

36 (38, 21, −10) 90 (6, −57, 38)

45 (53, −27, 41) 134 (−5, 29, −10)

46 (58, −29, 20) 138 (−7, 48, −6)

150 (−5, 18, 46) 140 (−6, 48, 12)

155 (−32, 22, 6) 141 (−12, 65, 4)

163 (−57, −3, 7) 145 (−10, 56, 30)

168 (−39, 2, 10) 148 (−11, 34, 52)

169 (−39, 8, −5) 176 (−9, −71, 32)

181 (−59, −26,
22)

182 (−42, −66,
42)

221 (−5, 13, 29) 183 (−51, −56,
20)

190 (−58, −6,
−23)

197 (−57, −15,
−7)

222 (−8, −59, 18)

223 (−5, −36, 32)

225 (−6, −54, 37)

227 (−7, −42, 13)
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network was defined similarly, from a connectivity map from
neurosynth.org with a seed at (4, −54, 28 mm) in the posterior
cingulate cortex, as by Uddin et al. (2009). Nodes that overlapped
by 20% were included, resulting in a 26-node network (Table 1).
The objective way that we identified the networks did result
in some asymmetry between hemispheres, we have chosen to
leave this asymmetry in our network analyses so as not to bias
the findings and remain true to the 20% overlap rule. Figure 1
shows the anatomical locations of these regions in Montreal
Neurological Institute space. Here we focus only on the salience
network and default mode network rather than all 268 nodes
in the atlas because of a previously demonstrated effect of NPY
on nodes of the salience network (Brown et al., 2000; Adewale
et al., 2007; Quarta et al., 2011) in animal studies, as well as the
relationship of network patterns in the default mode network and
depression and anxiety (Sylvester et al., 2012; Qiao et al., 2017).

Static Connectivity Analysis
We used the BRAPH [BRain Analysis using graPH theory (1.0.0)
(Mijalkov et al., 2017)] package for Matlab (R2015b) to calculate
measures of network integration (characteristic path length,
global efficiency), network segregation (clustering coefficient,
modularity), and small-worldness (Rubinov and Sporns, 2010;
Sporns, 2011). These measures allow us to compare the high and
low-NPY groups in terms of global network cohesion and local
communication of the network, as both may be important in
functional differences. Characteristic path length is the average

distance between a node and all other nodes in terms of edge
length traversed. Efficiency is related to characteristic path length,
but is the inverse of average shortest path length. The clustering
coefficient is the fraction closed triangles to open triangles around
an individual node; where triangles occur when three nodes
are all connected to each other by edges. Clustering coefficient
therefore gives an idea of how much grouping, or local coherent
oscillation, is occurring around a given node. Modularity is
used to measure how a network is divided into subunits, or
communities, by comparing the number of edges inside a cluster
with the number of edges that would be found in that cluster in
a random graph. Small-worldness measures the balance between
local grouping and global cooperation in a network. It consists
of the ratio of the normalized clustering coefficient over the
normalized characteristic path length. These measures (portrayed
in Supplementary Figure 1) characterize how closely certain
regions of interest are connected. We also investigated node-
specific measures of strength (sum of all edge weights feeding
into a node) as well as eccentricity (maximum length from one
node to its farthest connection) to estimate how our nodes (brain
regions) are connected in a local and global network sense. We
used a weighted undirected graph with Pearson correlation, and
a correlation threshold of zero.

Dynamic Connectivity Analysis
We were primarily interested in within-network state
representation and switching activity within the salience

FIGURE 1 | The default mode network (green, top) and salience network (orange, bottom). Numbers indicate regions of the Shen atlas.
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and default mode networks, so we employed the Leading
Eigenvector Dynamics Analysis (LEiDA) method1 described
by Cabral et al. (2017) and Deco et al. (2019). LEiDA is a
data-informed way of defining brain states and switching rates
between brain states based on identification of large-scale
functional connectivity patterns. A leading eigenvector is a
vector containing information describing the largest variations
in a matrix and is used to find the dominant connectivity pattern
at a certain timepoint in vector form. The dominant connectivity
pattern can then be reconstructed with the outer product of the
vector, where each element of the vector is multiplied by every
other element of the vector forming a matrix.

Dynamic connectivity patterns were determined as by Cabral
et al. (2017). Leading eigenvectors were calculated at each fMRI
time point for each person from the BOLD Phase Coherence
Connectivity (Glerean et al., 2012), and the leading eigenvectors
combined for all subjects were used for state calculation in
each network. Repeating functional connectivity states were
determined with k-means clustering (Lloyd, 1982), with a Dunn’s
index (Dunn, 1974) determining the optimal number of states.

Statistical Analyses
Statistical comparisons of network measures were performed in
R (version 3.6.1). Static and dynamic network measures were
calculated per individual and group differences were determined
with a standard two-sided t-test. Static and dynamic measures
for both networks were normally distributed as determined by
a Shapiro-Wilk test. Effect sizes were calculated with Cohen’s d
(“cohen.d” function, “effsize” package, version 0.7.6). For tests of
the primary hypothesis of NPY group differences in connectivity,
Holm’s method was used for multiple-comparison correction
(“p.adjust” function, Base R).

Several additional exploratory analyses were performed.
Associations between static and dynamic network measures
in the salience network as well as associations between traits
(Table 2) and network measures were tested with a linear
model (“lm” function, “lme4” package, version 1.1.21 in R) while
controlling for the effects of NPY group. Sex differences were
tested with a standard two-sample t-test. Salience condition
BOLD contrasts (high-NPY vs. low-NPY) from a previously
published monetary incentive delay task (Warthen et al., 2018)
for the nucleus accumbens, dorsal anterior insula, and dorsal
anterior cingulate cortex were also tested for associations with
static and dynamic network measures with a linear model while
controlling for NPY group because of the prominence of the
nucleus accumbens, anterior insula, and dorsal anterior cingulate
cortex in the salience network (Menon, 2015).

RESULTS

Subjects
Twenty-nine subjects were genotyped as high-NPY or low-
NPY and provided resting functional MRI data that survived
quality-control procedures. The final groups of included subjects

1https://github.com/juanitacabral/LEiDA

did not vary in average frame displacement (p > 0.05). No group
differences were found for any demographics, physiological, trait,
or state measures (Table 2).

Static Connectivity: Salience Network
Low-NPY subjects showed higher values of salience network
integration, through shorter characteristic path length
(p = 0.0012 (uncorrected), d = 1.27) and higher global
network efficiency [p = 0.0065 (uncorrected), d = 1.063;
Figure 2]. High and low-NPY groups showed split results
in measures of network segregation, with high-NPY subjects
displaying higher modularity [p = 0.041 (uncorrected),
d = 0.76], but low-NPY subjects having higher clustering
[p = 0.0025 (uncorrected), d = 1.16]. Low-NPY subjects
were found to have higher measures of small worldness
[p = 0.0030 (uncorrected), d = 1.17] (Figure 2). These
effects all survived Holm’s correction for multiple comparison
(characteristic path length, p= 0.006; global efficiency, p= 0.013;
modularity, p = 0.041; clustering, p = 0.0010; small worldness,
p= 0.010).

To further evaluate the underlying causes of these group
differences, we tested graph-theoretic metrics at the level of
individual nodes (eccentricity and strength). Although not
surviving Holm’s correction for multiple comparison for twenty
regions, higher node strength was found in the low-NPY group
in the bilateral dACC (region 15: p = 0.24, 28: p = 0.094, 150:
p = 0.088, 221: p = 0.36 after Holm’s correction for multiple
comparisons), the right dorsolateral prefrontal cortex (region
9: p = 0.36, 11: p = 0.026, 21: p = 0.16), the right dorsal
anterior insula (region 20: p = 0.24), the left anterior insula
(region 169: p = 0.45), and the left lateral sulci (region 163:
p = 0.36, 181: p = 0.45) (Figure 3). Higher eccentricity was
found in the high-NPY group in the bilateral dACC (region
15: p = 0.011, 28: p = 0.041, 150: p = 0.024, 221: p = 0.17
after Holm’s correction for multiple comparisons), the right
dorsolateral prefrontal cortex (region 9: p = 0.11, 11: p = 0.16,
19: p = 0.25), the right anterior (region 34: p = 0.17) and
dorsal anterior insula (region 35: p = 0.25), the left anterior
insula (region 169: p = 0.11), the left lateral sulci (region
46: p = 0.17, 163: p = 0.10, 181: p = 0.25) (not significant
after correction) (Figure 3). Additionally average local efficiency
across all nodes within the salience network was found to be
significantly different (p < 2 × 10 −16). Further details can be
found in Supplementary Material.

Static Connectivity: Default Mode
Network
No significant differences were found between high-NPY and
low-NPY groups in network integration [global efficiency
p = 0.43 (uncorrected), d = 0.32; characteristic path length
p = 0.42 (uncorrected), d = 0.32], network segregation
[clustering p= 0.41 (uncorrected), d= 0.32; modularity p= 0.28
(uncorrected), d = 0.42], or small-worldness (small worldness
p = 0.21 (uncorrected), d = 0.45) in the default mode network
(Figure 2). However, average local efficiency across all nodes
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TABLE 2 | Demographic, physiological, and clinical characteristics of the sample.

All (n = 29) Low NPY (n = 17) High NPY (n = 12)

Mean or n SD or% Mean or n SD or% Mean or n SD

Age 20.31 1.24 20.53 1.23 20.00 1.24

Sex, n female (%) 14 48.3% 8 47.1% 6 50.0%

Race

White, n (%) 23 79.3% 14 82.4% 9 75.0%

Asian, n (%) 5 17.2% 2 11.8% 3 25.0%

Black, n (%) 1 3.4% 1 5.9% 0 0.0%

Physiological measures

Heart rate (per minute) 70.41 11.38 70.71 12.01 70.00 10.92

Systolic BP (mmHg) 114.28 14.23 116.94 13.69 110.50 14.71

Diastolic BP (mmHg) 64.48 10.08 66.18 9.41 62.08 10.92

Respiratory rate (per minute) 16.86 1.25 16.53 1.12 17.33 1.30

Height (cm) 168.62 8.61 168.77 9.16 168.40 8.15

Weight (kg) 66.12 13.80 65.11 11.84 67.54 16.64

Body mass index (kg/m2) 23.13 3.43 22.78 3.08 23.61 3.97

Trait measures

NEO-PI-R neuroticism 83.62 29.78 87.23 27.16 78.50 33.71

NEO-PI-R extraversion 116.45 21.38 117.82 22.94 114.50 19.76

NEO-PI-R openness 116.83 20.94 115.88 22.76 118.17 18.94

NEO-PI-R agreeableness 119.45 19.20 115.94 20.64 124.42 18.38

NEO-PI-R conscientiousness 120.21 20.41 115.71 20.64 126.58 19.12

BIS-BAS behavioral inhibition 19.04 4.36 19.18 5.13 18.78 2.59

BIS-BAS reward responsiveness 17.58 1.70 17.53 1.78 17.67 1.66

BIS-BAS drive 11.15 2.09 11.00 2.45 11.44 1.24

BIS-BAS fun seeking 11.81 2.21 11.65 2.18 12.11 2.37

Appetitive motivation scale 14.42 2.37 14.24 2.28 14.78 2.64

SPSRQ reward 11.92 3.70 12.59 3.88 10.67 3.16

SPSRQ punishment 10.42 5.50 10.59 6.18 10.11 4.26

State measures

PANAS positivea 30.36 6.14 29.76 6.18 31.27 6.26

PANAS negativea 12.14 2.45 12.00 2.37 12.36 2.66

PHQ-9a 2.79 2.04 2.88 2.32 2.64 1.63

CESDa 6.75 4.61 6.76 3.60 6.73 6.05

Perceived Stress Scalea 10.79 5.88 10.71 6.15 10.91 5.72

Beck Anxiety Inventorya 6.81 6.93 6.76 6.57 6.90 7.88

NEO-PI-R, Neuroticism, Extraversion, Openness Personality Inventory—Revised; BIS-BAS, Behavioral Inhibition and Approach Scales; SPSRQ, Sensitivity to Punishment
and Sensitivity to Reward Questionnaire; PANAS, Positive and Negative Affect Schedule; PHQ-9, Patient Health Questionnaire; CESD, Center for Epidemiologic Studies
Depression Scale; No significant differences between High and Low NPY as determined by a Mann-Whitney test.
aMissing data for 1–2 High NPY subjects.

within the default mode network was found to be significantly
different (p= 0.026).

Dynamic Connectivity: Salience Network
The salience network was best described by two states according
to k-clustering and Dunn’s index. Figure 4 shows each state
along with its connectivity matrix representation. Positive and
negative eigenvector values represent functional grouping of
nodes within the state.

In state 1, the regions centered on dACC were more out of
phase with the rest of the nodes in the salience network. In State
2, all nodes in the network were coherent.

High-NPY subjects spent more time in state 1 than low-
NPY subjects, conversely low-NPY subjects spent more time

in state 2 than high-NPY subjects [p = 0.038 (uncorrected),
d = 0.89]. High-NPY subjects also displayed a higher switching
probability between the two states [p = 0.047 (uncorrected),
d = 0.75].

Dynamic Connectivity: Default Mode
Network
The default mode network was best described by 3 states,
shown in Figure 5. In DMN state 1, all the regions of
interest were closely correlated. In state 2, we see two distinct
groupings. The first set of regions that includes the right
anterior frontal cortex, the left dorsal anterior frontal cortex,
left anterior and posterior temporal lobe as well as the right
posterior temporal lobe, the right posterior cingulate cortex,
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FIGURE 2 | Graph theory parameters for high and low NPY groups in the salience and default mode network. Error bars represent standard error of the mean.
∗p < 0.05, ∗∗p < 0.001 as calculated by a two-sided t-test.

and the left temporal parietal junction. The second set of
regions includes the left anterior frontal cortex, the right dorsal
anterior frontal cortex, the right anterior temporal lobe, the left
posterior cingulate cortex and the left and right inferior parietal
lobes. In the third state, part of the posterior cingulate cortex
(−7, −42, 13) (region 227) is anti-correlated with the rest of
the network.

No significant differences between the high-NPY and low-
NPY groups were found for fractional occupancy in any of
the states, or the average switching probability (p > 0.05, two-
sided t-test). Both groups spent a majority of time in state 1.
Switching probabilities between each state in the DMN were
tested for group differences; none were found that survived

correction for multiple comparison. Details can be found in
Supplementary Material.

Static Connectivity Association With
Dynamic Connectivity in the Salience
Network
Salience network switching probability was negatively associated
with global efficiency [p = 6.1 × 10−5 (uncorrected), Pearson’s
r = −0.75] and clustering [p = 5.4 × 10−4 (uncorrected),
Pearson’s r = 0.68], but positively associated with characteristic
path length [p = 2.1 × 10−4 (uncorrected), Pearson’s r = 0.72]
while controlling for NPY group. Fractional occupancy was also
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FIGURE 3 | (A) Salience network node strength, where Low NPY > High NPY. (B) Salience network node eccentricity, where High NPY > Low nPY. *p < 0.05,
**p < 0.001 as calculated by a two-sided t-test. Regions: 9, Right DLPFC; 11, Right DLPFC; 15, Right dACC; 34, Right Al; 35, Right Dorsal Al; 36, Right VLPFC; 45,
Inf. Parietal Lobule; 46, Left lateral sulcus; 150, Left dACC; 155, Left Dosal Al; 163, Left lateral sulcus; 168, Left Al; 181, Left Lateral sulcus; 221, Left dACC.

negatively associated with global efficiency [p = 2.6 × 10−4

(uncorrected), Pearson’s r = 0.70] and clustering [p = 0.0017
(uncorrected), Pearson’s r = 0.63], but positively associated

with characteristic path length [p = 9.3 × 10−4 (uncorrected),
Pearson’s r = 0.66] and modularity [p = 0.030 (uncorrected),
Pearson’s r = 0.37] while controlling for NPY group.
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FIGURE 4 | Salience network state 1 (A), and state 2 (B), where anatomical regions are colored by eigen vector value. Matrices show the outer product of the state
defining eigen vector. (C) Fractional occupancy of high and low NPY groups in state 1 and state 2 of the salience network. (D) Switching probability between
network states. Error bars represent standard error of the mean. *p < 0.05 as calculated by a two-sided t-test.

Functional Connectivity of the Nucleus
Accumbens and Dorsal Anterior
Cingulate Cortex
We compared seed-based functional connectivity from the
NAc and dACC between groups in an exploratory analysis
(Supplementary Figure 5 and Supplementary Table 4). No
group difference was found between group connectivity maps
after whole brain correction (p > 0.05, FWE).

Trait, Region of Interest Blood
Oxygenation-Level-Dependent Contrast,
and Sex Effects on Connectivity
Psychological traits were not found to be associated with
connectivity while controlling for NPY group after correction
for comparisons of 12 trait measures (p > 0.05, linear model).
Exploratory correlations between network measures and trait and
state questionnaires are shown in Supplementary Figure 6. No

differences were found between men and women in any of the
static or dynamic connectivity measures according to standard
two-sided t-tests (p > 0.05, two-sided t-test). The MID task
salience BOLD contrast (high vs. low) for the nucleus accumbens,
dorsal anterior insula, and dorsal anterior cingulate cortex were
not correlated with any of the static or dynamic connectivity
measures (p > 0.05, linear model).

DISCUSSION

NPY genotype has an impact on both static and dynamic
functional connectivity in the salience network. Although no
significant differences were found in functional connectivity
maps from seeds in the NAc and dACC, in static network
analyses of the salience network low-NPY subjects were found
to have shorter path lengths, higher global efficiency, higher
clustering, higher small-worldness, and higher node strength
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FIGURE 5 | Default mode network state 1 (A), state 2 (B), and state 3 (C), where anatomical regions are colored by eigen vector value. Matrices show the outer
product of the state defining eigen vector. (D) Fractional occupancy of high and low NPY groups in state 1, state 2, and state 3 of the default mode network.
(E) Switching probability between network states. Error bars represent standard error of the mean. No significant effects as measured by a two-sided t-test.

on average within the salience network. High-NPY subjects
showed higher modularity and node eccentricity in the salience
network. Salience network differences did not appear to be
driven by any specific node, but rather by many nodes spread
throughout the network. No differences were found between
the groups in the default mode network. Dynamically, low-
NPY subjects spent more time in a state displaying more
coordination while high-NPY subjects spent more time in a state
that had less coordinated connectivity in the salience network.

High-NPY subjects also switched between states more often in
this network. Again, no differences were found between groups
in the default mode network.

We have previously shown that high and low-NPY subjects
from the same sample differ in NAc activation during a monetary
incentive delay task (Warthen et al., 2018). However, we did not
find that functional connectivity maps based on the same NAc
seed were statistically different between groups. These results
indicate that, while NAc activation during reward behavior is
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different between groups, the two groups do not necessarily differ
with respect to the information transfer to and from this region.

Because the salience network (Menon, 2015) and default
mode network are implicated in many psychiatric disorders, we
evaluated the impact of NPY expression on those networks. We
found a hyperconnected salience network in low-NPY subjects.
Similar findings have been observed in PTSD (Akiki et al.,
2018; Fani et al., 2019) during rest as well as during eye-contact
(Thome et al., 2014). In social and general anxiety, regions within
the salience network (including the insula, anterior cingulate,
and prefrontal cortex) have been observed to be hyperactive
during rest and task functional connectivity (Etkin and Wager,
2007; Brühl et al., 2014). Structural hyperconnectivity between
the anterior insula and amygdala, as measured with diffusion
imaging, has also been shown to be associated with state and trait
anxiety (Baur et al., 2013). Other studies on anxiety have reported
heightened activity in the salience network (Sylvester et al., 2012),
and point to increased error notification originating in the dACC
(Hajcak et al., 2003; Paulus et al., 2004). Discordant results have
also been observed, e.g., decreased connectivity in the salience
network in anxiety (Geng et al., 2016; Xu et al., 2019). Increased
coherence within the salience network may reflect increased
vigilance in stimulus notification, which could lead to anxiety.
Future work should examine the role of NPY in the activity of
the salience network and how such network alterations impact
risk for anxiety and depression.

Although low-NPY has been associated with depression,
the hyperconnectivity within the salience network observed
here has not been found in depression. A previous study
showed a decrease in connectivity to the nucleus accumbens
in subjects with depression compared to controls (Helm et al.,
2018). Although we did not include this node in our salience
network, we don’t see lower connectivity in low-NPY subjects
in any node in the salience network when compared to high-
NPY subjects. In ADHD, von Rhein et al. (2019) reported
decreased functional connectivity between the salience network
and executive control network, which may also point back
to less coordinated functional connectivity within the salience
network as we see in high-NPY subjects. Higher connectivity
within the salience network may indicate a lower threshold for
stimulus notification, which would fit symptoms seen in anxiety
and PTSD. ADHD has been associated with lower functional
connectivity within the salience network (von Rhein et al., 2019),
as well as a possible higher necessary stimulus threshold for
sustained attention (Tegelbeckers et al., 2015). The high-NPY
group may share this parallel with subjects with ADHD.

The high-NPY group displayed a higher switching probability
between states in the salience network. Subjects with ADHD have
previously shown increased switching between networks (Cai
et al., 2018; Scofield et al., 2019). Although here we examine
within network switching probabilty, between and within
network switching probabilities may be related. Depression has
been shown to present with impaired salience network mediated
switching into the central executive network (Wang et al., 2016),
which may relate to the lower switching likelihood within the
salience network shown here by the low-NPY group. Statically,
we see lower long-distance global efficiency within the salience

network in the high-NPY subjects, along with higher modularity.
These findings are similar to network analyses in children with
ADHD (Wang et al., 2009; Cai et al., 2018), which are of interest
given that greater NPY function may be related to hyperactivity
(Lesch et al., 2011), impulsivity (Bari et al., 2015), and possibly
ADHD (Scassellati et al., 2012; Kourtesis et al., 2015).

The functional connectivity differences observed here between
low and high-NPY groups seem to be specific to the salience
network, as we did not find group differences in the default mode
network. It would be reasonable to expect group differences in
default mode network connectivity, as low-NPY is associated
with the development of depression (Mickey et al., 2011), and
stronger default mode network connectivity has been reported in
subjects with depression (Wang et al., 2016; Helm et al., 2018),
and low-NPY status has been associated with greater activation
of medial prefrontal cortex (Mickey et al., 2011). The functional
connectivity of those at risk for the development of depression
may not look like the functional connectivity of those with active
depression. PTSD, also associated with low-NPY (Yehuda et al.,
2006), has been characterized by a generally hypoactive default
mode network (Akiki et al., 2018), which we do not see in low-
NPY subjects. This may indicate that a state change is necessary
from the at-risk state to the disease state (e.g., depressed or
PTSD) before differences in default mode network connectivity
are observed. Overall these findings suggest that NPY exerts
effects on risk for psychiatric disorders primarily through the
salience network, and not the default mode network.

We found a negative relationship between salience network
switching probability and global efficiency and clustering, but
a positive relationship with characteristic path length. This is
not surprising because a higher network switching rate should
result in lower correlations between regions in the network
over time, as they spend less time in coherent oscillations.
A lower network switching rate would allow for stronger long-
distance correlations, resulting in a higher characteristic path
length in a weighted graph. Fractional occupancy showed these
same relationships, a negative correlation with global efficiency
and clustering but a positive association with characteristic
pathlength, possibly for the same reason. Fractional occupancy
also showed a positive correlation with modularity. A longer
time spent in a certain network state, or higher fractional
occupancy, may allow for stronger local correlations, resulting in
higher modularity.

Our study has several limitations. Although the imaged sub-
sample was genetically selected from a relatively large sample
(>200), the number of imaged subjects was reduced, and many
had to be excluded to avoid artifacts related to head motion.
The resulting sample size limited the power to detect moderate-
sized between-group effects. A replication sample would boost
the strength of these findings, and this should be investigated
further in the future but the practical limitations inhibit our
ability to recruit another 200 subjects to sample from at this time.
Furthermore, to address the multiple-comparison problem, we
had to focus our hypotheses on two brain networks of interest.
We recognize that there is no hard definition of what is and
is not the salience or default mode network. These findings
should be validated in alternate definitions of these networks in
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future studies. The distribution of NPY haplotypes in the general
population also led to an imbalance of NPY group numbers
which could impact the k-clustering algorithm. As a reviewer
stated we do not know the circulating, CSF, or cellular levels of
NPY in these subjects in the genetically predicted groups. As we
are studying healthy humans, CSF and cellular levels of NPY are
not feasible to obtain. Additionally, although we do not have
circulating or serum levels of NPY these measures likely would
not represent CSF levels of NPY (Dötsch et al., 1997). We suggest
animal studies to determine the relationship of these measures
of the brain regions of interest. Here we only examined resting-
state functional connectivity; task-based functional connectivity
analysis of the salience network may also provide additional
insight into the effects of NPY on intrinsic functional networks.
Finally, the resting state scans in this study were collected after a
monetary incentive delay task for both groups. Previous studies
have shown that prior tasks may impact resting state (Waites
et al., 2005), however, the effect would be similar for both groups.

Generally, we found increased coordination across the salience
network among low-NPY subjects, and a salience network
that was less efficient and coherent among high-NPY subjects.
Differences in connectivity in this network may point to
differences in emotional regulation and salience signaling. These
differences in processing may provide high-NPY subjects with
resilience against depression, anxiety, and PTSD, but which
also may put them at higher risk for attentional or hyperactive
disorders. Stronger, more coordinated connectivity in the salience
network may indicate a lower threshold for stimulus detection. In
disorders of anxiety and PTSD, this may result in hyper-vigilance
and constant notification of realistically irrelevant stimuli. Lower
connectivity, as generally seen in cases of ADHD, may represent
a higher necessary stimulus threshold for coherent activity of
the salience network, or paying attention to the given stimulus.
This lower connectivity may also result in higher switching
probabilities within the network, generally representing less
coordinated activity in the network over time. Anxiety, PTSD,
and ADHD have all been suggested to stem from a lack of
regulation in brain networks (Etkin and Wager, 2007; Hoekzema
et al., 2014). Our results suggest that NPY may play a role in
network regulation, and this should be a focus of future studies
on neurobiological risk factors for anxiety and mood disorders.

CONCLUSION

We have shown that low levels of NPY are associated with
a more closely knit salience network, as determined by graph
theory measures. Additionally, subjects with high levels of NPY

displayed higher switching probabilities within the salience
network, along with more time spent in a less strongly connected
state. In the default mode network, no such differences were
observed. NPY may exert effects on the risk of development of
psychiatric disorders through subtly varied activity in the salience
network.
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