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Background: Factors such as variations in thyroid carcinoma (THCA) gene

characteristics could influence the clinical outcome. Ferroptosis and

immunity have been verified to play an essential role in various cancers, and

could affect the cancer patients’ prognosis. However, their relationship to the

progression and prognosis of many types of THCA remains unclear.

Methods: First, we extracted prognosis-related immune-related genes and

ferroptosis-related genes from 2 databases for co-expression analysis to

obtain prognosis-related differentially expressed immune-related ferroptosis

genes (PR-DE-IRFeGs), and screened BID and CDKN2A for building a

prognostic model. Subsequently, multiple validation methods were used to

test the model’s performance and compare its performance with other

4 external models. Then, we explored the mechanism of immunity and

ferroptosis in the occurrence, development and prognosis of THCA from the

perspectives of anti-tumor immunity, CDKN2A-related competitive

endogenous RNA regulatory, copy number variations and high frequency

gene mutation. Finally, we evaluated this model’s clinical practice value.

Results: BID and CDKN2A were identified as prognostic risk and protective

factors, respectively. External data and qRT-PCR experiment also validated their

differential expression. Themodel’s excellent performance has been repeatedly

verified and outperformed other models. Risk scores were significantly

associated with most immune cells/functions. Risk score/2 PR-DE-IRFeGs

expression was strongly associated with BRAF/NRAS/HRAS mutation. Single

copy number deletion of CDKN2A is associated with upregulation of CDKN2A

expression and worse prognosis. The predicted regulatory network consisting

of CYTOR, hsa-miRNA-873-5p and CDKN2A was shown to significantly affect

prognosis. The model and corresponding nomogram have been shown to have

excellent clinical practice value.

Conclusion: The model can effectively predict the THCA patients’ prognosis

and guide clinical treatment. Ferroptosis and immunity may be involved in the
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THCA’s progression through antitumor immunity and BRAF/NRAS/HRAS

mutation. CYTOR-hsa-miRNA-873-5p-CDKN2A regulatory networks and

single copy number deletion of CDKN2A may also affect THCA′ progression
and prognosis.
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Introduction

Thyroid carcinoma (THCA) is one of the most common

endocrine carcinomas, and its morbidity has increased steadily

over the last 3 decades (Filetti et al., 2019). In the U.S., an

estimated 44,280 new THCA cases and 2,200 new THCA

deaths are expected in 2021 (Siegel et al., 2021). The choice of

treatment method for THCA is closely related to its

differentiation degree and pathological type (Wallner et al.,

2019). Traditional treatments include thyroidectomy,

radioactive iodine therapy and endocrine therapy

(Schlumberger and Leboulleux, 2021). Unfortunately, 15–20%

of differentiated THCA and most anaplastic THCA patients have

poor clinical outcomes (Naoum et al., 2018). And treatments for

advanced THCA are limited (Mehnert et al., 2019). As a new era

in cancer treatment (Ngamcherdtrakul et al., 2021; Johnson et al.,

2022), immune checkpoint inhibitors (ICIs) has achieved

positive efficacy in many tumors such as non-small cell lung

cancer (NSCLC) (Kazandjian et al., 2016), melanoma (Bhatnagar

et al., 2017), head and neck squamous cell carcinoma (Larkins

et al., 2017). Similarly, it has broad prospects in the clinical

treatment of THCA (Varricchi et al., 2019; Di Molfetta et al.,

2021). While ICIs can significantly improve survival in several

cancers, they may also induce a series of immune-related adverse

events (irAEs) with endocrine disorders being the most common

(Wright et al., 2021). Thyroid becomes the endocrine organ most

commonly affected by ICIs, which usually results in

hypothyroidism and thyrotoxicosis (Wright et al., 2021).

Therefore, it is recommended to perform thyroid function

tests every 6–12 weeks at baseline, before each dose, and every

6–12 weeks for the first 6 months after completion of treatment

to scientifically manage potential irAEs (González-Rodríguez

and Rodríguez-Abreu, 2016).

Ferroptosis is an iron-dependent form of cell death

distinguished from other programmed cell death, which was

put forward in 2012 (Dixon et al., 2012). Ferroptosis is closely

related to metabolic events in cells driven by lipid peroxidation,

playing an important role in cancer progression (Stockwell et al.,

2020; Jiang et al., 2021). The ferroptosis process in tumors is

observed to be closely related to the immune microenvironment,

which also implicates frequent collaboration of ferroptosis and

immunity in tumor progression (Stockwell et al., 2020; Jiang

et al., 2021). Many studies have reported that ferroptosis inducers

can enhance the efficacy of ICIs immunotherapy (Friedmann

Angeli et al., 2019; Song et al., 2021; Xu et al., 2021). In addition,

ferroptosis-related genes (FRGs) are closely related to tumor

immunity and chemotherapy resistance and can be used as

indicators of clinical prognosis in tumor patients (Turubanova

et al., 2019; Yu et al., 2020). Competitive endogenous RNAs

(ceRNA) is an important issue in recent years. Long non-coding

RNA (LncRNA) adsorbs microRNA (miRNA) to regulate gene

expression, which plays an important role in the occurrence and

development of tumors and other diseases (Karreth and Pandolfi,

2013; Chan and Tay, 2018). Copy number variation (CNV) refers

to an increase or decrease in the copy number of large segments

of the genome, ranging in size from approximately 1 KB to 3 Mb,

which may occur at coding gene sites or be associated with

signaling pathways such as cell proliferation, chromosome

replication, and repair (Carson et al., 2006). CNV changes the

expression level of its encoded product and thus changes the

occurrence and development of tumors (Liu et al., 2012; Jiang

et al., 2014; Yang et al., 2014).

The above results all indicate that ferroptosis and immunity

have great potential value in tumor progression as well as in

predicting prognosis and clinical treatment effect. Therefore, it is

necessary to screen the prognosis-related differentially expressed

immune-related ferroptosis genes (PR-DE-IRFeGs) by

bioinformatics to construct marker that can effectively predict

THCA patients’ prognosis and clinical treatment effect. Through

multi-omics analysis, the exploration of the mechanism of

immunity and ferroptosis in the occurrence, development and

prognosis of THCA from the aspects of anti-tumor immunity,

CDKN2A-related ceRNA regulation, CNV and high-frequency

gene mutation will also provide many scientific values.

Material and methods

Extraction of samples and data

The overview of our research process was shown in Figure 1.

On 24 November 2021, we obtained THCA samples and data

from 2 databases and 3 public cohorts. We first extracted RNA

sequencing and corresponding clinical data of 568 samples

(510 THCA and 58 adjacent normal tissues) using The

Cancer Genome Atlas database (TCGA, cancergenome.nih.

gov/) on 24 November 2021. We then obtained two other

external cohorts, the GSE33630 and GSE35570 cohorts, from
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the Gene Expression Omnibus (GEO) database (ncbi.nlm.nih.

gov/geo/) on 24 November 2021. The former contained

105 samples (49 papillary thyroid carcinomas, 11 anaplastic

thyroid carcinomas, and 45 normal thyroids) and the latter

116 samples (65 papillary thyroid carcinomas and 51 normal

thyroids). Finally, we successfully extracted 2660 immune-

related genes (IRGs) from the ImmPort (immport.org/home)

and InnateDB (innatedb.ca/) databases on 31 July 2021.259 FRGs

were extracted from the FerrDb (zhounan.org/ferrdb) database

on 31 July 2021.

Identification of DE-IRGs and DE-FRGs

After overlapping IRGs list, FRGs list and RNA sequencing

data of TCGA, GSE33630 and GSE35570 cohorts, the RNA

sequencing data of 2365 IRGs and 246 FRGs were obtained

from TCGA cohorts. The RNA sequencing data of 1879 IRGs

and 234 FRGs were obtained from the GSE33630 cohort, and

RNA sequencing data of 1879 IRGs and 234 FRGs were obtained

from the GSE35570 cohort.

We used the R package “limma” to explore 510 THCA

and 58 adjacent normal tissues in the TCGA cohort for

differentially expressed immune-related genes (DE-IRGs)

based on the filter conditions |log2 fold change| (|

log2FC|) >1 and false discovery rate (FDR) < 0.05. For

RNA sequencing data of DE-IRGs from 2 GEO cohorts

and differentially expressed ferroptosis-related genes (DE-

FRGs) from the three cohorts, FDR <0.05 became a new filter

condition. The R “Venn” was used to describe the crossover

results of DE-IRGs/DE-FRGs for the 3 cohorts.

GO and KEGG enrichment analysis based
on the common DE-IRGs and DE-FRGs

We used bubble chart and histograms to demonstrate the

pathways and functions of enrichment in the common DE-

IRGs and common DE-FRGs. To do so, the R package

“org.Hs.eg.db” was used to perform the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO).

FIGURE 1
Research diagram of the whole process.
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Identification of PR-DE-IRFeGs

After obtaining the expression data profile of common DE-

IRGs based on 3 cohorts, we used the R package “weighted gene

expression network analysis (WGCNA) " to identify DE-IRGs

highly correlated to THCA. The TCGA samples were clustered to

eliminate the free samples, and then the function

pickSoftThreshold was used to select the best soft power β =

6 to build the best scale-free network. First, we created the

adjacency matrix according to the formula:

aij �
∣∣∣∣Sij

∣∣∣∣β

(aij: adjacency matrix between gene i and gene j, Sij: similarity

matrix which is done by Pearson correlation of all gene pairs, β:
softpower value) (Yip and Horvath, 2007). Next, it was

transformed into a topological overlap matrix (TOM) and the

corresponding dissimilarity (1-TOM) (Yip and Horvath, 2007).

The genes were clustered at a distance of 1-TOM to construct

corresponding modules for matching corresponding dynamic

branches (Lombardo et al., 2018). After similar modules were

merged, two modules were obtained from TCGA cohort.

Similarly, we identified two modules from GSE33630 cohort

with the best soft power β = 8 and GSE35570 cohort with the best

soft power β = 7, respectively. Meanwhile, genes in modules with

the highest correlation coefficients from 3 cohorts were extracted

for common DE-IRGs highly correlated to THCA.

R package “ConsensusClusterPlus” was used to run the cluster

analysis (1000 iterations and 80% resampled rate) for identifying

ferroptosis-associated molecules subtypes based on 110 DE-FRGs’

RNA sequencing data, and to classify THCA patients into different

subtypes. Kaplan-Meier survival curves were used to compare overall

survival (OS) between the two subtypes. Likewise, differential

expression analysis of 110 DE-FRGs between the two subtypes was

performed to identify differentially expressedDE-FRGs according to a

filter criterion of FDR <0.05. We also visualized the differences in

clinicopathological features and expression of theseDE-FRGs between

the two subtypes with a heatmap.

p < 0.05 was used as filter criterion for univariate cox regression

based on commonDE-IRGs highly correlated to THCA/differentially

expressed DE-FRGs expression and OS from TCGA cohort.

Finally, 35 DE-IRGs and 10 DE-FRGs with prognostic values

were extracted. Then, we set the threshold of correlation

coefficient >0.3 and p value < 0.001 for co-expression analysis

between their expression values to filter the corresponding PR-DE-

IRFeGs.

Construction and verification of
prognostic model

We randomly matched 502 samples with complete OS data

to the training and test sets with a ratio of 5:5. The expression

values of the 9 prognostic DE-IRFeGs, the survival data of all

samples in the training set were used to run lasso regression and

multivariate Cox regression. After constructing the final

multivariate Cox regression model, the risk score of each

sample was based on the following formula calculates:

Risk score � ∑(PR − DE

− IRFeGs expression values × corresponding coefficient)

All cases from the TCGA database obtained their risk scores.

Cases from total, training and test sets were divided into high-risk

and low-risk groups using the median risk score of each set as the

cutoff point, respectively.

We used the R tool to draw the risk curves and survival status

diagrams to visualize the relationship between the risk score and

survival status of each case, and created a Kaplan-Meier curve to

clarify the correlation between the risk groups andOS. The expression

distribution of the 2 PR-DE-IRFeGs with increasing risk scores was

also visualized. Receiver operating characteristic curve (ROC) curves

with area under the curve (AUC) for response prediction accuracywas

drawn to verify the model’s prediction accuracy based on R package

“timeROC”. Univariate and multivariate Cox regressions were

performed to verify whether our model could independently

predict patients’ OS under multifactorial clinical conditions.

Comparison of performance among
different prognostic models

To compare the ability of our model to predict prognosis

with other models, we selected four models constructed by Han

et al. (2020), Wu et al. (2021), Huang et al. (2021), and Qian et al.

(2021). These models are based on 4 pyroptosis-related genes

(IL18, GSDMC, PJVK, and NOD1), 3 ferroptosis-related genes

(HSPA5, AURKA, and TSC22D3), 5 ferroptosis-related genes

(DPP4, GSS, HMGCR, PGD, and TFRC) and 5 autophagy-

related genes (CX3CL1, ATG9B, CDKN2A, ITPR1, and

DNAJB1), respectively. The messenger RNA (mRNA)

expression data corresponding to the genes in each model

was extracted from the TCGA THCA cohort. These data

were used to construct a multiCox regression model to

calculate risk scores for individual samples. We then

divided the samples into high-risk and low-risk groups

based on their median risk scores. ROC curves and

Kaplan-Meier survival curves were used to compare the

performance of five models in predicting prognosis and

the ability to distinguish prognosis, respectively. The

mRNA expression levels of the genes corresponding to

these four models and our prognostic model were used for

calculating and comparing the concordance index (C-index).

This process was performed based on R package “survcomp”.

In addition, we used restricted mean survival time (RMST)

curves to evaluate the performance of each model and
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compare their differences (Schröder et al., 2011; Zheng et al.,

2021).

Verification of differential expression of
2 PR-DE-IRFeGs protein levels

By comparing the immunohistochemical (IHC) staining

images of BID and CDKN2A, we obtained the results of their

differential expression between THCA tissue and normal thyroid

tissue. IHC staining images were provided by the Human Protein

Atlas (HPA) database (proteinatlas.org) on 25 November 2021.

Model performance evaluation in clinical
subgroups

The results of the stratified analysis can show whether this model

can still have advantages in different subgroups of clinicopathological

features. The TCGA samples could be divided into different

subgroups due to differences in 6 clinical parameters. Kaplan-

Meier analysis clearly showed differences in survival probability

between different risk groups in each subgroup.

GSEA enrichment analysis among
different risk groups

Differentially expressed genes between high and low risk

groups were used in the enrichment analysis of biological

functions and pathways involved in the high and low risk

groups based on the R package “cluster profile” and the gene

sets “c2. cp.kegg.v7.4. symbols.gmt”, “c5. go.v7.4. symbols.gmt".

Immune cell and function analysis

Through Gene Set Enrichment Analysis (GSEA, broad.mit.

edu/GSEA) enrichment analysis on 26 November 2021,

numerous functions and pathways related to immunity were

obtained. We then used single-sample gene set enrichment

analysis (ssGSEA) to quantify each sample’s immune cells and

functions scores for correlation and difference analysis with risk

scores. ssGSEA was done by R packages “GSEAbase” and “gsva”.

Such results were visualized by heat maps, showing their

distribution differences in each sample.

Prediction of a network regulatory
network targeting CDKN2A

To further investigate the regulatory mechanism of

CDKN2A related to lncRNAs and miRNAs, we obtained RNA

sequencing data of miRNAs and mRNAs from TCGA for

analysis. First, a RNA sequencing package of CDKN2A across

33 types of cancer was downloaded from the UCSC Xena (xena.

ucsc.edu) database on 14 January 2022. These RNA-sequencing

data were used to distinguish differential expression of CDKN2A

between cancer and adjacent tissues. Then, we acquired the

miRNA expression data of 573 samples from TCGA,

including 514 THCA and 59 adjacent normal tissues for the

next analysis. Candidate miRNAs bound the upstream of

CDKN2A were predicted using various programs in StarBase

(starbase.sysu.edu.cn) for correlation analysis with CDKN2A

expression (threshold: correlation coefficient < -0.288, p < 0.

001) on 15 January 2022. To clarify differentially expressed

miRNAs between THCA and normal cases, a differential

analysis (|log2FC|) >1, p < 0.05) was used. Survival

probability between subgroups of cases with different miRNA

expression was also compared. No candidate miRNAs other than

hsa-miR-873-5p showed significant significance in all results for

further analysis. LncRNAs bound to hsa-miR-873-5p were

predicted using StarBase (v2.0). Likewise, correlations between

expression levels of lncRNAs and hsa-miR-873-5p (threshold:

correlation coefficient < −0.29, p < 0.001)/CDKN2A (threshold:

correlation coefficient < −0.48, p < 0.001), as well as the

difference (| log2FC |) >1, p < 0.05) and survival (p < 0.05)

analysis of lncRNAs were analyzed. Only CYTORwas considered

statistically significant. Eventually, the ceRNA regulatory

network made up of CYTOR, hsa-miR-873-5p and CDKN2A

was visualized by Cytoscape (v3.7.2). To show the targeting

relationship between the two genes in ceRNA for more detail,

we also showed the predicted binding sites of hsa-miR-873-5p

and CDKN2A as well as hsa-miR-873-5p and CYTOR through

the Starbase website.

Somatic gene mutation related to the
model

VarScan was used to detect MAF files of somatic gene

mutation data downloaded from the TCGA cohort for THCA

samples, and we then used the R package “GenVisR” to visualize

the 30 most frequently mutated genes in different risk groups,

respectively. Perl was used to calculate each sample’s tumor

mutation burden (TMB) for correlation analysis with risk scores

and difference analysis between different risk groups. We compared

the differences in risk score/BID/CDKN2A/CDKN2A-related DE-

IRGs/BID-related DE-IRGs expression between BRAF/NRAS/HRAS

wild and mutant groups, respectively.

CNV analysis

We obtained CNV data for 9 PR-DE-IRFeGs of 512 THCA

samples from the UCSC Xena database for our analysis. The
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analysis mainly included counting and visualizing the CNV

frequencies of these genes and their chromosomal locations.

For further analysis, the entire samples were split into normal,

and single-gain/single-deletion copy groups according to

variants of copy numbers in BID and CDKN2A. Then, the

differential expression of PR-DE-IRFeGs between 2 groups

was assessed. Additionally, survival differences between

2 groups were analyzed by constructing Kaplan-Meier survival

plots.

Treatment value of the model

Programmed death-ligand 1 (PD-L1 or CD274) and TMB,

indicators for predicting the outcome of immunotherapy,

were further analyzed. We used a circle diagram to

demonstrate the relationship between TMB/

CD274 expression and risk score/BID/CDKN2A

expression. For prediction of the potential response of

risk score to immune checkpoint block therapy, the

Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was also applied (Banchereau et al., 2021).

Then, spearman correlation analysis was performed to

reveal the relationship between TIDE, Microsatellite

Instability (MSI), Dysfunction, Exclusion and risk score/

BID/CDKN2A expression with a circle graph showing the

results. Also, the comparison of CD274 expression, TMB,

TIDE, MSI, Dysfunction and Exclusion scores among

different risk groups was made.

Further, immunogenicity was analyzed by using the

immunophenotypic score (IPS) data acquired from the Cancer

Immunology Atlas (TCIA, tcia.at/home) database on

28 November 2021. We calculated the IPS of the samples by

analyzing the gene expression levels of the 4 cell types that

determined immunogenicity, which is proportional to the IPS

score (Wang. et al., 2021a). The relationship between IPS and the

risk score/BID/CDKN2A expression was explored by using the

spearman correlation. The violin plots to graphically show the

differences in IPS of the 3 types among different risk groups.

Finally, we analyzed the half-maximal inhibitory

concentration (IC50) of 6 chemotherapeutics for THCA

patients from the NCCN guidelines. The R package

“pRophetic” was performed to predict IC50 with the total

cohort of samples. Then a regression model based on the cell

line expression data from the Genomics of Drug Sensitivity in

Cancer (GDSC, cancerrxgene.org) database and the RNA

sequencing transcriptome data from the TCGA database was

constructed to predict the IC50 of drugs in each sample on

28 November 2021 (Kim et al., 2021). Spearman correlation

analysis was used to explore the relationship between the IC50 of

the 6 drugs and the risk score/BID/CDKN2A expression. Also, a

comparison of the IC50 difference among different risk groups

was performed.

Combination of a nomogram for
prediction of survival probability

Quantitatively predicting and monitoring the prognosis of

THCA patients is essential for clinical practice. To do so, we integrated

age, clinical stage and risk group to construct a nomogram by running

the R package “rms”. ROC curves for 1-, 2-, 3-, 4- and 5- years were

plotted to evaluate the prediction performance of the nomogram.

Further, the accuracy of predicting the nomogram’s survival rate was

tested using the calibration curve.

Validation of differential expression of
model genes using an external cohort

The GSE60542 cohort of the GEO database was used as an

external cohort, from which we obtained RNA-sequencing data

for 27 paired THCA and adjacent normal thyroid tissue. We used

paired t-test to compare the differences of 2 PR-IRFeGs between

THCA and adjacent normal thyroid tissue.

Quantitative real-time polymerase chain
reaction (qRT-PCR) to verify the relative
expression differences of related genes

Twenty pairs of matched THCA tissues and adjacent normal

thyroid tissues were obtained from patients undergoing surgical

treatment at the First Affiliated Hospital of Nanchang University

from September 2021 to April 2022. The collection of these tissues

has been approved by the Ethics Committee of the First Affiliated

Hospital of Nanchang University (2021-09-024) and written

informed consents were obtained from all patients. We

immediately immersed the removed tissue in RNA preservation

solution (Servicebio, Wuhan, China) and stored in a −80°C freezer.

QRT-PCRwas used to detect the relativemRNA expression of genes.

Total RNA extracted from tissues using the TransZol Up Plus

RNA Kit (TRANS, Beijing, China) was reverse transcribed into

cDNA using EasyScript First-Strand cDNA Synthesis SuperMix

(TRANS, Beijing, China). After amplification and detection of

BID, CDKN2A and CYTOR using the Archimed Quantitative

PCR Detection System and PerfectStart® Green qPCR SuperMix

(TRANS, Beijing, China), the detected values of the three genes

were normalized to the relative expression values of β-actin by

the 2−ΔΔCt method. miRNAs extracted from tissues using the

MiPure Cell/Tissue miRNAKit (Vazyme, Nanjing, China) was

reverse transcribed into cDNA using miRNA first Strand cDNA

Synthesis Kit (Vazyme, Nanjing, China). After amplification and

detection of hsa-miR-873-5p using the Archimed Quantitative

PCR Detection System and miRNA Universal SYBRqPCR

Master Mix (TRANS, Beijing, China), the detected values of

hsa-miR-873-5p were normalized to the relative expression

values of U6 by the 2−ΔΔCt method.
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We ran paired t-tests to compare differences in relative

expression of these genes between paired tissues. Supplementary

Table S1 presented the primer sequences for all genes.

Statistical processing

Throughout the process, the statistical methods used were

portrayed below. In all statistical methods, results at p < 0.05 were

considered statistically significant unless otherwise stated. We

used the student’s t-test or non-parametric test to compare

differences between continuous variables and the chi-square

test or Fisher’s exact test to compare differences between

categorical variables (Fan et al., 2021). Prognosis-related

differentially expressed immune-related genes (PR-DE-IRGs)

and prognosis-related differentially expressed ferroptosis-

related genes (PR-DE-FRGs) were identified using univariate

cox regression analysis. Lasso regression and multiCox

regression were utilized to figure out PR-DE-IRFeGs to

construct the prognostic model. The difference in Survival

Probability between subgroups were compared using Kaplan-

Meier analysis and log-rank test. Univariate andmultivariate Cox

analyses based on each clinical feature and risk score were used to

verify the independent prognostic value of risk score (Fan et al.,

2021). Correlation between variables was examined by Spearman

or Pearson correlation analysis. All analyses were done using the

R programming language (version 4.0.3), Perl (version 5.6.1) and

Cytoscape (version v3.7.2).

3 Results

Identification of DE-IRGs and DE-FRGs

The DE-IRGs and DE-FRGs that we got are as follows:

465 DE-IRGs (230 genes: down-regulated; 235 genes: up-

regulated) from the TCGA cohort, 1052 DE-IRGs from the

GSE33630 cohort (610 genes: down-regulated; 442 genes: up-

regulated), 976 DE-IRGs from the GSE35570 cohort (399 genes:

down-regulated; 577 genes: up-regulated), 176 DE-FRGs from

the TCGA cohort (98 genes: down-regulated; 78 genes: up-

regulated), 146 DE-FRGs (90 genes: down-regulated; 56 genes:

up-regulated) from the GSE33630 cohort, and 163 DE-FRGs

(101 genes: down-regulated; 62 genes: up-regulated) were from

the GSE35570 cohort. Finally, we found 235 DE-IRGs and

110 DE-FRGs shared by all three cohorts (Figures 2A,B).

GO and KEGG enrichment analysis based
on the common DE-IRGs and DE-FRGs

Supplementary Figure S1A shows that the screened DE-

IRGs-enriched biological processes (BPs) were mainly

associated with immune cell infiltration, such as negative

regulation of cell adhesion, myeloid leukocyte migration,

leukocyte chemotaxis, monocyte chemotaxis. Further KEGG

analysis found that these genes were mainly enriched for

cytokine-cytokine receptor interaction, MAPK signaling

pathway, chemokine signaling pathway, and calcium signaling

pathway (Supplementary Figure S1B). These pathways are closely

related to inflammatory cell chemotaxis, further suggesting that

inflammatory cell chemotaxis is closely related to the DE-IRGs

we screened.

According to the results of the study (Fuhrmann et al.,

2020; Fu et al., 2021), hypoxia can protect the effects in the

ferroptosis process of tumor cells, and reduce out of ferroptosis

inducers. In the absence of hypoxia, iron production is increased,

and reducing stable iron protein production, which shows that

hypoxia and ferroptosis have a very close relationship (Huo et al.,

2021). In the GO analysis of DE-FRGs, the BPs enriched by these

genes were closely related to the hypoxia response, mainly

including response to oxidative stress, cellular response to

chemical, stress, cellular response to oxidative stress, response

to nutrient levels, response to extracellular stimulus, intrinsic

apoptotic signaling pathway, etc. (Supplementary Figure S1C).

As shown in Supplementary Figure S1D, these genes were mainly

enriched for ferroptosis, autophagy, chemical carcinogenesis,

FoxO signaling pathway, NOD−like receptor signaling pathway,

Mitophagy, HIF−1 signaling pathway, etc. in KEGG analysis.

These pathways are closely related to hypoxia, suggesting that

ferroptosis has a strong correlation with the DE-FRGs genes we

screened.

Acquisition of PR-DE-IRFeGs

We used WGCNA to build gene co-expression networks

for the 235 common DE-IRGs in these 3 cohorts to identify the

gene modules highly correlated to THCA. We obtained

2 modules in each of the 3 cohorts. Figures 2C–E shows

the correlation results between these modules and THCA/

normal tissue. Among these modules, three had the highest

positive correlation with THCA and they were the turquoise

modules in the TCGA cohort, the GSE33630 cohort, and the

GSE35570 cohort. 128 common DE-IRGs in these 3 modules

can be obtained by the Venn diagram (Figure 2F). The

similarity in expression levels and the proportion of

ambiguous clustering measurements we measured for the

110 DE-FRGs shared by the three cohorts ultimately

determined k = 2 to have the best cluster stability (Figures

2G–I). All THCA patient samples (n = 502) were divided into

two clusters, cluster1 (n = 364) and cluster2 (n = 138)

(Figure 2J). Differences in the distribution of various

clinicopathological features in the two clusters were

visualized by the heatmap (Supplementary Figure S2A). It

is also evident that samples in cluster2 had lower survival rates
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FIGURE 2
Identification of DE-IRGs and DE-FRGs. (A) Gene Venn plot based on DE-IRGs of the three cohorts. (B) Gene Venn plot based on DE-FRGs of
the three cohorts. (C–E) Heatmaps of correlations between modules and tumor features in the TCGA, GSE33630, and GSE35570 cohorts,
respectively. Each row corresponds to a color module, the left column represents the normal tissue, and the right column represents the tumor
tissue. (F) DE-IRGs were obtained by the intersection of three cohorts’ turquoise modules. (G) Consensus cluster cumulative distribution
function (CDF) for k = 2 to 9. (H) Relative change in the area under the CDF curve from k = 2 to 9. (I) Trace plots from k = 2 to 9. (J) Consensus
clustering matrix in k = 2.
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than in cluster1 (Supplementary Figure S2B). Therefore,

85 DE-FRGs were screened. The samples (n = 502) we got

from the TCGA cohort for mRNA expression and clinical data

whose clinical characteristics were shown in Table 1. Finally,

35 PR-DE-IRGs and 10 PR-DE-FRGs were screened by using

univariate cox analysis, respectively (Figures 3A,B). Co-

expression analysis of these RNA data resulted in 9 PR-DE-

IRFeGs. Their expression distributions were shown with a

heatmap (Figure 3C), and their relationships was visualized in

a network graph (Figure 3D). Furthermore, it can be

concluded that the risk factors considered prognostically

related are CDKN2A, MIOX, PGD, and TFRC, while

CAPG, GPX4, ARNTL, BID and DPP4 are considered

protective factors (Figures 3A,B).

Establishment and validation of
prognostic model

CDKN2A and BID were determined based on the finest λ
value by lasso regression analysis and used to construct a

multivariate Cox regression model (Supplementary Figures

S3A–B). And the co-expression relationship between these PR-

DE-IRFeGs and the corresponding DE-IRGs was shown in

Figure 3E. CDKN2A’s low expression and BID’s high

expression are associated with better OS (Figures 3F,G).

Table 1 clearly shows that randomization did not result in

significant differences of the clinical characteristics between

different sets. We calculated the risk score of each sample in

the training, test and total sets from TCGA using the risk score

calculation formula: risk score = (CDKN2A expression value

*−1.6634 + BID expression value *1.2448). Following that, all

samples were computed based on their sets. The sample’s risk

score was compared to the set’s median risk score, and the

samples were divided into high-risk and low-risk groups.

Figures 4A–C shows the risk profile and survival status plots

that show the distribution of risk scores, as well as the OS of each

sample in 3 sets. The heatmap also displays the various risk scores,

as well as the various expression levels of the two PR-DE-IRFeGs

(Figures 4D–F). Most of the AUCs for the 3 sets were above 0.65,

which was satisfactory (Figures 4G–I). The Kaplan-Meier curve

shows that the survival probability of patients in the high-risk

group is lower than that of patients in the low-risk group (Figures

4J–L), indicating that the high-risk group’s prognosis is poor. As a

result, independent of interference from clinical factors (gender

and clinical stage), the risk score was an independent predictor of

OS in both the total and training sets (Figures 4M–Q).

Unfortunately, this outcome did not show up in the test set in

a meaningful way (Figures 4O–R). In conclusion, our model

performs well in predicting prognosis of patients with THCA.

TABLE 1 Clinical characteristics of each set from TCGA cohort.

Covariates Type Total set Test set Training set p value

Survival time (day) ≤712 246 (49%) 123 (49%) 123 (49%) 1
>712 256 (51%) 128 (51%) 128 (51%)

Survival state Alive 486 (96.81%) 245 (97.61%) 241 (96.02%) 0.4459
Deceased 16 (3.19%) 6 (2.39%) 10 (3.98%)

Age (year) ≤60 389 (77.49%) 195 (77.69%) 194 (77.29%) 1
>60 113 (22.51%) 56 (22.31%) 57 (22.71%)

Gender FEMALE 367 (73.11%) 180 (71.71%) 187 (74.5%) 0.5459
MALE 135 (26.89%) 71 (28.29%) 64 (25.5%)

Stage I 281 (55.98%) 142 (56.57%) 139 (55.38%) 0.8454
II 52 (10.36%) 28 (11.16%) 24 (9.56%)
III 112 (22.31%) 53 (21.12%) 59 (23.51%)
IV 55 (10.96%) 26 (10.36%) 29 (11.55%)
unknown 2 (0.4%) 2 (0.8%) 0 (0%)

T T1 143 (28.49%) 68 (27.09%) 75 (29.88%) 0.6897
T2 164 (32.67%) 88 (35.06%) 76 (30.28%)
T3 170 (33.86%) 82 (32.67%) 88 (35.06%)
T4 23 (4.58%) 11 (4.38%) 12 (4.78%)
unknown 2 (0.4%) 2 (0.8%) 0 (0%)

M M0 282 (56.18%) 143 (56.97%) 139 (55.38%) 0.0555
M1 9 (1.79%) 1 (0.4%) 8 (3.19%)
unknown 211 (42.03%) 107 (42.63%) 104 (41.43%)

N N0 229 (45.62%) 114 (45.42%) 115 (45.82%) 0.7029
N1 223 (44.42%) 116 (46.22%) 107 (42.63%)
unknown 50 (9.96%) 21 (8.37%) 29 (11.55%)
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FIGURE 3
Acquisition of PR-DE-IRFeGs. (A,B) Univariate Cox regression analysis’ forest plot based on 35 PR-DE-IRGs and 10 PR-DE-FRGs, respectively.
(C)Heatmap constructed based on the expression status of nine PR-DE-IRFeGs in tumor and normal samples. (D)Correlation network among 9 PR-
DE-IRFeGs. The left half of the circle represents the properties of the gene, and the right half represents the gene’s effect on prognosis. (E) Co-
expression network between CDKN2A/BID and their corresponding DE-IRGs. (F,G) Survival curves were constructed based on CDKN2A and
BID genes, respectively.
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FIGURE 4
Model performance test based on the total, training and test sets. (A–C) Risk curves and survival status graphs. (D–F) Expression heatmap of
2 PR-DE-IRFeGs. (G–I) ROC curves for 1–5 years. (J–L) Kaplan-Meier survival curves. (M–O) Forest plots of univariate Cox regression. (P–R) Forest
plots of multivariate Cox regression.
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Comparison of the performance of various
prognostic models

When the ROC curves were compared, our model had the

most outstanding AUC value in all years (Figures 5A–E),

implying the most prominent performance of our model. Our

model has a greater capacity to identify prognosis than other

models, as shown by the Kaplan-Meier survival curves (Figures

5F–J). Not only that, but by comparing the c-indexes, we

discovered that our model outperformed all others

(Figure 5K). In addition, our model was observed to have the

highest RMST curve out of five (Figure 5L).

2 DE-PR-IRFeGs protein levels’ differential
expression

Figures 6A–H showed IHC staining of CDKN2A and BID

protein expression in THCA and normal thyroid tissue. The

results showed higher expression of both genes in THCA tissues.

FIGURE 5
Performance comparison among different models. (A–E) The 1–5 years ROC curves of 5 models, respectively. (F–J) Kaplan-Meier survival
curves of 5 models, respectively. (K) Comparison of C-index among the 5 models. (L) Comparison of RMST curves among the 5 models.
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FIGURE 6
2 DE-PR-IRFeGs protein levels’ differential expression in protein level. (A–H) BID and CDKN2A protein expression level in normal thyroid and
THCA tissues. Kaplan-Meier survival curves in different subgroups of each clinical feature.
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Assessment of our model performance
around clinical subgroups.

We used the Kaplan-Meier survival curve to test the model’s

predictive performance in various clinical subgroups

(Supplementary Figures S4A–L). Except for the age ≤60 years,
stage I-II, and M1 subgroups (p > 0.05), our model maintained

strong performance in identifying OS inmost subgroups (p 0.05).

Patients in all subgroups with a high risk have a terrible

prognosis.

GSEA enrichment analysis of high-risk and
low-risk groups

Supplementary Figures S5A,B showed the results of

biological functions enrichment based on high-risk and low-

risk groups, respectively. The GO-enriched biological functions

in the high-risk group mainly include fatty acid metabolic

process, oxidative phosphorylation, skeletal system

development, and thyroid hormone generation. Moreover, the

low-risk group mainly includes interferon-gamma production,

response to type I interferon, T-cell activation involved in

immune response, T-cell mediated immunity, T-helper1-type

immune response, type-I interferon production. The KEGG

pathway in the low-risk group was mainly enriched in: cell

adhesion junction, cell adhesion molecules cams, cytokine-

cytokine receptor interaction, natural killer cell-mediated

cytotoxicity (Supplementary Figure S6C). The main enriched

KEGG pathways in the high-risk group are arginine and proline

metabolism, butanoate metabolism, glycine serine, threonine

metabolism, oxidative phosphorylation, and propanoate

metabolism (Supplementary Figure S6D). The enrichment

results for these risk groups were all strongly associated with

immunity and ferroptosis.

Immune cell and immune function
analysis

The 2 DE-PR-IRFeGs of the model were closely related to

immune genes and ferroptosis genes, and the results of GSEA

analysis also verified the correlation between our model and

immunity/ferroptosis. Figure 7A showed the distribution of

immune cell/immune function scores for each sample as the

risk score increased. As shown in Figure 7B, except for T

follicular helper cells (TFH), B cells, CD8 + T cells, and T

helper cells, the negative correlation between other immune

cell/function scores and risk scores is statistically significant.

Figure 7C supported this result with difference analysis of these

scores between different risk groups. In conclusion, we can

determine the close relationship between the risk score and

most immune cells/immune functions.

Prediction of a network regulatory
network targeting CDKN2A

There are significant differences in the expression of

CDKN2A in many cancers (Figure 8A). Moreover, CDKN2A was

up-regulated in these cancers. There are 84 upstream miRNAs that

we predicted that may bind to CDKN2A. Hsa-miRNA-873-5p has a

significant negative correlation with CDKN2A (Figure 8B). Hsa-

miRNA-873-5p was significantly down-regulated in THCA

(Figure 8C), and THCA patients with low expression of hsa-

miRNA-873-5p showed a better prognosis (Figure 8D). All the

above results indicated that hsa-miRNA-873-5p is a miRNA with

significant biological value in THCA thatmay regulate the expression

of CDKN2A. Among the 108 lncRNA obtained from the StarBase

database, only CYTOR met the statistical threshold condition.

CYTOR expression was negatively correlated with hsa-miRNA-

873-5p expression and positively correlated with CDKN2A

expression (Figures 8E,F). Relative to normal tissues, CYTOR was

more expressed in tumor tissues, as shown in Figure 8G. Low

CYTOR expression, on the other hand, was linked to a poor

THCA patients’ prognosis (Figure 8H). Figure 8I depicted the

ceRNA regulation network, including CYTOR, hsa-miRNA-873-

5p and CDKN2A. Figures 8J,K showed the predicted binding sites of

hsa-miR-873-5p and CDKN2A as well as hsa-miR-873-5p and

CYTOR obtained from the Starbase website.

Model closely links to gene mutations

After sorting the gene mutation frequencies across all TCGA

samples, we visualized the top 30 gene mutations in the low-risk

and high-risk groups (Figures 9A,B). As can be seen from the

figure, BRAF, NRAS, and HRAS have the highest mutation

frequency. And the high-risk group had higher TMB

(Figure 9D). The correlation analysis between the risk score

and TMB in Figure 9C further confirmed the positive correlation

between the risk score and TMB. Unfortunately, no significant

differences were found for TMB between the BRAF/NRAS/

HRAS wild and mutant groups (Figures 9E–G). BRAF

mutations were associated with higher BID, CDKN2A

expression and lower risk scores (Figure 9H). Low BID,

CDKN2A expression, and higher risk scores were found in

the NRAS and HRAS mutation groups (Figures 9I,J).

Figure9K shows the differences in PR-DE-IRGs associated

with BID and CDKN2A between the BRAF mutation and the

wild groups. Interestingly, the corresponding results for NRAS

and HRAS were opposite to those for BRAF (Figures 9L,M).

CNV analysis

The CNVs of 9 PR-DE-IRFeGs we found were shown in

Figure 10A. BID, PGD, CAPG, DPP4, and MIOX have higher
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CNV gain frequencies, while CDKN2A and GPX4 have higher

CNV loss frequencies. The chromosomal locations of these genes

were shown in Figure 10B. These genes are mainly located on

chromosomes 1, 2, 3, 9, 11, 19, and 22. Higher CDKN2A

expression was associated with its single deletion copy

number (Figure 10C). Unfortunately, we did not observe a

significant relationship between BID expression and its single

gain copy number (Figure 10D). Likewise, CDKN2A single

deletion copy number group had a poorer survival probability

(Figure 10E). However, we did not find a clear relationship

between BID single gain copy number and survival probability

(Figure 10F).

Treatment Predictive Efficacy of the
model

From Figure 11A, we can see that CDKN2A expression is

positively correlated with CD274 expression and TMB. A

positive correlation between BID and CD274 expression as

well as a positive correlation between risk score and TMB was

observed. The CNKN2A was positively correlated with TIDE

(Figure 11B). There were differences in CD274 expression, TMB,

MSI and exclusion between the high and low-risk groups

(Figure 11C). Meanwhile, these 2 genes were found to be

positively associated with 3 IPSs (Figure 11D). There were

FIGURE 7
Immune infiltration analysis. (A) Heat map of the distribution difference of 16 kinds of immune cells and 13 kinds of immune functions. (B) The
correlation between 16 types of immune cells/13 types of immune functions and risk scores. (C) Difference analysis of 16 immune cells and
13 immune functions in different risk groups.
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FIGURE 8
Prediction of a network regulatory network targeting CDKN2A. (A) CDKN2A expression difference between 33 cancers and normal tissues. no
logo: not significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001. (B) Correlation analysis between CDKN2A and hsa-miR-873-5p expression. (C) The
expression difference of hsa-miR-873-5p between normal and THCA tissues. (D) Survival probability difference between high and low expressed
hsa-miR-873-5p. (E) Correlation analysis of CYTOR and hsa-miR-873-5p expression. (F) Correlation analysis of CYTOR and CDKN2A
expression. (G) Differences in CYTOR expression between normal and THCA tissues. (H) Differences in survival probability between high and low
CYTOR expression groups. (I) CeRNA regulatory network composed of CYTOR, hsa-miR-873-5p and CDKN2A. (J) The predicted binding sites of
hsa-miR-873-5p and CDKN2A. (K) The predicted binding sites of hsa-miR-873-5p and CYTOR.
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FIGURE 9
Model closely links togenemutations. (A,B)Waterfall charts showmutations in the top30most commongenes indifferent risk groups, respectively. The
right panel of the waterfall plot showsmutation frequencies, and the different colors at the bottom of the graph show subgroups of differentmutation types
and clinical features. The histogram above is the TMB statistic result for each sample. (C) Correlation between TMB and risk score. (D) TMB differences in
between high and low risk groups. (E–G) TMB differences between BRAF/NRAS/HRASwild andmutant groups. (H–J)Differences in the BID, CDKN2A
expression and risk score betweenBRAF/NRAS/HRASwild andmutant groups. (K–M)Differences in theexpressionofDE-IRGsupstreamofBIDandCDKN2A
between the BRAF/NRAS/HRAS wild and mutant groups, respectively. ns: not significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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FIGURE 10
CNV analysis. (A) The statistics result of CNV of 9 PR-DE-IRFeGs. The green dot represents the loss of CNV, while the pink dot represents the
gain of CNV. (B) The position distribution of CNV changes of 9 PR-DE-IRFeGs on 23 chromosomes. (C) Differences in CDKN2A expression between
CDKN2A single deletion and normal groups. (D)Differences of BID expression in BID single gain copy number and normal group. (E,F) Kaplan-Meier
survival curves between different copy number variation groups of BID/CDKN2A, respectively.
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FIGURE 11
Treatment Predictive Efficacy of the Model. (A) Correlation analysis between BID/CDKN2A expression/risk score and CD274/TMB. (B)
Correlation analysis between the BID/CDKN2A expression/risk scores and TIDE/MSI/dysfunction/exclusion scores. (C)Differences between CD274,
TMB, TIDE, MSI dysfunction and exclusion scores between different risk groups. (D) Correlation of 3 IPSs with risk score/BID/CDKN2A expression.
(E–G) Differences of 3 IPSs between different risk subgroups. (H) Correlation between IC50 of 6 chemotherapy drugs and risk score/BID/
CDKN2A expression. (I) Differential analysis of 6 chemotherapeutic drugs in different risk groups. In circular or lollipop charts: ns: not significant; *:
p < 0.05; **: p < 0.01; ***: p < 0.001.
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FIGURE 12
Combination of a nomogram for predicting patients’ survival probability. (A) Nomogram based on two clinical criteria (age and stage) and risk
group. (B–D) 1–5 years’ internal calibration curves based on the total, training and test sets, respectively. (E–G) 1–5 years’ ROC curves based on the
total, training and test sets, respectively.
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FIGURE 13
External cohort validation of 2 PR-IRFeGs and pairwise comparison of relative expression of 4 genes detected by qRT-PCR. External cohort
validation: (A) BID. (B) CDKN2A. qRT-PCR: (C) BID. (D) CDKN2A. (E) hsa-miR-873-5p. (F) CYTOR.
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differences in Ips-ctla4-neg + pd1-pos and Ips-ctla4-pos + pd1-

pos, while there was no significant difference in Ips-ctla4-pos +

pd1-neg between different risk groups (Figures 11E–G). We

found that Sunitinib, Paclitaxel and Mesylate were

significantly positively correlated with risk scores

(Figure 11H). The correlation study was further supported by

the difference in IC50 of the three medicines between the high

and low-risk groups (Figure 11I). Significant correlations

between 2 PR-DE-IRFeGs expression and IC50 of some drugs

were also observed. The above results all illustrate the predictive

efficacy of our model and the genes within the model.

Combination of a nomogram for
predicting patients’ survival probability

A nomogram based on two clinical criteria (age and stage) as

well as the risk group was shown in Figure 12A. In Figures

12B–D, we discovered parallels between the predicted and actual

OS in all years based on three sets data. These results suggest that

our nomogram can serve as an accurate tool for predicting

survival probability in THCA patients. In Figures 12E–G, we

can observe that the time-dependent ROC curve in all years

(most AUC >0.85) indicated the nomogram’s good predictive

capacity.

Validation of the differential expression of
2 PR-IRFeGs using an external cohort

In the GSE60542 external cohort, we observed higher

expression of 2 PR-IRFeGs in THCA (Figures 13A,B), which

is consistent with the analysis results of the TCGA,

GSE33630 and GSE35570 cohorts.

Using qRT-PCR to verify the relative
expression differences of related genes

Paired boxplots showed significant differences in the relative

expression of all 4 genes between THCA tissue and adjacent

normal thyroid tissue (Figures 13C–F). We observed higher

expression of BID, CDKN2A and CYTOR as well as lower

expression of hsa-miR-873-5p in THCA tissue compared with

adjacent normal thyroid tissue, all of which were consistent with

our previous results.

Discussion

Our study extracted 35 PR-DE-IRGs and 10 PR-DE-FRGs

from TCGA and GEO databases for co-expression analysis.

CDKN2A and BID were identified as prognostic risk and

protective factors, respectively. External data and qRT-PCR

experiment also validated their differential expression. They

were finally screened to construct a prognostic model. The

model’s excellent performance has been repeatedly verified

and outperformed other models. The model and composite

nomogram also demonstrated excellent clinical value. This is

reflected in the close correlation between BID/CDKN2A/risk

score and TIDE/CD274 expression/TMB/IPS/IC50 of

6 chemotherapeutic drugs. The multi-perspective multi-omics

analysis also provided many valuable results. The significant

correlation of risk score withmost immune cells/function and the

close correlation of risk score/2 PR-DE-IRFeGs expression with

BRAF/NRAS/HRAS mutation provided valid evidence for

further mechanistic exploration. The close association of

single-copy number deletion of CDKN2A with upregulation

of CDKN2A expression/poor prognosis and the CYTOR-hsa-

miRNA-873-5p-CDKN2A regulatory network that significantly

affects prognosis both support their potential roles in THCA

progression.

BID, a member of the Bcl-2 family, has a pro-apoptotic

function (Wang et al., 1996; Esposti, 2002; Billen et al., 2008; Gahl

et al., 2016), and is closely related to the induction of ferroptosis

and mitochondrial damage (Neitemeier et al., 2017; Jelinek et al.,

2018; Wang et al., 2021b; Li et al., 2021). Moreover, BID also

plays an inhibitory role in gastric cancer, ovarian cancer,

pancreatic cancer and other cancers (Sinicrope et al., 2008;

Goncharenko-Khaider et al., 2010; Aranovich et al., 2012;

Gryko et al., 2014). These results, like our study, suggest that

BID can be a protective factor in cancers. CDKN2A on

chromosome 9p21 encodes p16INK4a and p14ARF proteins,

whose mutation or deletion are closely related to various tumors,

such as pancreatic cancer, thymic cancer, melanoma, lung

cancer, and others (Sherborne et al., 2010; Nikolaou et al.,

2011; Aesif et al., 2017; Cancer Genome Atlas Research

Network, 2017; Satpathy et al., 2021; Singhi and Wood, 2021).

These p16INK4a overexpressed tumors are usually highly

invasive (Romagosa et al., 2011). Overexpression of p14ARF

and p16INK4a has also been found in invasive areas of head and

neck squamous cell carcinoma (Natarajan et al., 2003), colorectal

carcinoma (Jung et al., 2001) and endometrial carcinoma

(Horrée et al., 2007). These results help to demonstrate that

CDKN2Amay act as a risk factor in cancers. It has been reported

that overexpression of p14ARF and p16INK4a was observed in

follicular adenoma, follicular carcinoma, and papillary

carcinoma, which is consistent with our observation (Ferru

et al., 2006). The reason may be that excessive abnormal cell

growth triggers CDKN2A expression.

We found that the high-risk group is mainly enriched in fatty

acid metabolism and oxidative phosphorylation because tumor

cell proliferation requires fatty acid synthesis to synthesize cell

membranes and signaling molecules (Carracedo et al., 2013;

Currie et al., 2013; Röhrig and Schulze, 2016). A large amount

of evidence shows that even if there is active glycolysis in tumors,
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the role of oxidative phosphorylation in tumors cannot be

ignored (Moreno-Sánchez et al., 2007; Weinberg and Chandel,

2015; Ashton et al., 2018). The enrichment pathway in our low-

risk group is mainly related to immune response. The antitumor

immune response inhibits tumor growth, and the active immune

response is key to improving survival results (Yamaguchi and

Sakaguchi, 2006; Gajewski et al., 2013; Li et al., 2016; Savas et al.,

2016). Surprisingly, further analysis also found that most

immune cells were more abundant in the low-risk group.

In recent years, ferroptosis induction has emerged as an

alternative and/or combination therapy approach to trigger

cancer cell death, especially for the treatment of malignancy

resistance issues in certain cancers (Xu et al., 2019; Lin et al.,

2021). At present, there are a large number of reports indicating

that ferroptosis is closely related to immune cells and immune

responses (Levring et al., 2012). Macrophages can generate

oxygen radicals through the membrane-associated NADPH

oxidase complex or through the mitochondrial electron

transport chain, and ferroptosis requires the use of iron-

dependent oxygen radicals for membrane lipid peroxidation

(Vazquez-Torres et al., 2000; Dixon et al., 2012). IFN-γ
released by CD8+ T cells downregulates the expression of two

subunits of the glutamate-cysteine anti-transport system,

SLC3A2, and SLC7A11, inhibits the uptake of cystine by

tumor cells and promotes tumor cells lipid peroxidation and

ferroptosis (Yamazaki et al., 2014; Wang et al., 2019). This

indicates that cancer cells undergoing ferroptosis release

HMGB1, an important protein necessary to make cancer cells

immunogenic, and DAMPs, an endogenous molecule released

from injured or stressed cells (Tang et al., 2012; Yu et al., 2015;

Wen et al., 2019; Zindel and Kubes, 2020; Chen et al., 2021).

DAMPs bind to pattern recognition receptors (PRRS) after

dendritic cell recruitment, dendritic cell-mediated antigen

capture, and presentation. PRRS signals activation of

downstream transcription factors such as NF- κ B and

interferon regulatory factor (IRF) and produces a variety of

immune factors such as cytokines and chemokines, thereby

inducing cytotoxic T cell responses (Chen et al., 2021).

DAMPs-PRR axis plays a central role in bridging cell death

and immune response in tumor immunity (Tang et al., 2012;

Zindel and Kubes, 2020). Wang et al. found that lipid

peroxidation caused by ferroptosis activator elastin promoted

the proliferation and differentiation of human peripheral blood

monocytes into natural killer cells and B cells by down-regulating

bone morphogenetic protein (BMP) (Wang et al., 2018). It shows

that ferroptosis also contributes to the immune response of

tumor cells. By analyzing the above evidence, it can be

speculated that the low-risk group has a good prognosis and

is enriched with more immune-related collaterals, which may be

closely related to the occurrence of ferroptosis and immune

function.

As a general term for a class of RNAs, including mRNAs,

lncRNAs, circRNAs, etc., ceRNAs have miRNA binding sites that

can compete with miRNAs to inhibit the regulation of target

genes (Das et al., 2014; Tay et al., 2014). With numerous in-depth

research, the changes of target gene expression caused by ceRNA

regulatory network have become more and more prominent in

cell metabolism and the occurrence and development of cancer

(Karreth and Pandolfi, 2013). From the results of our analysis, it

can be seen that CDKN2A is significantly overexpressed in

THCA and exhibits a significant effect on prognosis.

Currently, there are few ceRNA studies targeting CDKN2A in

THCA. Therefore, it is very necessary to further predict the

ceRNA network potentially regulating CDKN2A expression. In

this study, we predicted that the upstream regulators of

CDKN2A were hsa-miRNA-873-5p, which was significantly

down-regulated in THCA (Zou et al., 2021). In addition to

THCA, hsa-miRNA-873-5p is also down-regulated in as many

as 13 other cancers, such as lung cancer (Jin et al., 2018). It has

been shown to play an oncogenic role in lung adenocarcinoma

cells (Gao et al., 2015) and hepatocellular carcinoma (Li et al.,

2018; Zhang et al., 2019). This is consistent with the Kaplan-

Meier survival curve results for THCA in our study. But a

previous review demonstrated that miR-873-5p may promote

or inhibit cancer progression, which suggests that the effect of

miR-873-5p on cancers remain controversial. At the same time,

we found that the lncRNAs with the strongest correlation with

hsa-miRNA-873-5p was CYTOR, which was highly expressed in

THCA, and suggested a better prognosis. Studies have shown

that CYTOR can regulate gene expression through various

mechanisms as a significant oncogene (Neumann et al., 2012;

Chen et al., 2016; Yue et al., 2016). However, there are still studies

reporting its knockdown on the promotion of glioma

progression, which is consistent with our results (Binder et al.,

2021). Furthermore, the effects of miR-873-5p and CYTOR on

THCA were divergent from those produced by other tumors

identified in the literature review, possibly due to the prominent

tumor heterogeneity of THCA (Binder et al., 2021). CYTOR is

also up-regulated in colon cancer (Yue et al., 2016) and gastric

cancer (Chen et al., 2016). CYTOR and hsa-miRNA-873-5p are

negatively correlated in THCA (Wu et al., 2020). The above

results implied that CYTOR and hsa-miRNA-873-5p, as key

genes of potential regulatory network, could affect the THCA’s

progression and prognosis of by regulating CDKN2A expression.

TMB’s higher-level reflects lower survival in many cancers

(Eder et al., 2019; Hwang et al., 2019; Wu et al., 2019; Doig et al.,

2022), which is consistent with our findings: the model risk score

was positively associated with the occurrence of TMB. BRAF

mutations are the most common mutations in papillary thyroid

cancer (PTC) patients, occurring in up to 45% (Xing, 2005).

Angell et al. (2014) observed that BRAF V600E in PTC was

associated with increased PD1 ligand 1 expression by

immunohistochemistry and direct DNA sequencing. Another

study showed that patients with BRAF-mutated THCA could

gain greater therapeutic values from combined BRAF and MEK

inhibitor therapy (Cabanillas et al., 2018). In contrast, RAS
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mutation is the most common genetic alteration in poorly

differentiated THCA, with an incidence of about 23%

(Volante et al., 2009). The RAS mutation enhances the

hypoxia-induced release of prototypic angiogenic factor

(VEGF) in the microenvironment and promotes tumor

progression (Shellman et al., 2003). This evidence may explain

our observation that the BRAFmutant type had a lower risk score

than the wild type, and the RAS mutant type had a higher risk

score than the wild group. IPS can also reflect the tumor

sensitivity to immunotherapy, similar to TMB. The 2 PR-DE-

IRFeGs had positive correlations in different phenotypes, with

higher IPS values in the low-risk group than high-risk group. It

predicts that patients with low-risk scores will get more benefits

from immunotherapy. We found that the IC50s of Sunitinib,

Paclitaxel, and Mesylate were positively associated with our risk

scores, also differing between high and low-risk groups. This

suggests that our study is equally instructive for current targeted

therapy and chemotherapy. Nomograph is an excellent method

to evaluate the prognosis of tumors. The AUC value of the

composite nomogram confirmed its excellent performance in

predicting the survival rate of THCA patients.

As an important source of genetic variation, CNVs may lead

to the heterogeneity of cancer genes, resulting in increased

genetic instability, and are closely related to the development

and prognosis of various cancers (Tanenbaum et al., 2016; Zhang

et al., 2016). The deletion of the human CDKN2A gene

frequently occurs in certain malignancies such as melanoma

(Sun et al., 2004). In our study, CDKN2A single copy number

deletion in THCA was associated with higher CDKN2A

expression and poor prognosis. CDKN2A’s deletion has been

previously reported to be associated with poor survival in

anaplastic thyroid cancer or advanced differentiated thyroid

cancers patients and poorest thyroid differentiation, which is

consistent with our results (Yoshihara et al., 2013). Fang et al.

also found that CDKN2A deletion is common in acute

lymphoblastic leukemia, which is associated with poor

prognosis (Fennell et al., 2022). A previous study has reported

that RECQL4’s CNV are associated with its overexpression and

increased breast cancer aggressiveness (Ashton et al., 2018).

These all suggest that the single copy number deletion of

CDKN2A may further promote the progression of THCA by

upregulating the expression of CDKN2A.

However, our study has some limitations. First, the types of

clinical data obtained from TCGA and GEO databases are limited,

which prevents us from doing more in-depth analysis. Second, the

two genes related to the prognosis model of PTC need further

study on the molecular mechanism of tumors and the number and

spatial morphological structure of translated proteins. Third, the

nomogram has no detailed scores, including tumor size, tumor

invasion and metastasis depth, tumor treatment, and surgical

scope. In addition, some conclusions from this bioinformatics

analysis, such as the close relationship between BRAF/NRAS/

HRAS mutations and CDKN2A expression, still lack the

support and scientific explanation based on basic experiments

and valid literature reviews. The relevant conclusions do need to be

confirmed in further research in the future. Finally, this study is a

retrospective study, which needs to be verified by a more

independent cohort and even a prospective clinical trial.
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